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Abstract. The (k, r)-center problem asks whether an input graph G has ≤ k vertices (called
centers) such that every vertex of G is within distance ≤ r from some center. In this paper we
prove that the (k, r)-center problem, parameterized by k and r, is fixed-parameter tractable
(FPT) on planar graphs, i.e., it admits an algorithm of complexity f(k, r)nO(1) where the

function f is independent of n. In particular, we show that f(k, r) = 2O(r log r)
√

k, where
the exponent of the exponential term grows sublinearly in the number of centers. More-
over, we prove that the same type of FPT algorithms can be designed for the more general
class of map graphs introduced by Chen, Grigni, and Papadimitriou. Our results combine
dynamic-programming algorithms for graphs of small branchwidth and a graph-theoretic
result bounding this parameter in terms of k and r. Finally, a byproduct of our algorithm
is the existence of a PTAS for the r-domination problem in both planar graphs and map
graphs.
Our approach builds on the seminal results of Robertson and Seymour on Graph Minors,
and as a result is much more powerful than the previous machinery of Alber et al. for
exponential speedup on planar graphs. To demonstrate the versatility of our results, we
show how our algorithms can be extended to general parameters that are “large” on grids.
In addition, our use of branchwidth instead of the usual treewidth allows us to obtain much
faster algorithms, and requires more complicated dynamic programming than the standard
leaf/introduce/forget/join structure of nice tree decompositions. Our results are also unique
in that they apply to classes of graphs that are not minor-closed, namely, constant powers
of planar graphs and map graphs.

1 Introduction

Clustering is a key tool for solving a variety of application problems such as data mining, data
compression, pattern recognition and classification, learning, and facility location. Among the al-
gorithmic problem formulations of clustering are k-means, k-medians, and k-center. In all of these
problems, the goal is to partition n given points into k clusters so that some objective function is
minimized.

In this paper, we concentrate on the (unweighted) (k, r)-center problem [7], in which the goal
is to choose k centers from the given set of n points so that every point is within distance r from
some center in the graph. In particular, the k-center problem [17] of minimizing the maximum
distance to a center is exactly (k, r)-center when the goal is to minimize r subject to finding
a feasible solution. In addition, the r-domination problem [7, 16] of choosing the fewest vertices
whose r-neighborhoods cover the whole graph is exactly (k, r)-center when the goal is to minimize
k subject to finding a feasible solution.

A sample application of the (k, r)-center problem in the context of facility location is the
installation of emergency service facilities such as fire stations. Here we suppose that we can afford



to buy k fire stations to cover a city, and we require every building to be within r city blocks from
the nearest fire station to ensure a reasonable response time. Given an algorithm for (k, r)-center,
we can vary k and r to find the best bicriterion solution according to the needs of the application.
In this scenario, we can afford high running time (e.g., several weeks of real time) if the resulting
solution builds fewer fire stations (which are extremely expensive) or has faster response time;
thus, we prefer fixed-parameter algorithms over approximation algorithms.

In this application, and many others, the graph is typically planar or nearly so. Chen, Grigni,
and Papadimitriou [9] have introduced a generalized notion of planarity which allows local nonpla-
narity. In this generalization, two countries of a map are adjacent if they share at least one point,
and the resulting graph of adjacencies is called a map graph. (See Section 2 for a precise definition.)
Planar graphs are the special case of map graphs in which at most three countries intersect at a
point.

Previous results. r-domination and k-center are NP-hard even for planar graphs. For r-domination,
the current best approximation (for general graphs) is a (log n+1)-factor by phrasing the problem
as an instance of set cover [7]. For k-center, there is a 2-approximation algorithm [17] which applies
more generally to the case of weighted graphs satisfying the triangle inequality. Furthermore, no
(2 − ε)-approximation algorithm exists for any ε > 0 even for unweighted planar graphs of maxi-
mum degree 3 [22]. For geometric k-center in which the weights are given by Euclidean distance in
d-dimensional space, there is a PTAS whose running time is exponential in k [1]. Several relations
between small r-domination sets for planar graphs and problems about organizing routing schemes
with compact structures is discussed in [16].

The (k, r)-center problem can be considered as a generalization of the well-known dominating
set problem. During the last two years in particular much attention has been paid to constructing
fixed-parameter algorithms with exponential speedup for this problem. Alber et al. [2] were the
first who demonstrated an algorithm checking whether a planar graph has a dominating set of size

≤ k in time O(270
√
kn). This result was the first non-trivial result for the parameterized version

of an NP-hard problem in which the exponent of the exponential term grows sublinearly in the

parameter. Recently, the running time of this algorithm was further improved to O(227
√
kn) [20]

and O(215.13
√
kk + n3 + k4) [14]. Fixed-parameter algorithms for solving many different problems

such as vertex cover, feedback vertex set, maximal clique transversal, and edge-dominating set
on planar and related graphs such as single-crossing-minor-free graphs are considered in [11, 21].
Most of these problems have reductions to the dominating set problem. Also, because all these
problems are closed under taking minors or contractions, all classes of graphs considered so far are
minor-closed.

