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Abstract
It is known that computing the list chromatic number is harder than
computing the chromatic number (assuming NP 6= coNP). In fact,
the problem of deciding whether a given graph is f -list-colorable
for a function f : V → {c − 1, c} for c ≥ 3 is Πp

2-complete. In
general, it is believed that approximating list coloring is hard for
dense graphs.

In this paper, we are interested in sparse graphs. More
specifically, we deal with nontrivial minor-closed classes of graphs,
i.e., graphs excluding some Kk minor. We refine the seminal
structure theorem of Robertson and Seymour, and then give an
additive approximation for list-coloring within k − 2 of the list
chromatic number. This improves the previous multiplicative
O(k)-approximation algorithm [20]. Clearly our result also yields
an additive approximation algorithm for graph coloring in a minor-
closed graph class. This result may give better graph colorings than
the previous multiplicative 2-approximation algorithm for graph
coloring in a minor-closed graph class [6].

Our structure theorem is of independent interest in the sense
that it gives rise to a new insight on well-connected H-minor-free
graphs. In particular, this class of graphs can be easily decomposed
into two parts so that one part has bounded treewidth and the other
part is a disjoint union of bounded-genus graphs. Moreover, we
can control the number of edges between the two parts. The proof
method itself tells us how knowledge of a local structure can be
used to gain a global structure, which gives new insight on how to
decompose a graph with the help of local-structure information.

1 Introduction
1.1 Coloring, List Coloring, and Our Main Results.
Graph coloring is arguably the most popular subject in
graph theory. Also, it is one of the central problems in
combinatorial optimization, because it is one of the hardest
problems to approximate. In general, the chromatic number
is inapproximable in polynomial time within factor n1−ε

for any ε > 0, unless coRP = NP; see Feige and Kilian
[12] and Håstad [15]. Even for 3-colorable graphs, the best
known polynomial approximation algorithm [4] achieves a
factor of O(n0.211).
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An interesting variant of the classic problem of properly
coloring the vertices of a graph with the minimum possible
number of colors arises when one imposes some restrictions
on the colors or the number of colors available to particular
vertices. This subject of list coloring was first introduced in
the second half of the 1970s, by Vizing [37] and indepen-
dently by Erdős, Rubin, and Taylor [11]. List coloring has
since received considerable attention by many researchers,
and has led to several beautiful conjectures and results.

Let us formally define list coloring. If G = (V,E) is a
graph, and f is a function that assigns a positive integer f(v)
to each vertex of v in G, we say that G is f -choosable (or
f -list-colorable) if, for every assignment of sets of integers
S(v) ⊆ Z, where |S(v)| = f(v) for all v ∈ V (G), there is a
proper vertex coloring c : V → Z so that c(v) ∈ S(v) for all
v ∈ V (G). Let L be a set of colors, and let L(v) be a subset
of L for each vertex v of G. An L-coloring of the graph G is
an assignment of admissible colors to all vertices of G, i.e.,
a function c : V (G) → N such that c(v) ∈ L(v) for every
v ∈ V (G), and for every edge uv we have c(u) 6= c(v).
Such a coloring is called a list coloring. So list coloring is
close to graph coloring, but each vertex has its own list, and
coloring must use one color in the list of each vertex. The
smallest integer k such that G is f -choosable for f(v) = k
(v ∈ V (G)) is the list chromatic number χl(G). If G is f -
choosable for f(v) = s (v ∈ V (G)), we sometimes say that
G has a list coloring using at most s colors.

Clearly, χ(G) ≤ χl(G), and there are many graphs for
which χ(G) < χl(G). A simple example is the complete
bipartite graph K2,4, which is not 2-choosable. Another
well-known example is the complete bipartite graph K3,3. In
fact, it is easy to show that for every k, there exists a bipartite
graph whose list chromatic number is bigger than k.

The problem of computing the list chromatic number
of a given graph is therefore difficult, even for small graphs
with a simple structure. It is shown in [13] that the problem
of deciding whether a given graph is f -list-colorable for a
function f : V → {k − 1, k} for k ≥ 3 is Πp

2-complete.
Hence, under the common assumption NP 6= coNP, the
problem is strictly harder than the NP-complete problem of
deciding whether the chromatic number is k (if k ≥ 3).

Let us highlight some difficulties between list coloring
and graph coloring. There is an approximation technique
for graph coloring using semidefinite programming [16], but
this does not seem to extend to list coloring. Also, a simple
combinatorial algorithm for graph coloring to detect a large
independent set to give the same color does not apparently



work.
Another difficulty comes in terms of “density” of

graphs. Graph coloring is trivial for bipartite graphs, but it
is actually NP-hard to determine the list chromatic number
of bipartite graphs; see [34]. In general, it is believed that
approximate list coloring is hard for dense graphs. For more
details, we refer the reader to Alon [1]. Therefore, it would
be very interesting to consider sparse graphs.

Although there are many negative results as stated
above, there are some positive results, which are mainly con-
nected to the Four Color Theorem. One celebrated example
is Thomassen’s result on planar graphs [32]. It says that ev-
ery planar graph is 5-choosable, and its proof is within 20
lines and gives rise to a linear-time algorithm to 5-list-color
planar graphs. In contrast with the Four Color Theorem,
there are planar graphs that are not 4-choosable [36]. These
were conjectured by Erdős, Rubin and Taylor [11].

It is well-known that planar graphs are closed under
taking minor operations; that is, deleting edges, deleting
vertices and contracting edges. So one natural question is
whether we can extend the result of Thomassen to more
general minor-closed graph classes. Before we mention our
main result, let us first discuss list coloring of planar graphs
and bounded-genus graphs.

Thomassen’s result [32] can be rephrased algorithmi-
cally as follows:

THEOREM 1.1. [32] There is a linear-time algorithm to list-
color a planar graph G using at most χl(G) + 2 colors.

To clarify the meaning of Theorem 1.1, the algorithm
behaves as follows:

1. The algorithm first outputs a number c ≤ χl(G) + 2.

2. Then, for any given lists L with each vertex having at
least c colors, the algorithm gives an L-coloring.

In this paper, whenever we speak of an additive approxi-
mation algorithm within t of the list chromatic number, we
mean the above two points (with “+2” will be replaced by
+t).

