
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 35, No. 3, pp. 531–566

OPTIMAL COVERING TOURS WITH TURN COSTS∗

ESTHER M. ARKIN† , MICHAEL A. BENDER‡ , ERIK D. DEMAINE§ ,

SÁNDOR P. FEKETE¶, JOSEPH S. B. MITCHELL† , AND SAURABH SETHIA‖

Abstract. We give the first algorithmic study of a class of “covering tour” problems related
to the geometric traveling salesman problem: Find a polygonal tour for a cutter so that it sweeps
out a specified region (“pocket”) in order to minimize a cost that depends mainly on the number of
turns. These problems arise naturally in manufacturing applications of computational geometry to
automatic tool path generation and automatic inspection systems, as well as arc routing (“postman”)
problems with turn penalties. We prove the NP-completeness of minimum-turn milling and give
efficient approximation algorithms for several natural versions of the problem, including a polynomial-
time approximation scheme based on a novel adaptation of the m-guillotine method.

Key words. NC machining, manufacturing, traveling salesman problem, milling, lawn mowing,
covering, approximation algorithms, polynomial-time approximation scheme, m-guillotine subdivi-
sions, NP-completeness, turn costs

AMS subject classifications. 90C27, 68W25, 68Q25

DOI. 10.1137/S0097539703434267

1. Introduction. An important algorithmic problem in manufacturing is to
compute effective paths and tours for covering (“milling”) a given region (“pocket”)
with a cutting tool. The objective is to find a path or tour along which to move a
prescribed cutter in order that the sweep of the cutter covers the region, removing all
of the material from the pocket, while not “gouging” the material that lies outside of
the pocket. This covering tour or “lawn mowing” problem [6] and its variants arise
not only in numerically controlled (NC) machining applications but also in automatic
inspection, spray painting/coating operations, robotic exploration, arc routing, and
even mathematical origami.

The majority of research on these geometric covering tour problems as well as on
the underlying arc routing problems in networks has focused on cost functions based on
the lengths of edges. However, in many actual routing problems, this cost is dominated
by the cost of switching paths or direction at a junction. A drastic example is given by

∗Received by the editors September 10, 2003; accepted for publication (in revised form) July 13,
2005; published electronically December 8, 2005. An extended abstract version of this paper appeared
in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 01),
2001, pp. 138–147 [4]. This research was partially supported by the National Science Foundation
(CCR-9732221, CCR-0098172) and by grants from Bridgeport Machines, HRL Laboratories, ISX
Corporation, Metron Aviation, NASA (NAG2-1325), Northrop-Grumman, Sandia National Labs,
Seagull Technology, and Sun Microsystems.

http://www.siam.org/journals/sicomp/35-3/43426.html
†Department of Applied Mathematics and Statistics, State University of New York, Stony Brook,

NY 11794-3600 (estie@ams.sunysb.edu, jsbm@ams.sunysb.edu).
‡Department of Computer Science, State University of New York, Stony Brook, NY 11794-4400

(bender@cs.sunysb.edu).
§Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02139 (edemaine@mit.edu).
¶Department of Mathematical Optimization, Braunschweig University of Technology, Pock-

elsstr. 14, 38106 Braunschweig, Germany (s.fekete@tu-bs.de). Various parts of this work were done
while this author visited Stony Brook, with partial support by DFG travel grants Fe407.

‖SoftJin Infotech Pvt. Ltd., Bangalore, India (saurabhsethia@gmail.com). This author partici-
pated in research while affiliated with the Department of Applied Mathematics and Statistics, SUNY
Stony Brook.

531

532 E. M. ARKIN ET AL.

fiber-optical networks, where the time to follow an edge is negligible compared to the
cost of changing to a different frequency at a router. In the context of NC machining,
turns represent an important component of the objective function, as the cutter may
have to be slowed in anticipation of a turn. The number of turns (“link distance”)
also arises naturally as an objective function in robotic exploration (minimum-link
watchman tours) and in various arc routing problems, such as snow plowing or street
sweeping with turn penalties. Klein [35] has posed the question of minimizing the
number of turns in polygon exploration problems.

In this paper, we address the problem of minimizing the cost of turns in a covering
tour. This important aspect of the problem has been left unexplored so far in the
algorithmic community, and the arc routing community has examined only heuristics
without performance guarantee, or exact algorithms with exponential running time.
Thus, our study provides important new insights and a better understanding of the
problems arising from turn cost. We present several new results:

(1) We prove that the covering tour problem with turn costs is NP-complete,
even if the objective is purely to minimize the number of turns, the pocket is
orthogonal (rectilinear), and the cutter must move axis-parallel. The hard-
ness of the problem is not apparent, as our problem seemingly bears a close
resemblance to the polynomially solvable Chinese postman problem; see the
discussion below.