Our results. In this paper, we focus on applying the tools of parameterized complexity, introduced
by Downey and Fellows [12], to the (k, r)-center problem in planar and map graphs. We view both
k and r as parameters to the problem. We introduce a new proof technique which allows us to
extend known results on planar dominating set in two different aspects.

First, we extend the exponential speed-up for a generalization of dominating set, namely
the (k, r)-center problem, on planar graphs. Specifically, the running time of our algorithm is

O((2r + 1)6(2r+1)
√
k+12r+3/2n + n4), where n is the number of vertices. Our proof technique is

based on combinatorial bounds (Section 3) derived from the Robertson, Seymour, and Thomas
theorem about quickly excluding planar graphs, and on a complicated dynamic program on graphs
of bounded branchwidth (Section 4). Second, we extend our fixed-parameter algorithm to map
graphs which is a class of graphs that is not minor-closed. In particular, the running time of the

corresponding algorithm is O((2r + 1)6(4r+1)
√
k+24r+3n+ n4).

Notice that the exponential component of the running times of our algorithms depends only
on the parameters, and is multiplicatively separated from the problem size n. Moreover, the con-
tribution of k in the exponential part is sublinear. In particular, our algorithms have polynomial



running time if k = O(log2 n) and r = O(1), or if r = O(log n/ log log n) and k = O(1). We
stress the fact that we design our dynamic-programming algorithms using branchwidth instead of
treewidth because this provides better running times.

Finally, in Section 6, we present several extensions of our results, including a PTAS for the
r-dominating set problem and a generalization to a broad class of graph parameters.

2 Definitions and preliminary results

Let G be a graph with vertex set V (G) and edge set E(G). We let n denote the number of vertices
of a graph when it is clear from context. For every nonempty W ⊆ V (G), the subgraph of G
induced by W is denoted by G[W ].

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by contracting the
edge e; that is, to get G/e we identify the vertices x and y and remove all loops and duplicate
edges. A graph H obtained by a sequence of edge contractions is said to be a contraction of G. A
graph H is a minor of a graph G if H is a subgraph of a contraction of G. We use the notation
H ¹ G (resp. H ¹c G) for H is a minor (a contraction) of G.

(k, r)-center. We define the r-neighborhood of a set S ⊆ V (G), denoted by N r
G(S), to be the set

of vertices of G at distance at most r from at least one vertex of S; if S = {v} we simply use the
notation N r

G(v). We say a graph G has a (k, r)-center or interchangeably has an r-dominating set
of size k if there exists a set S of centers (vertices) of size at most k such that N r

G(S) = V (G).
We denote by γr(G) the smallest k for which there exists a (k, r)-center in the graph. One can
easily observe that for any r the problem of checking whether an input graph has a (k, r)-center,
parameterized by k isW [2]-hard by a reduction from dominating set. (See Downey and Fellows [12]
for the definition of the W Hierarchy.)

Map graphs. Let Σ be a sphere. A Σ-plane graph G is a planar graph G drawn in Σ. To simplify
notation, we usually do not distinguish between a vertex of the graph and the point of Σ used in
the drawing to represent the vertex, or between an edge and the open line segment representing it.
We denote the set of regions (faces) in the drawing of G by R(G). (Every region is an open set.)
An edge e or a vertex v is incident to a region r if e ⊆ r̄ or v ⊆ r̄, respectively. (r̄ denotes the
closure of r.)

For a Σ-plane graph G, a map M is a pair (G,φ), where φ : R(G) → {0, 1} is a two-coloring
of the regions. A region r ∈ R(G) is called a nation if φ(r) = 1 and a lake otherwise.

Let N(M) be the set of nations of a mapM. The graph F is defined on the vertex set N(M),
in which two vertices r1, r2 are adjacent precisely if r̄1∩ r̄2 contains at least one edge of G. Because
f is the subgraph of the dual graph G∗ of G, it is planar. Chen, Grigni, and Papadimitriou [9]
defined the following generalization of planar graphs. A map graph GM of a map M is the graph
on the vertex set N(M) in which two vertices r1, r2 are adjacent in GM precisely if r̄1∩ r̄2 contains
at least one vertex of G.

For a graph G, we denote by Gk the kth power of G, i.e., the graph on the vertex set V (G)
such that two vertices in Gk are adjacent precisely if the distance in G between these vertices is
at most k. Let G be a bipartite graph with a bipartition U ∪W = V (G). The half square G2[U ]
is the graph on the vertex set U and two vertices are adjacent in G2[U ] precisely if the distance
between these vertices in G is 2.