The bound χl(G) + 2 is essentially best possible for
planar graphs, because it is NP-hard to decide whether or
not they are 4-list-colorable, and they are 3-list-colorable
[34]. In fact, the problem of deciding whether a given
planar graph is f -list-colorable for the constant function
f : V → {3} or f : V → {4} is Πp

2-complete, as proved
by Gutner [13]. This implies that distinguishing between 3-,
4-, and 5-list-colorability is Πp

2-complete for planar graphs
and bounded-genus graphs. This also means that, unless
coRP = NP, one cannot approximate the list chromatic
number of planar graphs and bounded-genus graphs within 1
of the list chromatic number χl(G).

In [18], Kawarabayashi develops an additive approxima-
tion algorithm for list-coloring bounded-genus graphs within
2 of the list chromatic number, which is best possible.

THEOREM 1.2. [18] Suppose G is embedded on a fixed
surface. Then there is a linear-time algorithm to list-color
the graph using at most χl(G) + 2 colors.

So, in terms of approximation algorithms, the case of
bounded-genus graphs is solved. One natural question is
to extend Theorem 1.2 to a general minor-closed class of
graphs, i.e., graphs excluding some Kk minors. Coloring
and list-coloring a minor-closed class of graphs are interest-
ing in a mathematical sense because they are connected to
the well-known Hadwiger’s conjecture [14]. The problem is
interesting in theoretical computer scientists because we can
get good approximation algorithms, e.g., [6]. Let us empha-
size that approximating the chromatic number of a general
graph is known to be a very hard problem. As we discussed,
list coloring is known to be even harder than graph color-
ing. So it would be an interesting question to get a good
approximation algorithm for a minor-closed class of graphs
comparable to the graph-coloring case obtained in [6].

Our main theorem is the following.

THEOREM 1.3. Let M be a minor-closed class of graphs
and suppose that some graph of order k is not a member
of M. Then there is a polynomial-time algorithm for list-
coloring graphs in M with χl(G) + k − 2 colors.

This improves the multiplicative O(k)-approximation
algorithm by Kawarabayashi and Mohar [20]. Improving the
additive approximation in Theorem 1.3 would be difficult.
In Section 7, we highlight some technical difficulties. We
would probably need some structure theorem significantly
generalizing the seminal Robertson-Seymour decomposition
theorem.

To prove Theorem 1.3, we refine the seminal structure
theorem of Robertson and Seymour [28] to well-connected
graphs. In particular, this gives rise to a new insight of
the decomposition theorem in the sense that this class of
graphs can be easily decomposed into two parts so that one
part has bounded treewidth and the other part is a disjoint
union of bounded-genus graphs. Moreover, we can control
the number of edges between two parts.

The proof method itself tells us how knowledge of a
local structure can be used to gain a global structure, which
gives new insight on how to decompose a graph with the help
of local-structure information.

1.2 Remarks. Let us address the difference between
graph coloring and list coloring of minor-closed class of
graphs. There is a 2-approximation algorithm for graph col-
oring of minor-closed class of graphs [6], but it seems that
there is a huge gap between list coloring and graph coloring
of minor-closed class of graphs. The 2-approximation algo-
rithm in [6] follows from the following result.

THEOREM 1.4. [6] In polynomial time, every H-minor-free
graph can be partitioned into two vertex sets V1, V2 such
that both V1 and V2 have treewidth at most f(H) for some
function depending on |H|.

This theorem may not be useful for list coloring. This is
because some vertex v in V1 may have a lot of neighbors in
V2, say at least χl(G)2 neighbors. So χl(G)2 colors in the
list of v may be used in the list coloring of V2.



Theorem 1.3 also gives rise to an additive approximation
algorithm for graph-coloring a minor-closed class of graphs,
i.e., Kk-minor-free graphs. In fact, we can improve the
additive approximation from k − 2 to k − 3 in Theorem 1.3
for graph coloring. This will be discussed in Section 6.
As far as we see, this additive approximation algorithm is
not implied by the 2-approximation algorithm. Actually,
if the chromatic number is at least k − 2, Theorem 1.3
gives rise to a better approximation. Currently, the best
known result for the chromatic number of graphs without Kk

minors is O(k
√

log k) by the theorem obtained independent
by Thomason [31] and Kostochka [22]. Therefore, these
two algorithms are comparable at the moment. Interestingly,
the famous and well-known conjecture of Hadwiger [14]
(which says that every graph without Kk minors is (k − 1)-
colorable) implies that the 2-approximation result would
“almost” cover Theorem 1.3.1

1.3 Overview of the Algorithm. Our main result is based
on the seminal Robertson-Seymour Graph Minor decompo-
sition theorem [28] together with a new technique that is also
developed in the Graph Minor series. We also use the pre-
coloring technique, which was developed by Thomassen [32]
for planar graphs.

Roughly, the decomposition theorem represents any H-
minor-free graph as a tree of clique-sums of graphs that
are almost-embeddable into bounded-genus surfaces with
bounded number of apex vertices; see Appendix A for
definitions. We refer to the almost-embeddable graphs as
“pieces” or “bags”. A polynomial-time algorithm constructs
such a tree decomposition [6]. Hereafter, we assume that the
tree decomposition is given.

We now fix the root of the tree decomposition, and we
allow precoloring at most k−2 vertices in the apex vertex set
of the root. We extend this precoloring to an L-coloring of
the whole graph using χl(G)+k−2 colors. Our list-coloring
algorithm proceeds as follows:

We proceed by induction on the number of vertices. If
there are two bags Bs, Bt in the tree decomposition such that
Bs is a parent of Bt and |Bs ∩ Bt| ≤ k − 2, then we split
the decomposition at Bs ∩ Bt into two tree decompositions
T1, T2 such that Bt is the root of the tree decomposition
T2. The decomposition theorem guarantees that Bs ∩ Bt

is contained in the apex vertex set of Bt.
By induction, we can list-color the vertices in T1 by

extending the precoloring in the root. Therefore, the list

1Hadwiger’s conjecture is trivially true for k ≤ 3, and reasonably easy
for k = 4, as shown by Dirac [10] and Hadwiger himself [14]. However,
for k ≥ 5, Hadwiger’s conjecture implies the Four Color Theorem. In
1937, Wagner [35] proved that the case k = 5 of Hadwiger’s conjecture
is, in fact, equivalent to the Four Color Theorem. In 1993, Robertson,
Seymour and Thomas [30] proved that a minimal counterexample to the
case k = 6 is a graph G which has a vertex v such that G − v is planar.
By the Four Color Theorem, this implies Hadwiger’s conjecture for k = 6.
Hence the cases k = 5, 6 are each equivalent to the Four Color Theorem
[2, 3, 24]. Hadwiger’s conjecture is open for all k ≥ 7. For the case
k = 7, Kawarabayashi and Toft [19] proved that any 7-chromatic graph
has K7 or K4, 4 as a minor. Recently, Kawarabayashi [17] proved that any
7-chromatic graph has K7 or K3, 5 as a minor.