(2) We provide a variety of constant-factor approximation algorithms that ef-
ficiently compute covering tours that are nearly optimal with respect to
turn costs in various versions of the problem. While getting some O(1)-
approximation is not difficult for most problems in this class, through a careful
study of the structure of the problem, we have developed tools and techniques
that enable significantly stronger approximation results.
One of our main results is a 3.75-approximation for minimum-turn axis-
parallel tours for a unit square cutter that covers an integral orthogonal poly-
gon, possibly with holes. Another main result gives a 4/3-approximation for
minimum-turn tours in a “thin” pocket, as arises in the arc routing version
of our problem.
Table 1.1 summarizes our results. The term “coverage” indicates the number
of times a point is visited, which is of interest in several practical applications.
This parameter also provides an upper bound on the total length.

(3) We devise a polynomial-time approximation scheme (PTAS) for the covering
tour problem in which the cost is given as a weighted combination of length
and number of turns, i.e., the Euclidean length plus a constant C times the
number of turns. For an integral orthogonal polygon with h holes and N
pixels, the running time is 2O(h) ·NO(C). The PTAS involves an extension of
the m-guillotine method, which has previously been applied to obtain PTASs
in problems involving only length [38].

We should stress that our paper focuses on the graph-theoretic and algorithmic
aspects of the turn-cost problem; we make no claims of immediate applicability of our
methods to NC machining.

Related work. In the CAD community, there is a vast literature on the subject
of automatic tool-path generation; we refer the reader to Held [27] for a survey and
for applications of computational geometry to the problem. The algorithmic study of
the problem has focused on the problem of minimizing the length of a milling tour:
Arkin, Fekete, and Mitchell [5, 6] show that the problem is NP-hard for the case

OPTIMAL COVERING TOURS WITH TURN COSTS 533

Table 1.1

Approximation factors achieved by our (polynomial-time) algorithms. Rows marked “APX”
give approximation factors for the minimum-turn cycle cover (“Cycle cover”), the minimum-turn
covering tour (“Tour”), and the simultaneous approximation of length of a covering tour (“Length”).
The row marked “Max cover” indicates the maximum number of times a point is visited. The
parameter δ denotes the maximum degree in the underlying graph, while the parameter ρ is the
maximum number of directions in the graph. The two rows for running time refer to an “explicit”
description of input pixels and output and a more compact “implicit” encoding of pixels and output.
(See section 2 for more detailed definitions.)

Discrete Thin Orthogonal Thin
milling discrete milling orthogonal

Section 5.1.1 5.1.2 5.3 5.4

Cycle cover APX 2δ + ρ 4 1.5 4.5 1
Tour APX 2δ + ρ + 2 6 3.5 6.25 4/3
Length APX δ 2 - 8 4
Max cover δ 2ρ - 8 4
Time (explicit) O(N) O(N) O(N3) O(N2.376 + n3) O(n3)
Time (implicit) n/a n/a n/a O(n2.5 logN + n3) O(n3)

Integral
orthogonal

Section 5.2

Cycle cover APX 10 4 2.5
Tour APX 12 6 3.75
Length APX 4 4 4
Max cover 4 4 4
Time (explicit) O(N) O(N2.376) O(N2.376 + n3)
Time (implicit) O(n logn) O(n2.5 logN) O(n2.5 logN + n3)

where the mower is a square. Constant-factor approximation algorithms are given in
[5, 6, 30], with the current best factor being a 2.5-approximation for min-length milling
(11/5-approximation for orthogonal simple polygons). For the closely related lawn
mowing problem (also known as the “traveling cameraman problem” [30]), in which
the covering tour is not constrained to stay within P , the best current approximation
factor is 3 + ε (utilizing PTAS results for the traveling salesman problem (TSP)).
Also closely related is the watchman route problem with limited visibility (or “d-
sweeper problem”); Ntafos [42] provides a 4/3-approximation, and Arkin, Fekete,
and Mitchell [6] improve this factor to 6/5. The problem is also closely related to
the Hamiltonicity problem in grid graphs; the results of [44] suggest that in simple
polygons, minimum-length milling may in fact have a polynomial-time algorithm.

Covering tour problems are related to watchman route problems in polygons,
which have received considerable attention in terms of both exact algorithms (for
the simple polygon case) and approximation algorithms (in general); see [39] for a
relatively recent survey. Most relevant to our problem is the prior work on minimum-
link watchman tours: see [2, 3, 8] for hardness and approximation results, and [14, 36]
for combinatorial bounds. However, in these problems the watchman is assumed to
see arbitrarily far, making them distinct from our tour cover problems.

Other algorithmic results on milling include a study of multiple tool milling by
Arya, Cheng, and Mount [9], which gives an approximation algorithm for minimum-
length tours that use different size cutters, and the paper of Arkin, Held, and Smith [7],
which examines the problem of minimizing the number of retractions for “zig-zag”
machining without “remilling,” showing that the problem is NP-complete and giving
an O(1)-approximation algorithm.

