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Folding Any Orthogonal Maze

Erik D. Demaine∗ Martin L. Demaine∗ Jason Ku∗

We develop an algorithm to fold an O(n) × O(n) square of paper into
an n× n orthogonal maze of ridges protruding out of a square base.

Figure 1: Folding 3D letters from a rectangle of paper. Font design from
[Demaine et al. 10]. Mountains are red; valleys are blue; 180◦ folds are
thick; 90◦ folds are thin.

1 Introduction

In most real-world origami, the final folded model is only a small factor
smaller than the original piece of paper. This property is obviously use-
ful for practical folding, but we are far from understanding what makes
it possible mathematically. The universality result for origami by [De-
maine et al. 00] uses an extremely large scale factor, and the computational
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origami design techniques of TreeMaker [Lang 03] and Origamizer [Demaine
and Tachi 10] solve their nonlinear optimization problems via heuristics and
so cannot definitively say which models require large scale factor (though
in practice they work well for many models of interest).

In this paper, we prove that a wide family of origami maze designs can
be folded with a small scale factor. We develop an algorithm to fold a square
of paper into any orthogonal maze, consisting of vertical walls protruding
equal heights out of a square floor. More precisely, given an orthogonal
graph drawn on an n×n square grid, we fold a (2h+1)n×(2h+1)n square
of paper into the square with the orthogonal graph extruded orthogonally to
a specified (uniform) height h. The zero-thickness ridges could form a path
like the Hilbert curve, a maze or labyrinth, troughs for liquid distribution,
or letters of the alphabet (as in Figure 1).

How good is the scale factor of 2h+1? The answer depends on the target
orthogonal graph. The scale factor always must be at least 1, because the
intrinsic diameter of the target shape (even for an empty graph) is at least√

2 n, and because intrinsic diameter can only decrease by folding. If the
graph is connected and spans all (n + 1)2 points, then it has (n + 1)2 − 1
edges, so at least one of the 2n rows or columns must contain at least
[(n+ 1)2−1]/(2n) = n/2 + 1 edges of the graph, which induces an intrinsic
straight line of length n + (n/2 + 1)(2h) = n(h + 1) + 2h (going up and
down each ridge of height h). The diameter of the paper must be at least
this long, proving that the scale factor must be at least (h + 1)/

√
2, so

our algorithm is guaranteed to be a factor of slightly less than 2
√

2 away
from optimal. If a row or column has all n + 1 edges, then our algorithm is
definitely within a factor of

√
2 from optimal. For the complete n× n grid

graph, we suspect that our folding is optimal (at least among watertight
foldings). We also suspect that our folding is very close to optimal for
“most” (e.g., random) subgraphs of the n× n grid.

A particularly practical situation, used in our examples and implemen-
tation, is h = 1. In this case, we start with a square just three times larger
in dimensions than the final shape. Furthermore, The number of layers of
paper that come together at any point is bounded by a constant.

Our foldings are watertight [Demaine and Tachi 10]: the boundary of
the paper maps to the boundary of the model. In contrast, the original
algorithm for folding any polyhedral surface [Demaine et al. 00] is inefficient
and not watertight. Origamizer [Demaine and Tachi 10] provides a family of
foldings that may include similarly efficient (and watertight) foldings, but
does not provide an efficient algorithm to find such a good folding. The
box-pleating techniques of [Benbernou et al. 09] are most closely related,
but applied in a straightforward matter, would use a square of side length
Θ(n2).
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2 Algorithm

Our algorithm uses an appropriate folding gadget at each grid point, de-
pending on which of the four incident edges should be extruded. In all,
there are six gadgets up to rotation, shown in Figure 2. The step-by-step
diagrams are not part of the algorithm, but rather serve to describe the
layering of the final folded state.

The algorithm tiles the crease pattern and corresponding folded state,
for each vertex, in a grid pattern according to the orthogonal graph. Fig-
ure 1 shows a simple example. Here we use that all gadgets have a consis-
tent interface on each of their four sides (depending on whether the side is a
ridge or floor), allowing gadgets be combined in an arbitrary combination.

Depending on the height h of extrusion, the gadgets in Figure 2 may
get placed very close to each other. Consider the 90◦ corner gadget shown
in the middle of Figure 3. The crease pattern extends outside the central
2 × 2 square reserved for the gadget, in the lower left. If h > 1, then the
crease pattern may overlap an adjacent gadget, which is invalid. To fix
this problem, we thin the excess structure near the floor (nonridge) edges
of every gadget by sufficiently many sink folds, as shown on the right of
Figure 3. This thinning is necessary only for large extrusion heights h.

Figure 3: Corner gadget: 3D folded state, simple crease pattern, and
thinned crease pattern. Mountains are red; valleys are blue; 180◦ folds
are thick; 90◦ folds are thin.

The algorithm runs in linear time and is easy to implement. We have
implemented the algorithm as a freely available web application:1 you can
design an orthogonal graph or generate a random maze, and the appli-
cation produces a crease pattern, which you can print and fold into your
design. The application assumes that h = 1. Also implemented is a sim-
ple orthogonal-graph font [Demaine et al. 10] for writing messages such as
Figure 1.

1http://erikdemaine.org/fonts/maze/

4

http://erikdemaine.org/fonts/maze/


i
i

i
i

i
i

i
i

Figure 4: 4× 5 origami maze. [Folding by Christopher Chin.]
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Figure 5: Folding of a Hilbert curve from a square of paper by Jason
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References

[Benbernou et al. 09] Nadia Benbernou, Erik D. Demaine, Martin L. De-
maine, and Aviv Ovadya. “A Universal Crease Pattern for Folding
Orthogonal Shapes.” arXiv:0909.5388, 2009. http://arxiv.org/abs/
0909.5388.

[Demaine and Tachi 10] Erik D. Demaine and Tomohiro Tachi.
“Origamizer: A Practical Algorithm for Folding Any Polyhedron.”
Manuscript, 2010.

[Demaine et al. 00] Erik D. Demaine, Martin L. Demaine, and Joseph S. B.
Mitchell. “Folding Flat Silhouettes and Wrapping Polyhedral Pack-
ages: New Results in Computational Origami.” Computational Ge-
ometry: Theory and Applications 16:1 (2000), 3–21.

[Demaine et al. 10] Erik D. Demaine, Martin L. Demaine, and Jason Ku.
“Origami Maze Puzzle Font.” In Proceedings of the 9th Gathering for
Gardner. Atlanta, Georgia, 2010. To appear.

[Lang 03] Robert J. Lang. Origami Design Secrets: Mathematical Methods
for an Ancient Art. A K Peters, 2003.

6

http://arxiv.org/abs/0909.5388
http://arxiv.org/abs/0909.5388

	1 Introduction
	2 Algorithm