coloring of T1 gives rise to a precoloring of Bs ∩ Bt. This
precoloring together with the tree decomposition T2 satisfies
the induction hypothesis. So we can list-color the vertices
of T2 by extending the precoloring of Bs ∩ Bt. To clarify
how the lists L are given, we first output numbers c1, c2 with
c1 ≤ χl(Bs) + k− 2 and c2 ≤ χl(Bt) + k− 2, respectively.
Then we output the maximum of c1, c2, say c2. After that,
we are given the lists L with each vertex having at least c2

colors, and we L-color the whole graph G.
Hence, we may assume that there are no such separa-

tions in the decomposition. This assumption allows us to
modify the decomposition theorem in the following way:

1. By adding a bounded number of vortices, each vertex
in the surface part (of each bag) has at most k − 5
neighbors in the apex vertex set, and it does not involve
any clique-sum.

2. Each vortex is far apart from any other.

3. If we delete the vortices and the apex vertex set from
each bag, then the resulting graph W is a disjoint
union of bounded-genus graphs. Moreover, G−W has
bounded treewidth.

The third condition allows us to list-color the bounded
treewidth graph G −W using at most p ≤ χl(G) colors by
the standard dynamic programming. Thus at the moment, we
can output the number p + k− 2 ≤ χl(G) + k− 2. We now
assume that we are given lists L with each vertex having at
least p + k − 2 colors.

As discussed in the previous section, we may assume
that χl(G) ≥ 3 (and hence p ≥ 3). So the first condition
implies that, for each bag, no matter how we color the apex
vertices, each vertex in the surface part still has six available
colors in its list (because we list-color the graph using at
most χl(G) + k − 2 colors). This allows us to use the result
by DeVos, Kawarabayashi, and Mohar [8]. Specifically, the
following is possible.

Suppose a graph G consists of a graph embedded on
a fixed surface with large representativity, together with a
bounded number of vortices. Suppose furthermore that each
of the vortices is far apart from any other. Suppose all the
vortices are precolored using at most χl(G) colors, i.e., the
precoloring of the vortices uses only the colors in the list of
each vertex in the vortices whose order is at most χl(G). If
each vertex in the surface has at least χl(G)+3 ≥ 6 available
colors in its list, and sees at most χl(G) − 1 colors under
the precoloring of the vortices, then the precoloring of the
vortices can be extended to an L-coloring of the whole graph
G using at most χl(G)+3 colors. The same conclusion holds
if we replace χl(G) by any number p ≥ 3.

This result allows us to list-color the graph W (in 3)
using at most χl(G) + 3 colors. Because each vertex in the
surface sees at most k− 5 vertices in the apex vertex set and
G−W has an L-coloring using at most χl(G) colors, we can
list-color a given graph using at most χl(G) + 3 + k − 5 =
χl(G) + k − 2 colors.



The details of our modifications of the Robertson-
Seymour decomposition theorem for each bag will be given
in the full paper. The key idea is to understand the concept
of “tangle”, and its behavior in the surface of large repre-
sentativity. The first one enables us to gain knowledge of a
global structure from knowledge of its local structure relative
to each tangle. The second one uses deep understandings of
a graph embedded on a surface of large representativity [26],
and a new metric of this family of graphs [27].

This paper is organized as follows. In Section 2, we
give our main structure theorem, which modifies the seminal
Robertson-Seymour decomposition theorem. Some formal
definitions and some tools we need are given in Appendix A.
In Section 3, we discuss list coloring of a bounded-genus
graph. In Section 4, we show how to list-color the graph
using the structure theorem. In Section 5, we give our
main algorithm. In Section 6, we show how to improve
the additive approximation in Theorem 1.3 from k − 2
to k − 3 for the usual graph-coloring case. Finally, in
Section 7, we discuss some difficulties for improving the
additive approximation in Theorem 1.3 for general H-minor-
free graphs, and mention improvements for apex-minor-free
graphs.

2 Refined Structure Theorem
We now state our structure theorem, which will be used in
our proof. This theorem strengthens the seminal Robertson-
Seymour decomposition theorem [28, Theorem 1.3] and a
polynomial-time algorithm to find the decomposition [6]
to add the three stated conditions. For the notations of
h-almost-embeddable graphs, clique-sum, vortices, soci-
ety vertices (of vortices), representativity, and Robertson-
Seymour metric, see Appendix A.

THEOREM 2.1. For any complete graph H = Kk, there
is a constant h such that any H-minor-free graph can be
written as clique ≤ h-sums of h-almost-embeddable graphs
such that the following three conditions hold:

1. In the surface part (which does not include the vertices
contained in the vortices, i.e., society vertices) of each
bag, there are no vertices that have at least k − 4
neighbors in the apex vertex set.

2. If a bag Bi contains at most three (but at least one)
vertices in the surface part of the parent bag Bi−1, then
Bi contains at most k− 5 vertices of the apex vertex set
in Bi−1.

3. Let D1, D2, . . . , Dh be vortices of a bag B. Then
any two of D1, D2, . . . , Dh have large distance (in a
sense of Robertson-Seymour metric), actually distance
at least q from any other, where q is a function of h.
In other words, each of D1, D2, . . . , Dh is far from any
other. In addition, the representativity of the graph on
a fixed surface in each bag is large, at least r(h) ≥
r(g, q, d) for some function of h, where r(g, q, d) and
g, q, d come from Theorem 3.1.

Furthermore, there is a polynomial-time algorithm to
construct this clique-sum decomposition for a given Kk-
minor-free graph. The time complexity is nO(h).

3 List-Coloring Extensions in Bounded-Genus Graphs
We begin with some easy observations about list coloring.

Recall the definition of list coloring and its precoloring
extension. If k is an integer and |L(v)| ≥ k for every
v ∈ V (G), then L is a k-list-assignment. The graph is k-
choosable or k-list-colorable if it admits an L-coloring for
every k-list-assignment L. If L(v) = {1, 2, . . . , k} for every
v, then every L-coloring is referred to as a k-coloring of G.
If G admits an L-coloring (k-coloring), then we say that G is
L-colorable (k-colorable). Suppose W is a subgraph of G,
and each vertex of W has a list with at most χl(G) colors.
If W is precolored, and this precoloring uses only the colors
in the list of each vertex of W , we say that W is precolored
using at most χl(G) colors.