534 E. M. ARKIN ET AL.

Geometric tour problems with turn costs have been studied by Aggarwal et al. [1],
who study the angular-metric TSP. The objective is to compute a tour on a set of
points, such that the sum of the direction changes at vertices is minimized: For
any vertex vi with incoming edge vi−1vi and outgoing edge vivi+1, the change of
direction is given by the absolute value of the angle between vi−1vi and vivi+1. The
problem turns out to be NP-hard, and an O(log n)-approximation is given. Fekete [20]
and Fekete and Woeginger [21] have studied a variety of angle-restricted tour (ART)
problems. Covering problems of a different nature have been studied by Demaine,
Demaine, and Mitchell [16], who considered algorithmic issues of origami.

In the operations research literature, there has been an extensive study of arc
routing problems, which arise in snow removal, street cleaning, road gritting, trash
collection, meter reading, mail delivery, etc.; see the surveys of [10, 18, 19]. Arc
routing with turn costs has had considerable attention, as it enables a more accurate
modeling of the true routing costs in many situations. Most recently, Clossey, Laporte,
and Soriano [13] presented six heuristic methods of attacking arc routing with turn
penalties, without resorting to the usual transformation to a TSP problem; however,
their results are purely based on experiments and provide no provable performance
guarantees. The directed postman problem in graphs with turn penalties has been
studied by Benavent and Soler [11], who prove the problem to be (strongly) NP-hard
and provide heuristics (without performance guarantees) and computational results.
(See also Fernández’s thesis [22] and [41] for computational experience with worst-case
exponential-time exact methods.)

Our covering tour problem is related to the Chinese postman problem (CPP),
which can be solved exactly in polynomial time for “purely” undirected or purely
directed graphs. However, the turn-weighted CPP is readily seen to be NP-complete:
Hamiltonian cycle in line graphs is NP-complete (contrary to what is reported in [25];
see page 246 of West [45]), implying that the TSP in line graphs is also NP-complete.
The CPP on graph G with turn costs at nodes (and zero costs on edges) is equivalent
to the TSP on the corresponding line graph, L(G), where the cost of an edge in L(G)
is given by the corresponding turn cost in G. Thus, the turn-weighted CPP is also
NP-complete.

2. Preliminaries. This section formally defines the problems at hand and var-
ious special cases of interest.

Problem definitions. The general geometric milling problem is to find a closed
curve (not necessarily simple) whose Minkowski sum with a given tool (cutter) is
precisely a given region P bounded by n edges. In the context of numerically controlled
(NC) machines, this region is usually called a pocket. Subject to this constraint, we
may wish to optimize a variety of objective functions, such as the length of the tour
or the number of turns in the tour. We call these problems minimum-length and
minimum-turn milling, respectively. While the latter problem is the main focus of
this paper, we are also interested in bicriteria versions of the problem in which both
length and number of turns must be small; we also consider the scenario in which the
objective function is given by a linear combination of turn cost and distance traveled
(see section 5.5).

In addition to choices in the objective function, the problem version depends on
the constraints on the tour. The most general case arises when considering a tour that
has to visit a discrete set of vertices, connected by a set of edges, with a specified turn
cost at each vertex to change from one edge to the next. More precisely, at each vertex,
the tour has the choice of (0) going “straight,” if there is one “collinear” edge with

OPTIMAL COVERING TOURS WITH TURN COSTS 535

the one currently used (costing no turn), (1) turning onto another, noncollinear edge
(costing one turn), or (2) “U-turning” back onto the source edge (costing two turns).
Which pairs of the d edges incident to a degree-d vertex are considered “collinear”
are specified by a matching in the complete graph Kd: three incident edges cannot
be “collinear.” We call this graph-theoretic abstraction the discrete milling problem,
indicating the close relationship to other graph-theoretic tour optimization problems.
We are able to give a number of approximation algorithms for discrete milling that
depend on some graph parameters: δ denotes the maximum degree of a vertex and
ρ denotes the maximum number of distinct “directions” coming together at a vertex.
(For example, for graphs arising from d-dimensional grids, these values are bounded
by 2d and d, respectively.)

A special case of discrete milling arises when dealing with “thin” structures in two-
or three-dimensional space, where the task is to travel all of a given set of “channels,”
which are connected at vertices. This resembles a CPP, in that it requires us to travel
a given set of edges; however, in addition to the edge cost, there is a cost at the
vertices when moving from one edge to the next. For this scenario, we are able to
describe approximation factors that are independent of other graph parameters.