Theorem 1 ([9]). A graph GM is a map graph if and only if it is the half-square of some planar

bipartite graph H.

Here the graph H is called a witness for GM. Thus the question of finding a (k, r)-center in a map
graph GM is equivalent to finding in a witness H of GM a set S ⊆ V (GM) of size k such that
every vertex in V (GM)− S has distance ≤ 2r in H from some vertex of S.



The proof of Theorem 1 is constructive, i.e., given a map graph GM together with its map
M = (G,φ), one can construct a witness H for GM in time O(|V (GM)| + |E(GM)|). One color
class V (GM) of the bipartite graph H corresponds to the set of nations of the mapM. Each vertex
v of the second color class V (H) − V (GM) corresponds to an intersection point of boundaries of
some nations, and v is adjacent (in H) to the vertices corresponding to the nations it belongs.
What is important for our proofs are the facts that

1. in such a witness, every vertex of V (H)− V (GM) is adjacent to a vertex of V (GM), and
2. |V (H)| = O(|V (GM)|+ |E(GM)|).

Thorup [27] provided a polynomial-time algorithm for constructing a map of a given map graph
in polynomial time. However, in Thorup’s algorithm, the exponent in the polynomial time bound
is about 120 [8]. So from practical point of view there is a big difference whether we are given a
map in addition to the corresponding map graph. Below we suppose that we are always given the
map.

Branchwidth. Branchwidth was introduced by Robertson and Seymour in their Graph Minors
series of papers. A branch decomposition of a graph G is a pair (T, τ), where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from E(G) to the set of leaves of T . The order

function ω : E(T ) → 2V (G) of a branch decomposition maps every edge e of T to a subset of
vertices ω(e) ⊆ V (G) as follows. The set ω(e) consists of all vertices of V (G) such that, for every
vertex v ∈ ω(e), there exist edges f1, f2 ∈ E(G) such that v ∈ f1 ∩ f2 and the leaves τ(f1), τ(f2)
are in different components of T − {e}. The width of (T, τ) is equal to maxe∈E(T ) |ω(e)| and the
branchwidth of G, bw(G), is the minimum width over all branch decompositions of G.

It is well-known that, if H ¹ G or H ¹c G, then bw(H) ≤ bw(G).
The following deep result of Robertson, Seymour, and Thomas (Theorems (4.3) in [23] and

(6.3) in [24]) plays an important role in our proofs.

Theorem 2 ([24]). Let k ≥ 1 be an integer. Every planar graph with no (k × k)-grid as a minor

has branchwidth ≤ 4k − 3.

Branchwidth is the main tool in this paper. All our proofs can be rewritten in terms of the
related and better-known parameter treewidth, and indeed treewidth would be easier to handle in
our dynamic program. However, branchwidth provides better combinatorial bounds resulting in
exponential speed-up of our algorithms.

3 Combinatorial bounds

Lemma 1. Let ρ, k, r ≥ 1 be integers and G be a planar graph having a (k, r)-center and with a

(ρ× ρ)-grid as a minor. Then k ≥ ( ρ−2r
2r+1 )

2.

Proof. We set V = {1, . . . , ρ} × {1, . . . , ρ}. Let

F = (V, {((x, y), (x′, y′)) | |x− x′|+ |y − y′| = 1})

be a plane (ρ× ρ)-grid that is a minor of some plane embedding of G. W.l.o.g. we assume that the
external (infinite) face of this embedding of F is the one that is incident to the vertices of the set
Vext = {(x, y) | x = 1 or x = ρ or y = 1 or y = ρ}, i.e., the vertices of F with degree < 4. We call
the rest of the faces of F internal faces. We set Vint = {(x, y) | r+1 ≤ x ≤ ρ−r, r+1 ≤ y ≤ ρ−r},
i.e., Vint is the set of all vertices of F within distance ≥ r from all vertices in Vext. Notice that
F [Vint] is a sub-grid of F and |Vint| = (ρ − 2r)2. Given any pair of vertices (x, y), (x′, y′) ∈ V we
define δ((x, y), (x′, y′)) = max{|x− x′|, |y − y′|}.



We also define dF ((x, y), (x
′, y′)) to be the distance between any pair of vertices (x, y) and

(x′, y′) in F . Finally we define J to be the graph occurring from F by adding in it the edges of the
following sets:

{((x, y), (x+ 1, y + 1) | 1 ≤ x ≤ ρ− 1, 1 ≤ y ≤ ρ− 1)}
{((x, y + 1), (x+ 1, y) | 1 ≤ x ≤ ρ− 1, 1 ≤ y ≤ ρ− 1)}

(In other word we add all edges connecting pairs of non-adjacent vertices incident to its internal
faces). It is easy to verify that ∀(x, y), (x′, y′) ∈ V δ((x, y), (x′, y′)) = dJ((x, y), (x

′, y′)). This
implies the following.