In order to get our algorithm, we need to know what kind
of graphs are 2-list-colorable. The following result gives the
answer.

LEMMA 3.1. [11] A graph is 2-choosable if and only if it
is a bipartite graph plus additional structures which can be
recognized in polynomial time.

Let G be a graph embedded in the surface S. For i =
1, 2, . . . , l, let Ci ⊆ V (G) be a set such that all vertices in
Ci lie on the boundary of some face Fi, where F1, F2, . . . , Fl

are pairwise distinct faces. We call C1, C2, . . . , Cl cuffs, be-
cause one can make them lie on distinct boundary compo-
nents, after cutting holes in F1, F2, . . . , Fl.

One challenge for our algorithm is the following. Sup-
pose the vertices in the bounded number of cuffs are pre-
colored. Can we extend this precoloring to an L-coloring
of the whole graph? To answer this question, we use the
following tool developed by DeVos, Kawarabayashi and
Mohar [8], which generalizes the graph-coloring case by
Thomassen [33] to the list-coloring case. In fact, our state-
ment below is different from the original, but it follows from
the same proof as in [8] by combining with the Robertson-
Seymour metric.

THEOREM 3.1. For any three nonnegative integers g, q, d
(with q ≥ 4), there exists a natural number r(g, q, d) such
that the following holds. Suppose that G is embedded on a
fixed surface S of Euler genus g and of the representativity at
least r(g, q, d), and there are d disjoint cuffs S1, S2, . . . , Sd

such that the distance (in the sense of the Robertson-Seymour
metric) of any two cuffs of S1, S2, . . . , Sd is at least q.
Suppose furthermore that all the vertices in S1, S2, . . . , Sd

are precolored using at most χl(G) colors. Furthermore,
the following conditions are satisfied:

1. all the faces except for the cuffs S1, S2, . . . , Sd are
triangles; and

2. each vertex in G − (S1 ∪ S2 ∪ · · · ∪ Sd) has at least
χl(G) + 3 colors in its list, and no vertex of G− (S1 ∪



S2 ∪ · · · ∪ Sd) is joined to more than χl(G)− 1 colors
under the precoloring of the cuffs S1, S2, . . . , Sd.

Then the precoloring of the cuffs S1, S2, . . . , Sd using at
most χl(G) colors can be extended to an L-coloring of G
using at most χl(G) + 3 colors. In fact, in the surface part,
we need only six colors for all of vertices. (Precoloring may
use more than six colors.) Also, there is a polynomial-time
algorithm for such an L-coloring of G, given a precoloring
for the cuffs S1, S2, . . . , Sd, and the lists L for each vertex
of G. The same conclusion holds if we replace χl(G) by any
number p ≥ 3.

As we said, the proof of Theorem 3.1 is almost identical
to that in [8], but let us give some intuition. The assumption
of Theorem 3.1 implies that after deleting all the vertices in
S1 ∪ S2 ∪ . . . ,∪Sd, there are exactly d cuffs S′

1, S
′
2, . . . , S

′
d

such that each vertex in S′
1 ∪ S′

2 ∪ . . . ,∪S′
d has a list with

at least four available colors that are not used in its colored
neighbors of the precoloring of the cuffs S1, S2, . . . , Sd. And
every vertex not on these cuffs has a list with at least six
available colors. The result in [8] says that the resulting
graph is even 5-list-colorable. But if we allow every vertex
not on the cuffs to have a list with at least six available colors,
then the proof becomes much easier even if all the vertices
on the cuffs have a list with only four available colors. So,
we refer the reader to the proof of [8].

Theorem 3.1 is one of the keys in our algorithm.
Our proof gives rise to an additive approximation algo-

rithm for graph coloring within k − 3 of the chromatic num-
ber. In this case, we need to improve Theorem 3.1; see Sec-
tion 6. Actually, we only need the graph-coloring version of
the improvement of Theorem 3.1, which was already proved
in [33].

4 List-Coloring the Clique-Sum Decomposition of
h-Almost Embeddable Graphs

Suppose we are given the Robertson-Seymour clique-sum
decomposition of G. So G has pieces B1, B2, . . . such that
each Bi has an h-almost-embeddable structure. Set B1 to be
the root of this clique-sum decomposition. For each piece
Bi, define a graph G′

i the surface part of Bi. Also, let Xi

be the apex vertex set of Bi. Our approximation algorithm
first outputs a number p ≤ χl(G), and then given any lists L
with each vertex having at least p + k − 2 colors, outputs an
L-coloring.

Our main idea is to use the structure theorem in Theo-
rem 2.1, together with the precoloring technique developed
by Thomassen [32]. More precisely, we are now allowed
to precolor k − 2 vertices in the apex vertex set X1 of B1.
Suppose that the vertices of X ′ in X1 with |X ′| = k − 2
are precolored using colors 1, 2, . . . , k−2. (The precoloring
may not use all of these colors, but in this case, the proof is
easier, so we assume that |X ′| = k−2 and the vertices in X ′

are precolored using the colors 1, . . . , k−2.) We will extend
this precoloring to an L-coloring of the whole graph.

As we pointed out before, we may assume that the list
chromatic number of G is at least 3; otherwise, we are able to

list-color the whole graph using Lemma 3.1. Our proof is by
induction on the number of bags. In the following arguments,
we sometimes say that treewidth is “bounded”. This means
that the treewidth is at most f(h) for some function of h.

Suppose for now that there is only one piece B1. For
simplicity, let G′ be the surface part of B1.

4.1 List-Coloring an h-Almost-Embeddable Graph.
We partition the vertices of the surface part G′ into two parts
F1, F2 such that each vertex in F1 has at least k − 4 neigh-
bors, and all other vertices are in F2.

By Theorem 2.1, we now have at most h disks
D′

1, D
′
2, . . . , D

′
h such that all vertices in F1 are in the graphs

consisting of the union of the graphs embedded inside D′
i for

i = 1, 2, . . . , h (actually, these graphs are vortices), and the
distance (in the sense of the Robertson-Seymour metric) be-
tween any two of the disks D′

1, D
′
2, . . . , D

′
h is at least q ≥ 4.