More geometric problems arise when considering the milling of a polygonal region
P . In the orthogonal milling problem, the region P is an orthogonal polygonal domain
(with holes) and the tool is an (axis-parallel) unit-square cutter constrained to axis-
parallel motion, with edges of the tour alternating between horizontal and vertical.
All turns are orthogonal; 90◦ turns incur a cost of 1, while a “U-turn” has a cost of 2.
In the integral orthogonal case, all coordinates of boundary edges are integers, so the
region can be considered to be the (connected) union of N pixels, i.e., axis-parallel
unit squares with integer vertices. Note that in general, N may not be bounded by
a polynomial in n. Instead of dealing directly with a geometric milling problem, we
often find it helpful to consider a more combinatorial problem, and then adapt the
solution back to the geometric problem. In particular, for integral orthogonal milling,
we may assume that an optimal tour can be assumed to have its vertex coordinates of
the form k + 1

2 for integral k. Then, milling in an integral orthogonal polygon (with
holes) is equivalent to finding a tour of all the vertices (“pixels”) of a grid graph; see
Figure 2.1.

Fig. 2.1. An instance of the integral orthogonal milling problem (left) and the grid graph model
(right).

An interesting special case of integral orthogonal milling is the thin orthogonal
milling problem, in which the region does not contain a 2×2 square of pixels. This
is also closely related to discrete milling, as we can think of edges embedded into
the planar grid, such that vertices and channels are well separated. This problem of

536 E. M. ARKIN ET AL.

finding a tour with minimum turn cost for this class of graphs is still NP-complete,
even for a subclass for which the corresponding problem of minimizing total distance is
trivial; this highlights the particular difficulty of dealing with turn cost. On the other
hand, thin orthogonal milling allows for particularly fast and efficient approximation
algorithms.

Other issues. It should be stressed that using turn cost instead of (or in addition
to) edge length changes several characteristics of distances. One fundamental problem
is illustrated by the example in Figure 2.2: the triangle inequality does not have to
hold when using turn cost. This implies that many classical algorithmic approaches
for graphs with nonnegative edge weights (such as using optimal 2-factors or the
Christofides method for the TSP) cannot be applied without developing additional
tools.

b

a

c

Fig. 2.2. The triangle inequality may not hold when using turn cost as distance measure:
d(a, c) = 3 > 2 = d(a, b) + d(b, c).

In fact, in the presence of turn costs we distinguish between the terms 2-factor, i.e.,
a set of edges, such that every vertex is incident to two of them, and cycle cover, i.e.,
a set of cycles, such that every vertex is covered. While the terms are interchangeable
when referring to the set of edges that they constitute, we make a distinction between
their respective costs: a “2-factor” has a cost consisting of the sum of edge costs but
does not necessarily account for the turn cost between its two incident edges, while
the cost of a “cycle cover” includes also the turn costs at vertices.

It is often useful in designing approximation algorithms for optimal tours to begin
with the problem of computing an optimal cycle cover, minimizing the total number
of turns in a set of cycles that covers P . Specifically, we can decompose the problem
of finding an optimal (minimum-turn) tour into two tasks: finding an optimal cycle
cover, and merging the components. Of course, these two processes may influence
each other: there may be several optimal cycle covers, some of which are easier to
merge than others. (In particular, we say that a cycle cover is connected if the graph
induced by the set of cycles and their intersections is connected.) As we will show,
even the problem of optimally merging a connected cycle cover is NP-complete. This
is in contrast to minimum-length milling, where an optimal connected cycle cover can
trivially be converted into an optimal tour that has the same cost.

Algorithms whose running time is polynomial in the explicit encoding size (pixel
count) are pseudopolynomial. Algorithms whose running time is polynomial in the
implicit encoding size are polynomial. This distinction becomes an important issue
when considering different ways to encode input and output; e.g., a large set of pix-
els forming an a × b rectangle can be described in space O(log a + log b) by simply
describing the bounding edges, instead of listing all ab individual pixels. In integral
orthogonal milling, one might think that it is most natural to encode the grid graph
with vertices, because the tour will be embedded on this graph and will, in general,

OPTIMAL COVERING TOURS WITH TURN COSTS 537

have complexity proportional to the number N of pixels. But the input to any ge-
ometric milling problem has a natural encoding by specifying only the n vertices of
the polygon P . In particular, long edges are encoded in binary (or with one real
number, depending on the model) instead of unary. It is possible to get a running
time depending only on this size, but of course we need to allow for the output to
be encoded implicitly. That is, we cannot explicitly encode each vertex of the tour
because there are too many (the number can be arbitrarily large even for a succinctly
encodable rectangle). Instead, we encode an abstract description of the tour that is
easily decoded.

Finally, we mention that many of our results carry over from the tour (or cycle)
version to the path version, in which the cutter need not return to its original position.
In this paper, we omit the straightforward changes necessary to compute optimal
paths. A similar adjustment can be made for the related case of lawn mowing, in
which the sweep of the cutter is allowed to go outside P during its motion. Clearly,
our techniques are also useful for scenarios of this type.