If R is a subgraph of J , then ∀(x, y), (x′, y′) ∈ V δ((x, y), (x′, y′)) ≤ dR((x, y), (x
′, y′)) (1)

For any (x, y) ∈ V we define Br((x, y)) = {(a, b) ∈ V | δ((x, y), (a, b)) ≤ r} and we observe the
following:

∀(x,y)∈V |V (Br((x, y)))| ≤ (2r + 1)2. (2)

Consider now the sequence of edge contractions/removals that transform G to F . If we apply on G
only the contractions of this sequence we end up with a planar graph H that can obtained by the
(ρ × ρ)-grid F after adding edges to non-consecutive vertices of its faces. This makes it possible
to partition the additional edges of H into two sets: a set denoted by E1 whose edges connect
non-adjacent vertices of some square face of F and another set E2 whose edges connect pairs of
vertices in Vext. We denote by R the graph obtained by F if we add the edges of E1 in F . As R is
a subgraph of J , (1) implies that

∀(x,y)∈V Nr
R((x, y)) ⊆ Br((x, y)) (3)

We also claim that

∀(x,y)∈V Nr
H((x, y)) ⊆ Br((x, y)) ∪ (V − Vint) (4)

To prove (4) we notice first that if we replace H by R in it then the resulting relation follows from
(3). It remains to prove that the consecutive addition of edges of E2 in R does not introduce in
Nr
R((x, y)) any vertex of Vint. Indeed, this is correct because any vertex in Vext is in distance ≥ r

from any vertex in Vint. Notice now that (4) implies that ∀(x,y)∈V Nr
H((x, y))∩Vint ⊆ Br((x, y))∩Vint

and using (2) we conclude that

∀(x,y)∈V |Nr
H((x, y)) ∩ Vint| ≤ (2r + 1)2 (5)

Let S be a (k′, r)-center in the graph H. Applying (5) on S we have that the r-neighborhood of
any vertex in S contains at most (2r + 1)2 vertices from Vint. Moreover, any vertex in Vint should
belong to the r-neighborhood of some vertex in S. Thus k′ ≥ |Vint|/(2ρ+1)2 = (ρ− 2r)2/(2ρ+1)2

and therefore k′ ≥ (ρ−2r
2r+1 )

2.
Clearly, the conditions that G has an r-dominating set of size k and H ¹c G imply that H has

an r-dominating set of size k′ ≤ k. (But this is not true for H ¹ G.) As H is a contraction of G
and G has a (k, r)-center, we have that k ≥ k′ ≥ (ρ−2r

2r+1 )
2 and lemma follows.

We are ready to prove the main combinatorial result of this paper:

Theorem 3. For any planar graph G having a (k, r)-center, bw(G) ≤ 4(2r + 1)
√
k + 8r + 1.

Proof. Suppose that bw(G) > p = 4(2r+1)
√
k+8r+ε−3 for some ε, 0 < ε ≤ 4, for which p+3 ≡ 0

(mod 4). By Theorem 2, G contains a (ρ× ρ)-grid as a minor where ρ = (2r + 1)
√
k + 2r + ε

4 . By

Lemma 1, k ≥ ( ρ−2r
2r+1 )

2 = (
(2r+1)

√
k+ ε

4

2r+1 )2 which implies that
√
k ≥

√
k + ε

8r+4 , a contradiction.



Notice that the branchwidth of a map graph is unbounded in terms of k and r. For example, a
clique of size n is a map graph and has a (1, 1)-center and branchwidth ≥ 2/3n.

Theorem 4. For any map graph GM having a (k, r)-center and its witness H, bw(H) ≤ 4(4r +

3)
√
k + 16r + 9.

Proof. The question of finding a (k, r)-center in a map graph GM is equivalent to finding in a
witness H of GM a set S ⊆ V (GM) of size k such that every vertex V (GM) − S is at distance
≤ 2r in H from some vertex of S. By the construction of the witness graph, every vertex of
V (H) − V (GM) is adjacent to some vertex of V (GM). Thus H has a (k, 2r + 1)-center and by
Theorem 3 the proof follows.

4 (k, r)-Centers in Graphs of Bounded Branchwidth

In this section, we present a dynamic-programming approach to solve the (k, r)-center problem on
graphs of bounded branchwidth. It is easy to prove that, for a fixed r, the problem is in MSOL
(monadic second-order logic) and thus can be solved in linear time on graphs of bounded treewidth
(branchwidth). However, for r part of the input, the situation is more difficult. Additionally, we
are interested in not just a linear-time algorithm but in an algorithm with running time f(k, r)n.