Let us observe that by our assumption, Condition 2 of Theo-
rem 2.1 does not happen. We will now add some of vertices
in the surface to these disks D′

1 ∪D′
2 ∪ · · · ∪D′

h.
Let L be the vertices in the surface G′ such that

each vertex in L has at least 3 neighbors to one of disks
D′

1, D
′
2, . . . , D

′
h. Note that no vertex has neighbors in any

two of the disks D′
1, D

′
2, . . . , D

′
h because there are no two

disks of the distance (in the sense of the Robertson-Seymour
metric) at most q ≥ 4.

Let D′′
i denote the graph in the disk D′

i. Let Ni =
(B1 −G′) ∪D′′

1 ∪D′′
2 ∪ · · · ∪D′′

i ∪ L. Let N =
⋃h

i=1 Ni.
We claim that N has bounded treewidth. We prove this by
induction on i. Clearly the apex vertex set X has bounded
treewidth. Therefore, the statement is true when i = 0.
Let us observe that, because the distance between any two
of the disks D′

1, D
′
2, . . . , D

′
h is at least q ≥ 4, N is a tree

decomposition. By [7, Lemma 3], for any two graphs G′

and G′′, tw(G′ ⊕ G′′) ≤ max{tw(G′), tw(G′′)} (where ⊕
denotes clique-sum). Therefore, if each D′′

i , together with
the vertices in L that have at least three neighbors in D′′

i ,
has bounded treewidth, it follows from the above mentioned
result that N has bounded treewidth.

To see why adding vertices in L to each vortex D′′
i

does not increase the treewidth so much, first note that
clearly each vortex has bounded treewidth. If we add the
vertices of L to each of the disks of D′

1, D
′
2, . . . , D

′
h, then

the maximum size of grid-minor in Ni would increase by at
most a factor of 2, because we only add the vertices that are
the first neighbors of each disk of D′

1, D
′
2, . . . , D

′
h. Note

that any vertex in L is adjacent to only one of the disks
D′

1, D
′
2, . . . , D

′
h because any disk of D′

1, D
′
2, . . . , D

′
h has

distance at least q ≥ 4 from any other. So, the treewidth
may increase, but it has increased by some constant factor
depending on h. This follows from the min-max relation of
the treewidth and the size of the grid minor [25, 23, 9, 29, 5].
So each vortex has bounded treewidth, even after adding
vertices in L to each vortex. Hence it follows that N has
bounded treewidth.

Because N has bounded treewidth, we can list-color N
using at most p ≤ χl(G) (p ≥ 3) colors in linear time
by using the coloring method in bounded-treewidth graphs



[34]. In fact, because X ′ is precolored, this coloring may
use p + k − 2 ≤ χl(G) + k − 2, but N −X ′ can be colored
using at most p ≤ χl(G) colors. So, at the moment, we
output the number p + k − 2 ≤ χl(G) + k − 2. We now
assume that we are given lists L with each vertex having at
least p + k − 2 colors, and N is L-colored using at most
p + k − 2 colors (but N −X ′ is L-colored using p colors).
Hereafter, we assume p = χl(G), because this is the most
difficult case, and other cases are easily obtained by exactly
the same argument.

So, right now, the vertices on the outer boundary of
the disks D′

1, D
′
2, . . . , D

′
h, the vertex set L, and the apex

vertices X are precolored using at most χl(G)+k−2 colors,
and any disk of D′

1, D
′
2, . . . , D

′
h has distance q ≥ 4 from

any other. Note that the representativity of G′ is at least
r(g, q, d), where r(g, q, d) come from Theorem 3.1. Each
vertex in G′ that is outside the disks D′

1, D
′
2, . . . , D

′
h has at

most k − 5 neighbors in the apex vertex set X . Therefore,
each vertex in G′−L that is outside the disks D′

1, D
′
2, . . . , D

′
l

has at least χl(G) + k − 2 − (k − 5) ≥ χl(G) + 3 ≥ 6
available colors in its list, which are not used in the coloring
of its colored neighbors (because we are trying to list-color
G′ using at most χl + k− 2 colors). Concerning the vertices
in L, they receive one color from the coloring of N . In
addition, they see at most k − 5 vertices in the apex vertex
set. Therefore, each of them has at least (χl(G) + k − 2)−
(χl(G)−1+k−5) = 4 available colors in its list, which are
not used in the coloring of its colored neighbors. In addition,
it sees at most χl(G) − 1 colors under the coloring of the
vortices. Therefore, by Theorem 3.1, we can list-color all
the vertices in G′ using χl(G) + 3 colors, and thus in G
using at most χl(G) + 3 + k − 5 = χl(G) + k − 2 colors.
This completes the proof when there is exactly one bag. Let
us observe that the argument here gives rise to list-coloring
an h-almost-embeddable graph using at most χl(G) + k− 2
in polynomial time.

4.2 List-Coloring Clique-Sum Decomposition. We now
assume that there is a clique-sum decomposition such that
B1 is the root, and Bi . . . are bags.

At the moment, we do not require the clique-sum de-
composition to satisfy the three additional properties in The-
orem 2.1.

If there are two pieces Bj and Bj+1 such that Bj is a
parent of Bj+1, and |Bj∩Bj+1| ≤ k−2, then this means that
the clique-sum has a separation (A,B) such that A ∩ B =
Bj ∩ Bj+1, |A ∩ B| ≤ k − 2, and A contains Bj and B
contains Bj+1. In addition, all the vertices in Bj ∩Bj+1 are
contained in the apex vertex set of Bj+1 (because otherwise
we just need to add them to the apex vertex set). We can
think of Bj+1 as the root of the clique-sum decomposition of
B. In this case, we first apply induction to A, and after list-
coloring A, we apply induction to B with the precoloring
of A ∩ B which comes from the coloring of A. Because
|A∩B| ≤ k− 2, and all the vertices of A∩B = Bj ∩Bj+1

are contained in the apex vertex set of Bj+1 (and Bj+1 is the
root of the clique-sum decomposition of B), the induction
hypothesis is satisfied for B. To clarify how the lists L are

given, we first output numbers c1, c2 with c1 ≤ χl(A)+k−2
and c2 ≤ χl(B) + k − 2, respectively. Then we output the
maximum of c1, c2, say c2. After that, we are given the lists
L with each vertex having at least c2 colors, and we L-color
the whole graph G.