3. NP-completeness. Arkin, Fekete, and Mitchell [6] have proved that the
problem of optimizing the length of a milling tour is NP-hard. Their proof is based
on the well-known hardness of deciding whether a grid graph has a Hamiltonian cycle
[29, 31]. This result implies that it is NP-hard to find a tour of minimum total length
that visits all vertices. If, on the other hand, we are given a connected cycle cover of
a graph that has minimum total length, then it is trivial to convert it into a tour of
the same length by merging the cycles into one tour.

In this section we show that if the quality of a tour is measured by counting turns,
then even this last step of turning an optimal connected cycle cover into an optimal
tour is NP-complete. Thus we prove that it is NP-hard to find a milling tour that
optimizes the number of turns for a polygon with holes.

Theorem 3.1. Minimum-turn milling is NP-complete, even when we are re-
stricted to the orthogonal thin case, and are already provided with an optimal connected
cycle cover.

Because thin orthogonal milling is a special case of thin milling as well as orthog-
onal milling, and because it is easy to convert an instance of thin orthogonal milling
into an instance of integral orthogonal milling, we have the following.

Corollary 3.2. Discrete milling, orthogonal milling, and integral orthogonal
milling are NP-complete.

Proof of Theorem 3.1. Our reduction proceeds in two steps. First we show that
the problem Hamiltonicity of unit segment intersection graphs (Husig) of deciding
the Hamiltonicity of intersection graphs of axis-parallel unit segments is hard. To see
this, we use the NP-hardness of deciding Hamiltonicity of grid graphs [29, 31] and
argue that any grid graph can be represented in this form (see Figure 3.1).

Consider a set of integer grid points that induce a grid graph G. Note that G
is bipartite, because one can 2-color the nodes by coloring a grid point (x, y) black
(resp., white) if x + y is odd (resp., even). After rotating the point set by π/4, the
coordinate of each point is an integer multiple of 1/

√
2. Scaling down the resulting

arrangement by a factor of 3/
√

2 results in an arrangement in which the coordinate
of each point is an integer multiple of 1/3, and the shortest distance between two
points of the same color class is 2/3. For the resulting set of points pi = (xi, yi), let
p′i = pi + (εi, εi) be given as the set obtained by “perturbations” εi that are small
and all distinct. Then represent each “white” vertex by a horizontal unit segment
centered at p′i and each “black” vertex by a vertical unit segment centered at p′i. Now

538 E. M. ARKIN ET AL.

(a) (b)

Fig. 3.1. (a) A grid graph G. (b) A representation of G as an intersection graph of axis-parallel
unit segments.

it is easy to see that the resulting unit segment intersection graph is precisely the
original grid graph G.

In a second step, we show that the problem Husig reduces to the problem of
milling with turn costs. The outline of our argument is illustrated in Figure 3.2.

Consider a unit segment intersection graph G, given by a set of axis-parallel unit
segments, as shown in Figure 3.2(a). Figure 3.2(b) shows the corresponding graph,
with a Hamiltonian cycle indicated in bold. Without loss of generality, we may assume
that G is connected. Let s be the number of nodes of G.

As shown in Figure 3.2(c), we replace each line segment by a cycle of four thin
axis-parallel corridors. This results in a connected polygonal region P having 4s
convex corners. Clearly, any cycle cover or tour cover of P must have at least 4s
turns; by using a cycle for each set of four corridors representing a strip, we get a
cycle cover C with 4s turns. Therefore, C is an optimal cycle cover, and it is connected,
because G is connected.

Now assume that G has a Hamiltonian cycle. It is easy to see (Figure 3.2(f))
that this cycle can be used to construct a milling tour of P with a total of 5s turns:
Each time the Hamiltonian cycle moves from one vertex vi of the grid graph to the
next vertex vj , the milling tour moves from the cycle Ci representing vi to the cycle
Cj representing vj , at an additional cost of 1 turn for each of the s edges in the
Hamiltonian cycle.

Assume conversely that there is a milling tour T with at most 5s turns. We refer
to turns at the corners of 4-cycles as convex turns. The other turns are called crossing
turns.

As noted above, the convex corners of P require at least 4s convex turns. Con-
sider the sequence of turns t1, . . . , t5s in T . By construction, the longest contiguous
subsequence of convex turns contains at most four different convex turns. (More pre-
cisely, we can have such a subsequence with four different convex corners only if these
four corners belong to the same 4-cycle representing a unit segment.) Furthermore,
we need at least one additional crossing turn at an interior crossing of two corridors to
get from one convex corner to another convex corner not on the same 4-cycle. (More

OPTIMAL COVERING TOURS WITH TURN COSTS 539

s

s

s
s

s

s

s
s

v

v

v
v

v

v

v
v

C

C

C
C

C

C

C
C

(d)(c)

(a) (b)

(f)(e)