It is worth mentioning that our algorithm requires more than a simple extension of Alber et
al.’s algorithm for dominating set in graphs of bounded treewidth [2], which corresponds to the
case r = 1. In fact, finding a (k, r)-center is similar to finding homomorphic subgraphs, which
has been solved only for special classes of graphs and even then only via complicated dynamic
programs [18]. The main difficulty is that the path v=v0, v1, v2, . . . , v≤r=c from a vertex v to its
assigned center c may wander up and down the branch decomposition repeatedly, so that c and v
may be in radically different ‘cuts’ induced by the branch decomposition. All we can guarantee is
that the next vertex v1 along the path from v to c is somewhere in a common ‘cut’ with v, and that
vertex v1 and v2 are in a common ‘cut’, etc. In this way, we must propagate information through
the vi’s about the remote location of c.

Let (T ′, τ) be a branch decomposition of a graph G with m edges and let ω′ : E(T ′)→ 2V (G) be
the order function of (T ′, τ). We choose an edge {x, y} in T ′, put a new vertex v of degree 2 on this
edge, and make v adjacent to a new vertex r. By choosing r as a root in the new tree T = T ′∪{v, r},
we turn T into a rooted tree. For every edge of f ∈ E(T ) ∩ E(T ′), we put ω(f) = ω′(f). Also we
put ω({x, v}) = ω({v, y}) = ω′({x, y}) and ω({r, v}) = ∅.

For an edge f of T we define Ef (Vf ) as the set of edges (vertices) that are “below” f , i.e.,
the set of all edges (vertices) g such that every path containing g and {v, r} in T contains f . With
such a notation, E(T ) = E{v,r} and V (T ) = V{v,r}. Every edge f of T that is not incident to a
leaf has two children that are the edges of Ef incident to f . We denote by Gf the subgraph of G
induced by the vertices incident to edges from the following set

{τ−1(x) | x ∈ Vf ∧ (x is a leaf of T ′)}.

The subproblems in our dynamic program are defined by a coloring of the vertices in ω(f) for
every edge f of T . Each vertex will be assigned one of 2r + 1 colors

{0, ↑1, ↑2, . . . , ↑r, ↓1, ↓2, . . . , ↓r}.

The meaning of the color of a vertex v is as follows:

– 0 means that the vertex v is a chosen center.
– ↓ i means that vertex v has distance exactly i to the closest center c. Moreover, there is a

neighbor u ∈ V (Gf ) of v that is at distance exactly i− 1 to the center c. We say that neighbor
u resolves vertex v.



– ↑i means that vertex v has distance exactly i to the closest center c. However, there is no neigh-
bor of v in V (Gf ) resolving v. Thus we are guessing that any vertex resolving v is somewhere
in V (G)− V (Gf ).

Intuitively, the vertices colored by ↓i have already been resolved (though the vertex that resolves
it may not itself be resolved), whereas the vertices colored by ↑i still need to be assigned vertices
that are closer to the center.

We use the notation li to denote a color of either ↑i or ↓i. Also we use l0 = 0.
For an edge f of T , a coloring of the vertices in ω(f) is called locally valid if the following

property holds: for any two adjacent vertices v and w in ω(f), if v is colored li and w is colored
lj, then |i − j| ≤ 1. (If the distance from some vertex v to the closest center is i, then for every
neighbor u of v the distance from u to the closest center can not be less than i − 1 or more than
i+ 1.)

For every edge f of T we define the mapping

Af : {0, ↑1, ↑2, . . . , ↑r, ↓1, ↓2, . . . , ↓r}|ω(f)| → N ∪ {+∞}.
For a locally valid coloring c ∈ {0, ↑1, ↑2, . . . , ↑r, ↓1, ↓2, . . . , ↓r}|ω(f)|, the value Af (c) stores the
size of the “minimum (k, r)-center restricted to Gf and coloring c”. More precisely, Af (c) is the
minimum cardinality of a set Df (c) ⊆ V (Gf ) such that

– For every vertex v ∈ ω(f),
• c(v) = 0 if and only if v ∈ Df (c), and
• if c(v) =↓ i, i ≥ 1, then v /∈ Df (c) and either there is a vertex u ∈ ω(f) colored by l j,
j < i, at distance i − j from v in Gf , or there is a path P of length i in Gf connecting v
with some vertex of Df (c) such that no inner vertex of P is in ω(f).

– Every vertex v ∈ V (Gf )− ω(f) whose closest center is at distance i ≤ r, either is at distance
i in Gf from some center in Df (c), or is at distance j, j < i, in Gf from a vertex u ∈ ω(f)
colored l(i− j).

We put Af (c) = +∞ if there is no such a set Df (c), or if c is not a locally valid coloring. Because
ω({r, v}) = ∅ and G{r,v} = G, we have that A{r,v}(c) is the smallest size of an r-dominating set in
G.