Therefore, we may assume that there are no such sep-
arations in the clique-sum. We now apply Theorem 2.1.
For each bag Bi, define a graph G′

i the surface part of Bi.
We can define Li as L in the previous subsection. Let
D′

i,1, D
′
i,2, . . . , D

′
i,hi

denote the disks containing the vor-
tices. By our separations property, Condition 2 of Theorem
2.1 does not happen. In particular, this implies that no vertex
in the surface part Gi involves the clique-sums. We now par-
tition the vertices of the surface part G′

i into two parts F1, F2

such that each vertex in F1 has at least k − 4 neighbors in
the apex vertex set, and all other vertices are in F2. By The-
orem 2.1, all the vertices in F1 are in the graph consisting
of the union of the graphs embedded inside the disk D′

i,j for
j = 1, 2, . . . , hi (actually, these graphs are vortices), and the
distance (in the sense of the Robertson-Seymour metric) be-
tween any two of the disks D′

i,1, D
′
j,2, . . . , D

′
i,hi

is at least
q ≥ 4.

For each piece Bi, let Ni be the graph (Bi−G′
i)∪Di,1∪

Di,2 ∪ · · · ∪Di,hi ∪ Li, where Di,j is the graph in the disk
D′

i,j . Let N =
⋃

i=1 Ni.
Then we claim that N has bounded treewidth. We prove

this by induction on i. Let us observe that N is a tree
decomposition because no vertex of Ni − Li is involved in
the surface part of any bag and each vertex of Li is adjacent
to exactly one disk of the disks Di,1 ∪Di,2 ∪ · · · ∪Di,hi

.
When i = 1, the result follows from the previous

section. We have proved that N1 has bounded treewidth.
Suppose by induction that N1 ⊕ N2 ⊕ · · · ⊕ Ni has

bounded treewidth. Because Ni+1 has bounded treewidth,
as proved in the previous section, by the above remark,
N1 ∪ N2 ∪ · · · ∪ Ni ∪ Ni+1 also has bounded treewidth.
Hence N has bounded treewidth.

Because N has bounded treewidth, we can list-color N
using at most p ≤ χl(G) (p ≥ 3) colors in linear time
by using the coloring method in bounded-treewidth graphs
[34]. In fact, because X ′ is precolored, this coloring may use
p+k−2 ≤ χl(G)+k−2, but N −X ′ can be colored using
at most p ≤ χl(G) colors. So, at the moment, we output the
number p+k−2 ≤ χl(G)+k−2. We now assume that we
are given lists L with each vertex having at least p + k − 2
colors, and N is L-colored using at most p+k−2 colors (but
N −X ′ is L-colored using p colors). Hereafter, we assume
p = χl(G), because this is the most difficult case, and other
cases are easily obtained by the exactly same argument.

Delete N from G. Because no vertex in the surface
part is involved in the clique-sum, so, the resulting graph
consists of disjoint unions of graphs, each of which has
a 2-cell embedding into a surface of bounded genus with
representativity at least r(g, q, d). Therefore, we can focus
on one of the bounded-genus graphs G′

i, and then apply
the same argument to all other bounded-genus graphs in the
same way. For simplicity, we assume that G′ is the surface
part of some bag, and we focus on the graph G′ (so hereafter,



we omit the index i).
So, right now, vertices on the outer face boundary of the

disks D′
1, D

′
2, . . . , D

′
h, the vertex set L, and the vertices in

the apex vertex set X are precolored using at most χl(G) +
k − 2 colors, and any of the disks D′

1, D
′
2, . . . , D

′
h has

distance q ≥ 4 from any other. Note that the representativity
of G′ is at least r(g, q, d), where r(g, q, d) comes from
Theorem 3.1. Each vertex in G′ that is outside the disks
D′

1, D
′
2, . . . , D

′
l has at most k − 5 neighbors in the apex

vertex X .
Therefore, each vertex in G′−L that is outside the disks

D′
1, D

′
2, . . . , D

′
l has at least χl(G) + k − 2 − (k − 5) ≥

χl(G) + 3 ≥ 6 available colors in its list, which are not
used in the coloring of its colored neighbors (because we
are trying to list-color G′ using at most χl + k − 2 colors).
Concerning the vertices in L, they receive one color from
the coloring of N . In addition, they see at most k − 5
vertices in the apex set. Therefore, each of them has at least
(χl(G)+ k− 2)− (χl(G)− 1+ k− 5) = 4 available colors
in its list, which are not used in the coloring of its colored
neighbors. In addition, it sees at most χl(G)−1 colors under
the coloring of the vortices. Hence, by Theorem 3.1, we can
list-color all the vertices in G′ using at most χl(G)+3 colors,
and thus G using at most χl(G)+3+k−5 = χl(G)+k−2
colors.

We can then apply the above argument to list-color all
the bounded-genus graphs in G−N using at most χl(G)+3
colors. This allows us to obtain a (χl(G) + k − 2)-list-
coloring of G. This completes the proof. Let us observe
that the argument here gives rise to list-color a clique-sum
decomposition of h-almost embeddable graphs using at most
χl(G) + k − 2 in polynomial time.

5 Algorithm
We are now ready to describe our algorithm. Let us assume
that q, r(g, q, d) are as in Theorem 3.1. In addition, h is
as in Theorem 2.1. As mentioned above, we may assume
χl(G) ≥ 3; otherwise, the problem is easy by Lemma 3.1.
The Robertson-Seymour clique-sum decomposition can be
constructed in polynomial time [6]. The time complexity is
nO(h). So we assume that it is given.

Algorithm for Theorem 1.3
Input: A Robertson-Seymour clique-sum decomposi-

tion. In addition, at most k− 2 vertices (let us call them X ′)
in the apex vertex set of the root of the clique-sum decompo-
sition are precolored. Furthermore, the current graph G has
χl(G) ≥ 3.

Output: As described in Theorem 1.3. Moreover, given
any lists L with each vertex having at least χl(G) + k − 2
colors, the algorithm gives an L-coloring of G.

Running time: nO(h).

Description:

Step 1. Finding a small separation of two bags.

We now test whether the clique-sum decomposition has
a vertex set W with |W | ≤ k − 2 such that W = Bt ∩ Bs

for two bags Bs, Bt, where Bs is a parent of Bt. If such
a separation exists, we just cut off W . Let us look at this
argument more closely.