5

1

2

3

4

6

7

8

1

2

3

6

4

5

1

2

3

4

5

6
7

8

7

8

predecessor

successor

Fig. 3.2. Thin orthogonal milling with turn cost is NP-hard: (a) a set of s = 8 axis-parallel unit
segments, denoted by s1, . . . , s8; (b) the corresponding intersection graph G, with the Hamiltonian
cycle v1, v2, v3, v6, v7, v8, v5, v4 shown in bold; (c) representing G by a connected region consisting
of 4s corridors; (d) a drawing of the graph induced by the instance of thin orthogonal milling,
with the s = 8 rectangular cycles C1, . . . , C8; (e) a milling tour with 5s turns corresponding to the
Hamiltonian cycle in G; (f) milling the four corridors of a cycle using five turns.

precisely, one crossing turn is sufficient only if the two connected convex corners be-
long to 4-cycles representing intersecting unit segments.) Therefore, we need at least
c crossing turns if we have at least c contiguous subsequences as described above.
This means that c ≥ s; hence, c = s by the assumption on the number of turns on T .
Because the c crossing turns correspond to a closed round trip in G that visits all s
vertices, this implies that we have a Hamiltonian cycle, concluding the proof.

540 E. M. ARKIN ET AL.

4. Approximation tools. There are three main tools that we use to develop
approximation algorithms: computing optimal cycle covers for milling the “boundary”
of P (section 4.1), converting cycle covers into tours (section 4.2), and using optimal
(or nearly optimal) “strip covers” (section 4.3). In this section, our description mostly
focuses on orthogonal milling; however, we will see in the following section 5.1 how
some of our tools can also be applied to the general case of discrete milling.

4.1. Boundary cycle covers. Consider first the problem of finding a minimum-
turn cycle cover for covering a certain subset, P , of P that is along its boundary.
This will turn out to be a useful tool for approximation algorithms. Specifically, in
orthogonal milling we define the set P of boundary pixels to consist of pixels that have
at least one of their four edges on a boundary edge of the polygon; i.e., in the grid
graph that describes adjacency of pixels, these are pixels of degree at most 3. Let NP
be the number of boundary pixels. A boundary cycle cover is a collection of cycles
that visit all boundary pixels.

We define an auxiliary structure, GP = (VP , EP), which is a complete weighted
graph on 2NP vertices; for ease of description, we will refer to GP as a set of points
and paths between them. This will allow us to map boundary cycle covers in P to
matchings of corresponding turn cost in GP . For this purpose, map each pixel pi ∈ P

to two vertices in VP , v
(0)
i and v

(1)
i . For each boundary pixel pi, this pair represents an

orientation that is attained by a cutter when visiting pi. Depending on the boundary
structure of pi, there are four different cases; refer to Figure 4.1.

(i) (ii)

(iii) (iv)

v(1)
i

p
i p

i

v(1)
i p

i

v(1)
i

p
i

v
i

v(1)
i

v
i

v
i

v
i

(0)

(0)

(0)
(0)

Fig. 4.1. Representing a boundary pixel pi by a pair of vertices v
(0)
i and v

(1)
i .

(i) One edge of pi is a boundary edge of the polygon.
(ii) Two opposite edges of pi are boundary edges of the polygon.
(iii) Two adjacent edges of pi are boundary edges of the polygon.
(iv) Three edges of Pi are boundary edges of the polygon.

For easier description, we refer to the vertices v
(0)
i and v

(1)
i as points embedded

OPTIMAL COVERING TOURS WITH TURN COSTS 541

within pi, as shown in Figure 4.1. Furthermore, we add a mandatory path mi between

v
(0)
i and v

(1)
i , represented by a polygonal path with c(mi) = 0 (cases (i) and (ii)),

c(mi) = 1 (case (iii)), or c(mi) = 2 turns (case (iv)), as shown in the figure. This
path maps the contour of P at pi, and it represents orientations that a cutter has to

attain when visiting pixel pi. Note that traveling from v
(h)
i to v

(1−h)
j along mi induces

a heading δ
(h,−)
i when leaving v

(h)
i and a heading δ

(1−h,+)
i when arriving at v

(1−h)
i .

Note that δ
(h,−)
i is opposite to δ

(h,+)
i .

Now we add a set of optional paths, representing the weighted edges EP of the

complete graph GP . For an example, refer to Figure 4.2. For any pair of vertices v
(h)
i

and v
(k)
j , let d(v

(h)
i , v

(k)
j) be the minimum number of turns necessary when traveling

from v
(h)
i with heading δ

(h,+)
i to v

(k)
j with heading δ

(k,−)
j . Note that d(v

(h)
i , v

(k)
j) =

d(v
(k)
j , v

(h)
i), as any shortest path can be traveled in the opposite direction. Using

a Dijkstra-like approach, we can compute these distances from one boundary pixel
to all other boundary pixels in time O(NP logNP); see the overview in [39] or the
paper [37]. The overall time of O(N2

P
logNP) for computing all these link distances

is dominated by the following step: In time O(N3
P

) [24, 43], find a minimum-weight
perfect matching in the complete weighted graph GP .

v(1)
j

v(0)

v
i

(1)

v
i

(0)

j

δ i
(1,−)

δ i

jδ(1,−)
j δ(0,−)

(0,−)

Fig. 4.2. The cost of traveling between two pixels: d(v
(1)
i , v

(0)
j) = d(v

(0)
j , v

(1)
i) = 2, while

d(v
(0)
i , v

(1)
j) = d(v

(1)
j , v

(0)
i) = 5.