We start computations of the functions Af from leaves of T . Let x be a leaf of T and let f be
the edge of T incident with x. Then Gf is the edge of G corresponding to x. We consider all locally
valid colorings of V (Gf ) such that if a vertex v ∈ V (Gf ) is colored by ↓i for i > 0 then there is
an adjacent vertex w in V (Gf ) colored li− 1. For each such coloring c we define Af (c) to be the
number of vertices colored 0 in V (Gf ). Otherwise, Af (c) is +∞, meaning that this coloring c is
infeasible. The brute-force algorithm takes O(rm) time for this step.

Let f be a non-leaf edge of T and let f1, f2 be the children of f . Define X1 = ω(f) − ω(f2),
X2 = ω(f)− ω(f1), X3 = ω(f) ∩ ω(f1) ∩ ω(f2), and X4 = (ω(f1) ∪ ω(f2))− ω(f).

Notice that

ω(f) = X1 ∪X2 ∪X3. (6)

By the definition of ω, it is impossible that a vertex belongs to exactly one of ω(f), ω(f1), ω(f2).
Therefore, condition u ∈ X4 implies that u ∈ ω(f1) ∩ ω(f2) and we conclude that

ω(f1) = X1 ∪X3 ∪X4, (7)

and

ω(f2) = X2 ∪X3 ∪X4. (8)

We say that a coloring c ∈ {0, ↑ 1, ↑ 2, . . . , ↑ r, ↓ 1, ↓ 2, . . . , ↓ r}|ω(f)| of ω(f) is formed from a
coloring c1 of ω(f1) and a coloring c2 of ω(f2) if



1. For every u ∈ X1, c(u) = c1(u);
2. For every u ∈ X2, c(u) = c2(u);
3. For every u ∈ X3,

(a) If c(u) =↑i, 1 ≤ i ≤ r, then c(u) = c1(u) = c2(u). Intuitively, because vertex u is unresolved
in ω(f), this vertex is also unresolved in ω(f1) and in ω(f2).

(b) If c(u) = 0 then c1(u) = c2(u) = 0.
(c) If c(u) =↓i, 1 ≤ i ≤ r, then c1(u), c2(u) ∈ {↓i, ↑i} and c1(u) 6= c2(u). We avoid the case

when both c1 and c2 are colored by ↓i because it is sufficient to have the vertex u resolved in
at least one coloring. This observation helps to decrease the number of colorings forming a
coloring c. (Similar arguments using a so-called “monotonicity property” are made by Alber
et al. [2] for computing the minimum dominating set on graphs of bounded treewidth.)

4. For every u ∈ X4,
(a) either c1(u) = c2(u) = 0 (in this case we say that u is formed by 0 colors),
(b) or c1(u), c2(u) ∈ {↓i, ↑i} and c1(u) 6= c2(u), 1 ≤ i ≤ r (in this case we say that u is formed

by {↓i, ↑i} colors).
This property says that every vertex u of ω(f1) and ω(f2) that does not appear in ω(f) (and
hence does not appear further) should finally either be a center (if both colors of u in c1 and
c2 were 0), or should be resolved by some vertex in V (Gf ) (if one of the colors c1(u), c2(u) is
↓i and one ↑i). Again, we avoid the case of ↓i in both c1 and c2.

Notice that every coloring of ω(f) is formed from some colorings of ω(f1) and ω(f2). Moreover,
if Df (c) is the restriction to Gf of some (k, r)-center and such a restriction corresponds to a
coloring c of ω(f) then Df (c) is the union of the restrictions Df1(c1), Df2(c2) to Gf1 , Gf2 of two
(k, r)-centers where these restrictions correspond to some colorings c1, c2 of ω(f1) and ω(f2) that
form the coloring c.

We compute the values of the corresponding functions in a bottom-up fashion. The main ob-
servation here is that if f1 and f2 are the children of f , then the vertex sets ω(f1) ω(f2) “separate”
subgraphs Gf1 and Gf2 , so the value Af (c) can be obtained from the information on colorings of
ω(f1) and ω(f2).

More precisely, let c be a coloring of ω(f) formed by colorings c1 and c2 of f1 and f2. Let
#0(X3, c) be the number of vertices in X3 colored by color 0 in coloring c and and let #0(X4, c)
be the number of vertices in X4 formed by 0 colors. For a coloring c we assign

Af (c) = min{Af1(c1) +Af2(c2)−#0(X3, c1)−#0(X4, c1) | c1, c2 form c}. (9)

(Every 0 from X3 and X4 is counted in Af1(c1) + Af2(c2) twice and X3 ∩ X4 = ∅.) The time to
compute the minimum in (9) is given by

O
(

∑

c

∣

∣

{

{c1, c2} | c1, c2 form c
}∣

∣

)

.