Let us start at the root bag B1. Suppose B2, B3, . . . , Bs

are children of B1, and |Bi ∩ B1| ≤ k − 2 for 2 ≤ i ≤ s.
Then we delete all the bags B2−B1, B3−B1, . . . , Bs−B1

in B1. For B2, B3, . . . , Bs, we have s−1 disjoint clique-sum
decompositions such that we may view Bi as the root of each
of these decompositions for 2 ≤ i ≤ s. For each of these
decompositions, we do the same thing. In this way, we have
finitely many disjoint clique-sum decompositions Q1, . . .
such that each bag of the decomposition has either small
order or an h-almost-embeddable structure. In addition,
these clique-sum decompositions Q1, . . . do not have a
vertex set W with |W | ≤ k − 2 such that W = B′

t ∩B′
s for

two bags B′
s, B

′
t, where B′

s is a parent of B′
t. Furthermore,

we can order these decompositions Q1, . . . , such that, if we
can list-color Q1, then we can list-color their children, and so
on by using the “precoloring at most k−2 vertices” technique
(the precoloring comes from the previous list coloring), as
discussed in Section 4.

Finding such separations can clearly be done in polyno-
mial time once we are given the clique-sum decomposition.

Step 2. Refinement of the clique-sum decomposition.

At this moment, we have finitely many clique-sum
decompositions Q1, . . . , but there is an order for these
decompositions. In Step 2, we apply the following algorithm
to each of these decompositions with at most k−2 precolored
vertices in the apex vertex set of the root. The coloring of
these precolored vertices will be specified later in this order.
First, look at the decomposition Q1 containing the root B1

with X ′ precolored. Refine the clique-sum decomposition as
in Theorem 2.1. Do the same thing for each of Qi. This can
be done in time nO(h).

Step 3. List-coloring the clique-sum decomposition.

For each of the decompositions Q1, . . . , we first deter-
mine pi ≤ χl(Qi). The number pi comes when we apply the
bounded-treewidth method. We then select the maximum pi,
and output pi + k − 2. Suppose now that lists L with each
vertex having at least pi + k − 2 colors are given. List-color
Q1 first, using the argument in the previous section. Then,
in order, we list-color Q2, . . . , with precolored vertices of
order at most k− 2 in the apex set of the root. The precolor-
ing comes from the previous coloring, and it involves at most
k − 2 vertices.

All the arguments are constructive in a sense that we can
convert them into a polynomial-time algorithm. As shown in
the previous section, we can list-color the whole graph using
at most χl(G)+k− 2 colors. The time complexity is nO(h).
This completes the proof.

6 Extension to Graph Coloring
Theorem 1.3 clearly gives rise to an additive approximation
algorithm for graph-coloring Kk-minor-free graphs within



k − 2 of the chromatic number. In the special case of graph
coloring, however, we can improve the k−2 bound to k−3:

THEOREM 6.1. For any graph G without Kk minors, there
is a polynomial-time algorithm to color the graph G using at
most χ(G) + k − 3 colors.

The proof is almost identical, except for the following:

1. We are allowed to precolor at most k − 2 vertices (the
vertex set X ′) in the apex vertex set of the root of
the clique-sum decomposition. But when we apply
dynamic programming to N −X , we put one vertex x
in X ′ to N−X ′ with x being precolored. We can easily
get an optimal coloring of (N −X ′)∪{x}, by possibly
recoloring N−X ′ (but x is still precolored). Therefore,
we can get a graph coloring of N using χ(G) + k − 3
colors.

2. When we apply the argument in Section 4.2, we can
gain one color for graph coloring.
More precisely, if there are two bags Bj and Bj+1 such
that Bj is a parent of Bj+1, and |Bj ∩ Bj+1| ≤ k − 2,
then this means that the clique-sum has a separation
(A,B) such that A∩B = Bj ∩Bj+1, |A∩B| ≤ k−2,
and A contains Bj and B contains Bj+1. In addition,
all the vertices in Bj ∩ Bj+1 are contained in the apex
vertex set of Bj+1. We can think of Bj+1 as the root
of the clique-sum decomposition of B. In this case,
we first apply induction to A, and after graph-coloring
A, we apply induction to B with precoloring of either
A∩B (if the vertices in A∩B use at most k−3 colors) or
(A∩B)−{v} for some vertex v in A∩B (else). In either
case, the precoloring comes from the coloring of A. In
the first case, it is easy to save one color as claimed.
Suppose the second case happens. Then v is precolored
by the coloring of A, but by possibly recoloring B (with
precoloring of (A ∩ B) − {v}), the color of v in B
matches the color of v in A, because A∩B uses exactly
k− 2 colors. Thus we can save “one” color as claimed.

3. Theorem 3.1 still holds if all the vertices that have no
neighbors in the cuffs S1, S2, . . . , Sd have at least five
available colors in their lists, and each vertex that has
a neighbor in S1, S2, . . . , Sd has at least three available
colors in its list that are not used in its colored neighbors
under the precoloring of S1, S2, . . . , Sd. This will be
proved somewhere else, but if we just need the usual
graph-coloring version, then it would follow from the
proof in [33] together with the result in [27]. More
precisely, the following is true:

For any three nonnegative integers g, q, d (with q ≥ 4),
there exists a natural number r(g, q, d) such that the
following holds. Suppose that G is embedded on a
fixed surface S of Euler genus g and of the represen-
tativity at least r(g, q, d), and there are d disjoint cuffs
S1, S2, . . . , Sd such that the distance (in the sense of
the Robertson-Seymour metric) of any two cuffs of

S1, S2, . . . , Sd is at least q. Suppose furthermore that
all the vertices in S1, S2, . . . , Sd are precolored using at
most χ(G) colors. Moreover, the following conditions
are satisfied:

(a) all the faces except for S1, S2, . . . , Sd are trian-
gles; and

(b) no vertex v of G− (S1 ∪ S2 ∪ · · · ∪ Sd) is joined
to more than χ(G)− 1 colors unless v has degree
4, or v has degree 5 and v is joined to two vertices
of the same color.

Then the precoloring of the cuffs S1, S2, . . . , Sd us-
ing at most χ(G) ≥ 3 colors can be extended to a
(χ(G) + 2)-coloring of G. In fact, in the surface part,
we need only five colors for all of the vertices. (Pre-
coloring may use more than five colors and vertices that
are adjacent to precolored vertices may need some other
color, though.) Also, there is a polynomial-time algo-
rithm for such a coloring G. The same conclusion holds
if we replace χ(G) by any number p ≥ 3.

For the complete proof, see [21].
The above first and second arguments are not possible

for list coloring. Therefore, we have to stick to the additive
approximation within k − 2 of the list chromatic number.

7 Concluding Remarks
We gave an additive approximation algorithm for list-
coloring Kk-minor-free graphs within k − 2 of the list chro-
matic number. The bound k − 2 may not be best possible.
One natural conjecture is the following.

CONJECTURE 7.1. There is an additive approximation al-
gorithm for list-coloring H-minor-free graphs within c of the
list chromatic number for an absolute constant c.