Now it is not hard to see the following.
Lemma 4.1. Any boundary cycle cover in P with t turns can be mapped to a

perfect matching in GP of cost t−
∑

pi∈P c(mi), and vice versa.
Proof. Whenever a boundary cycle cover visits a boundary pixel pi, it has to

perform the turns corresponding to the mandatory path mi. Moreover, moving from
one pixel pi to the next pixel pj can be mapped to the optional path corresponding

to the edges (v
(h)
i , v

(k)
j); clearly, the overall cost is as stated.

Conversely, it is straightforward to see that the combination of a perfect match-
ing in GP and the mandatory paths yields a boundary cycle cover of corresponding
cost.

Using the algorithms described above, we also obtain the following.

542 E. M. ARKIN ET AL.

Theorem 4.2. Given the set of NP boundary pixels, a minimum-turn boundary
cycle cover can be computed in time O(N3

P
), the time it takes to compute a perfect

matching in GP .
If the set of pixels is not given in unary, but implicitly as the pixels contained in

a region with n edges, the above complexity is insufficient. However, we can use local
modifications to argue the following tool for speeding up the search for an optimal
perfect matching.

Lemma 4.3. Let pi and pj be neighboring boundary pixels that are adjacent to the

same boundary edge, so d(v
(h)
i , v

(k)
j) = 0 for an appropriate choice of h and k. Then

there is an optimal matching containing (v
(h)
i , v

(k)
j).

Proof. This follows by a simple exchange argument. See Figure 4.3. Suppose
two adjacent pixels pi and pj along the same boundary edge are not matched to each

other, let v
(h)
i be the vertex such that δi(h,−) is heading for pj , and let v

(k)
j be the

vertex such that δj(k,−) is heading for pi. Furthermore suppose that v
(h′)
i′ is matched

to v
(h)
i and v

(k′)
j′ is matched to v

(k)
j . Then we can match v

(h′)
i′ to v

(k′)
j′ and v

(h)
i to v

(k)
j

without changing the cost of the matching.

j
v(k)

j
v(k)v

i
(h) v

i
(h)

v
i’

(h’) v
i’

(h’)

v(k’)
j’

v(k’)
j’

δ i
(h,−) δ i

(h,−)
jδ

jδ

δ

(k,−)

i’
(h’,−)

(k’,−)

(a) (b)

jδ

jδ

δ

(k,−)

i’
(h’,−)

(k’,−)

Fig. 4.3. By performing local modifications, an optimal cycle cover can be assumed to cover
each collinear piece of the boundary in one connected strip.

This allows us to obtain a strongly polynomial version of the matching algorithm
of Theorem 4.2.

Theorem 4.4. A minimum-turn boundary cycle cover can be computed in time
O(n3).

Proof. By applying Lemma 4.3 repeatedly, we get O(n) connected boundary
strips, consisting of sets of collinear boundary pixels. These can be determined effi-
ciently by computing offsets of the boundary edges. This leaves only O(n) endpoints
of such strips to be matched, resulting in the claimed complexity.

Note that the validity of this argument is not restricted to the integral orthogonal
case, but remains valid even for orthogonal regions with arbitrary boundary edges.

Remark. The definition of the “boundary” pixels P used here does not include
all pixels that touch the boundary of P in a diagonal fashion; in particular, it omits
the “reflex pixels” that share a corner, but no edge, with the boundary of P . It seems

OPTIMAL COVERING TOURS WITH TURN COSTS 543

Fig. 4.4. Optimally covering all pixels that have an edge against the boundary can leave reflex
pixels uncovered.

difficult to require that the cycle cover mill reflex pixels, because Lemma 4.3 does not
extend to this case, and an optimal cycle cover of the boundary (as defined above)
may have fewer turns than an optimal cycle cover that mills the boundary P plus the
reflex pixels; see Figure 4.4.

4.2. Merging cycles. It is often easier to find a minimum-turn cycle cover (or
constant-factor approximation thereof) than to find a minimum-turn tour. We show
that an exact or approximate minimum-turn cycle cover implies an approximation for
a minimum-turn tour.