Let xi = |Xi|, 1 ≤ i ≤ 4. For a coloring c let z3 be the number of vertices colored by ↓ colors
in X3. Also we denote by z4 the number of vertices in X4 formed by {↓ i, ↑ i} colors, 1 ≤ i ≤ r.
Thus the number of pairs forming c is 2z3+z4 . The number of colorings of ω(f) such that exactly
z3 vertices of X3 are colored by ↓ colors and such that exactly z4 vertices of X4 are formed by
{↓, ↑} colors is

(2r + 1)x1(2r + 1)x2(r + 1)x3−z3
(

x3

z3

)

rz3
(

x4

z4

)

rz4 .

Thus the number of operations needed to estimate (9) for all possible colorings of ω(f) is

x3
∑

p=0

x4
∑

q=0

2p+q(2r + 1)x1+x2(r + 1)x3−p
(

x3

p

)

rp
(

x4

q

)

rq = (2r + 1)x1+x2+x4(3r + 1)x3 .



Let ` be the branchwidth of G. By (6), (7) and (8),

x1 + x2 + x3 ≤ `

x1 + x3 + x4 ≤ ` (10)

x2 + x3 + x4 ≤ `.

The maximum value of the linear function log3r+1(2r + 1) · (x1 + x2 + x4) + x3 subject to the

constraints in (10) is
3log3r+1(2r+1)

2 `. (This is because the value of the corresponding LP achieves
maximum at x1 = x2 = x4 = 0.5`, x3 = 0.) Thus one can evaluate (9) in time

(2r + 1)x1+x2+x4(3r + 1)x3 ≤ (3r + 1)
3log3r+1(2r+1)

2 ` = (2r + 1)
3
2 ·`.

It is easy to check that the number of edges in T is O(m) and the time needed to evaluate A{r,v}(c)

is O((2r + 1)
3
2 ·`m). Moreover, it is easy to modify the algorithm to obtain an optimal choice of

centers by bookkeeping the colorings assigned to each set ω(f).
Summarizing, we obtain the following theorem:

Theorem 5. For a graph G on m edges and with a given branch decomposition of width ≤ `, and
integers k, r, the existence of a (k, r)-center in G can be checked in O((2r + 1)

3
2 ·`m) time and, in

case of a positive answer, constructs a (k, r)-center of G in the same time.

Similar result can be obtained for map graphs.

Theorem 6. Let H be a witness of a map graph GM on n vertices and let k, r be integers. If a

branch-decomposition of width ≤ ` of H is given, the existence of a (k, r)-center in GM can be

checked in O((2r + 1)
3
2 ·`n) time and, in case of a positive answer, constructs a (k, r)-center of G

in the same time.

Proof. We give a sketch of the proof here. H is bipartite graph with a bipartition (V (GM), V (H)−
V (GM)). There is a (k, r)-center in GM if and only if H has a set S ⊆ V (GM) of size k such that
every vertex V (GM)− S is at distance ≤ 2r in H from some vertex of S. We check whether such
a set S exists in H by applying arguments similar the proof of Theorem 5. The main differences
in the proof are the following. Now we color vertices of the graph H by l i, 0 ≤ i ≤ 2r, where i
is even. Thus we are using 2r + 1 numbers. Because we are not interested whether the vertices of
V (H) − V (GM) are dominated or not, for vertices of V (H) − V (GM) we keep the same number
as for a vertex of V (GM) resolving this vertex. For a vertex in V (GM) we assign a number ↓i if
there is a resolving vertex from V (H)− V (GM) colored l(i− 2). Also we change the definition of
locally valid colorings: for any two adjacent vertices v and w in ω(f), if v is colored li and w is
colored lj, then |i− j| ≤ 2.

Finally, H is planar, so |E(H)| = O(|V (H)|) = O(n).

5 Algorithms for the (k, r)-center problem

For a planar graph G and integers k, r, we solve (k, r)-center problem on planar graphs in three
steps.

Step 1: We check whether the branchwidth of G is at most 4(2r+1)
√
k+8r+1. This step requires

O((|V (G)|+ |E(G)|)2) time according to the algorithm due to Seymour & Thomas (algorithm (7.3)
of Section 7 of [25] — for an implementation, see the results of Hicks [19]). If the answer is negative
then report that G has no any (k, r)-center and stop. Otherwise go to the next step.



Step 2: Compute an optimal branch-decomposition of a graph G. This can be done by the algorithm
(9.1) in the Section 9 of [25] which requires O((|V (G)|+ |E(G)|)4) steps.
Step 3: Compute, if it exists, a (k, r)-center of G using the dynamic-programming algorithm of
Section 4.

It is crucial that, for practical applications, there are no large hidden constants in the running
time of the algorithms in Steps 1 and 2 above. Because for planar graphs |E(G)| = O(|V (G)|), we
conclude with the following theorem:

Theorem 7. There exists an algorithm finding, if it exists, a (k, r)-center of a planar graph in

O((2r + 1)6(2r+1)
√
k+12r+3/2n+ n4) time.