Robin Thomas (private communication) has conjectured
the graph-coloring case of Conjecture 7.1. This is still open,
and as far as we see, the best results known are the 2-
approximation algorithm in [6], and Theorem 6.1.

Our approach clearly breaks down, even for the graph-
coloring case. Let us highlight some technical difficulties.

1. When there is a separation of order at most k − 2 in
the clique-sum decomposition of two adjacent bags, we
have broken into two parts. This allows us to list-color
one part first, and then extend the coloring of it to the
other part.

But if the size of the separation is too small, say at most
c, which does not depend on k, then the structure as in
Theorem 2.1 does not seem to help.

Let us observe that, if both G and H are Kk-minor-
free graphs, then the graph G′ obtained from G and H
by clique-sum of size at most k − 2 is Kk-minor-free.
Therefore, we need to deal with the clique-sum of size
at most k − 2.



2. If we cannot control clique-sums, then our decomposi-
tion approach does not seem feasible.
In fact, the following does not hold: there exists a vertex
partition into two parts V1, V2 such that V1 has bounded
treewidth and V2 has chromatic number at most c for an
absolute constant c.
Robin Thomas and the first author constructed the
following example:
Suppose G has a clique-sum decomposition such that
the size of each joint set is exactly k − 2 (that is, the
intersection between any two consecutive pieces has
exactly k− 2 vertices). Suppose furthermore that every
piece consists of a planar triangulation with exactly
k−5 apex vertices (such that these k−5 vertices consist
of a clique). Moreover, every piece, except for the root,
contains exactly three vertices of a face in the parent
piece (and these three vertices are in the apex vertex
set), and every face of each piece is involved in a clique-
sum of its children. So each joint set consists of a face
(of three vertices) and exactly k− 5 vertices in the apex
vertex set of each bag. Then this graph is Kk-minor-
free, and it may not have a vertex partition into two parts
V1, V2 such that V1 has bounded treewidth and V2 has
chromatic number at most k/3, because both parts may
contain a clique of size at least k/3. Therefore, this
example kills our approach.

3. Moreover, in order to attack Conjecture 7.1, we may
need to figure out the following: Suppose the clique-
sum decomposition is given. How many neighbors can
each vertex in the surface (of each bag) have in the apex
vertex set? In our proof, we can prove that it can have
at most k − 5 neighbors in the apex vertex set of each
bag.

So far, we do not see how to overcome any of these
issues. It seems that we need a significant generalization
of Robertson-Seymour’s structure theorem [28], which is
presently out of reach for general H-minor-free graphs.

In other work, we have considered the special case of
apex-minor-free graphs, where the excluded minor H has the
apex property that deleting some vertex results in a planar
graph. In this case we can establish a stronger form of the
Robertson-Seymour decomposition, using techniques very
similar to this paper. Specifically, we have proved that
the apex vertices can be constrained to have edges only to
vertices of vortices, but we have to generalize vortices to
what we call “quasivortices”, which have bounded treewidth
instead of pathwidth. The result is also algorithmic:

THEOREM 7.1. For any fixed apex graph H , there is a con-
stant h such that any H-minor-free graph can be written as
a clique-sum of h-almost-embeddable graphs such that the
apex vertices in each piece are only adjacent to quasivor-
tices. Moreover, apices in each piece are not involved in
the surface part of other pieces. Furthermore, there is a
polynomial-time algorithm to construct this clique-sum de-
composition for a given H-minor-free graph.

Theorem 7.1 has several applications to approximation
algorithms. Among them, we can obtain a solution to
Conjecture 7.1 for graph coloring in apex-minor-free graphs,
specifically an additive 2-approximation:

THEOREM 7.2. For any apex graph H , there is a
polynomial-time additive approximation algorithm that col-
ors any given H-minor-free graph using at most 2 more col-
ors than the optimal chromatic number.

This additive bound of 2 matches Thomassen’s results
[33] for bounded-genus graphs, which are a special case
of apex-minor-free graphs. This result is essentially best
possible: distinguishing between 3 and 4 colorability is NP-
complete on any fixed surface, and distinguishing between 4
and 5 colorability would require a significant generalization
of the Four Color Theorem characterizing 4-colorability in
fixed surfaces.
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A Basic Definitions
In this paper, an embedding refers to a 2-cell embedding, i.e.,
a drawing of the vertices and edges of the graph as points
and arcs in a surface such that every face (region outlined
by edges) is homeomorphic to a disk. A noose in such
an embedding is a simple closed curve on the surface that
meets the graph only at vertices. The length of a noose
is the number of vertices it visits. The representativity
or face-width of an embedded graph is the length of the
shortest noose that cannot be contracted to a point on the
surface. The Robertson-Seymour metric [26, 27] defines the
distance between two atoms (vertices, edges, or faces) is half
the length of the shortest contractible noose containing the
atoms, or the representativity if that is smaller.

A graph G is h-almost embeddable in S if there exists
a vertex set X of size at most h (called the apices) such that
G−X can be written as G0 ∪G1 ∪ · · · ∪Gh, where

1. G0 has an embedding in S;
2. the graphs Gi, called vortices, are pairwise disjoint;
3. there are faces F1, . . . , Fh of G0 in S, and there are

pairwise disjoint disks D1, . . . , Dh in S, such that for
i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩ V (Gi) =
V (G0) ∩ Di (the vertices in Ui are called society
vertices); and

4. the graph Gi has a path decomposition (Bu)u∈Ui
of

width less than h, such that u ∈ Bu for all u ∈ Ui.
The sets Bu are ordered by the ordering of their indices
u as points along the boundary cycle of face Fi in G0.
Suppose G1 and G2 are graphs with disjoint vertex sets

and let k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆
V (Gi) form a clique of size k and let G′

i be obtained from
Gi by deleting some (possibly no) edges from the induced
subgraph Gi[Wi] with both endpoints in Wi. Consider a
bijection h : W1 → W2. We define a clique k-sum G
of G1 and G2, denoted by G = G1 ⊕k G2 or simply by
G = G1 ⊕ G2, to be the graph obtained from the union of
G′

1 and G′
2 by identifying w with h(w) for all w ∈ W1. The

images of the vertices of W1 and W2 in G1 ⊕k G2 form the
join set. Note that each vertex v of G has a corresponding
vertex in G1 or G2 or both. Also, ⊕ is not a well-defined
operator: it can have a set of possible results.

See [6, 20, 28] for more definitions.