Similar arguments can be applied to solve the (k, r)-center problem on map graphs. Let GM
be a map graph. To check whether GM has a (k, r)-center, we compute optimal branchwidth of

its witness H. By Theorem 4, if bw(H) > 4(4r + 3)
√
k + 16r + 9, then GM has no (k, r)-center.

If bw(H) ≤ 4(4r + 3)
√
k + 16r + 9, then by Theorem 6 we obtain the following result:

Theorem 8. There exists an algorithm finding, if it exists, a (k, r)-center of a map graph in

O((2r + 1)6(4r+1)
√
k+24r+13.5n+ n4) time.

By a straightforward modification to the dynamic program, we obtain the same results for the
vertex-weighted (k, r)-center problem, in which the vertices have real weights and the goal is to
find a (k, r)-center of minimum total weight.

6 Concluding remarks

In this paper, we presented fixed-parameter algorithms with exponential speed-up for the (k, r)-
center problem on planar graphs and map graphs. Our methods for (k, r)-center can also be applied
to algorithms on more general graph classes like constant powers of planar graphs, which are not
minor-closed family of graphs. Extending these results to other non-minor-closed families of graphs
would be instructive. Faster algorithms for (k, r)-center for planar graphs and map graphs can be
obtained by adopting the proof techniques for planar dominating set from [14]. The disadvantage
of this approach is that proofs (but not the algorithm itself) become much more difficult.

In addition, there are several interesting variations on the (k, r)-center problem. In multiplicity-

m (k, r)-center, the k centers must satisfy the additional constraint that every vertex is within
distance r of at least m centers. In f -fault-tolerant (k, r)-center [7], every non-center vertex must
have f vertex-disjoint paths of length at most r to centers. (For this problem with r =∞, [7] gives
a polynomial-time O(f log |V |)-approximation algorithm for k.) In L-capacitated (k, r)-center [7],
each of the k centers can satisfy only L “customers”, essentially forcing the assignment of ver-
tices to centers to be load-balanced. (For this problem, [7] gives a polynomial-time O(log |V |)-
approximation algorithm for r.) In connected (k, r)-center [26], the k chosen centers must form a
connected subgraph. In all these problems, the main challenge is to design the dynamic program
on graphs of bounded treewidth/branchwidth. We believe that our approach can be used as the
main guideline in this direction.

More generally, it seems that our approach should extend other graph algorithms (not just
dominating-set-type problems) to apply to the rth power and/or half-square of a graph (and hence
in particular map graphs). It would be interesting to explore to which other problems our approach
can be applied. Also, obtaining “fast” algorithms for problems like feedback vertex set or vertex
cover on constant powers of graphs of bounded branchwidth (treewidth), as we did for dominating
set, would be interesting.



Map graphs can be seen as contact graphs of disc homeomorphs. A question is whether our
results can be extended for another geometric classes of graphs. An interesting candidate is the
class of unit-disk graphs. The current best algorithms for finding a vertex cover or a dominating

set of size k on these graphs have nO(
√
k) running time [4].

To demonstrate the versatility of our approach, notice that a direct consequence of our approach
is the following theorem.

Theorem 9. Let p be a function mapping graphs to non-negative integers such that the following

conditions are satisfied:

(1) There exists an algorithm checking whether p(G) ≤ w in f(bw(G))nO(1) steps.

(2) For any k ≥ 0, the class of graphs where p(G) ≤ k is closed under taking of contractions.

(3) If R is any partially triangulated (j × j)-grid1 then p(R) = Ω(j2).

Then there exists an algorithm checking whether p(G) ≤ k on planar graphs in O(f(
√
k))nO(1)

steps.

For a wide source of parameters satisfying condition (1) we refer to the theory of Courcelle [10]
(see also [5]). For parameters where f(bw(G)) = 2O(bw(G)), this result is a strong generalization
of Alber et al.’s approach which requires that the problem of checking whether p(G) ≤ k should
satisfy the “layerwise separation property” [3]. Moreover, the algorithms involved are expected to
have better constants in their exponential part comparatively to the ones appearing in [3]. Similar
results can also be obtained for constant powers of planar graphs and for map graphs.

Finally, let us note that combining Theorems 5 and 6 with Baker’s approach [6] (see also [13]
and [15]) adapted to branch decompositions instead of tree decompositions, we are able to obtain a
PTAS for r-dominating set on planar and map graphs. We summarize these results in the following
theorems:

Theorem 10. For any integer p ≥ 1, the r-dominating set problem on planar graphs has a (1 +
2r/p)-approximation algorithm with running time O(p(2r + 1)3(p+2r)m)).

Theorem 11. For any integer p ≥ 1, the r-dominating set problem on map graphs has a (1+4r/p)-
approximation algorithm with running time O(p(4r + 3)3(p+4r)m)).
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