We concentrate on the integral orthogonal case. First we define a few terms
precisely. Two pixels are adjacent if the distance between their centers is 1. Two
cycles T1, T2 are intersecting if and only if T1∩T2 �= ∅. Two cycles are called touching
if and only if they are not intersecting and there exist pixels p1 ∈ T1, p2 ∈ T2 such
that p1 and p2 are adjacent.

Lemma 4.5. Let P1 and P2 be two cycles, with t1 and t2 turns, respectively, and
let p be a pixel that is contained in both cycles. Then there is a cycle milling the union
of pixels milled by P1 and P2 and having at most t1 + t2 + 2 turns. This cycle can be
found in time linear in the number of its turns.

Proof. Let the neighbors of p in P1 be a1, a2 and those of p in P2 be b1, b2. Connect
a1 via p to b1 and a2 via p to b2 to get the required tour. The two connections may add
at most a turn each. Hence the resulting tour can be of size at most t1 + t2 + 2.

Lemma 4.6. Given two touching cycles T1, T2 with t1, t2 turns, respectively,
there is a tour T with at most t1 + t2 + 2 turns that mills the union of pixels milled
by T1, T2.

Proof. Because T1, T2 are touching, T1 ∩ T2 = ∅ and there exist adjacent pixels
p1 ∈ T1 and p2 ∈ T2. Without loss of generality assume that p2 is a leftmost such
pixel, and below p1. Due to these constraints, T2 can enter/exit p2 from only two
sides. Hence there are only three ways in which T2 can visit p2. These are shown in
Figure 4.5. For all three ways we show in Figure 4.5 how to cut and extend tour T2

without adding any extra turns, to get a path P2 starting and ending at pixel p1. Cut
T1 at p1 to get a path P1. By possibly adding two turns, we can merge the two paths
into one tour.

With the help of these lemmas, we deduce the following.
Theorem 4.7. A cycle cover with t turns can be converted into a tour with at

544 E. M. ARKIN ET AL.

1 1

2

2
2

(a) (b) (c)

2 2 2

2 2 2

1

1 1 1

p p

T

T
T

p

p p p

p

p

p

p

p

p

Fig. 4.5. Merging two touching tours: There are three possible ways of tour T2 visiting pixel p2

(above). In each case, we can modify T2 into a path that visits pixel p1 (below); at a cost of possibly
one extra turn at each end of the path, we can merge it with tour T1.

most t + 2(c− 1) turns, where c is the number of cycles.
Proof. We prove this theorem by induction on the number of tours, c, in the cycle

cover. The theorem is trivially true for c = 1. For any other c, choose any c − 1
cycles with a total of t′ turns and find a tour T ′ that covers those c − 1 cycles; by
induction, it has t′ + 2(c− 1) turns. Let the remaining cycle, R, have r turns. Thus
t = t′+r. Because the polygon is connected, the set of pixels milled by R and T ′ must
be connected. Hence either T ′ and R are intersecting or touching. By Lemmas 4.5
and 4.6 we can merge R and T ′ into a single tour T with at most t′ + 2(c− 1) + r+ 2
turns, i.e., t + 2c turns.

Corollary 4.8. A cycle cover of a connected rectilinear polygon with t turns
can be converted into a single milling tour with at most 3

2 t turns.
Proof. This follows immediately from Theorem 4.7 and the fact that each cycle

has at least four turns.
Unfortunately, general merging is difficult (as illustrated by the NP-hardness proof

of Theorem 3.1), so we cannot hope to improve these general merging results by more
than a constant factor.

4.3. Strip and star covers. A key tool for approximation algorithms is a cov-
ering of the region by a collection of “strips.” A strip is a maximal straight segment
whose Minkowski sum with the tool is contained in the region. A strip cover is a
collection of strips whose Minkowski sums with the tool cover the entire region. A
minimum strip cover is a strip cover with the fewest strips.

Lemma 4.9. The size of a minimum strip cover is a lower bound on the number
of turns in a cycle cover (or tour) of the region.

Proof. Any cycle cover induces a strip cover by extending each edge to have
maximal length. The number of strips in this cover equals the number of turns in the
cycle cover.

In the discrete milling problem, a related notion is a “rook placement.” A rook
is a marker placed on a pixel, which can attack every pixel to which it is connected
via a straight axis-parallel path inside the region. A rook placement is a collection of
rooks, no two of which can attack each other. See Figure 4.6 for an illustration; this

OPTIMAL COVERING TOURS WITH TURN COSTS 545

x x x x1 2 3 4 5x

y
y
y
y

y1

2

3

4

5

x x x x1 2 3 4 5x

y
y
y
y

y1

2

3

4

5

Fig. 4.6. (Left) An orthogonal region, its subdivision into axis-parallel strips, and a resulting
greedy rook cover (indicated by black pixels). (Right) An optimal strip cover, and an optimal rook
cover (indicated by black pixels).

tool will be used in Theorem 5.6, based on the following lemma.
Lemma 4.10. The size of a maximum rook placement is a lower bound on the

number of turns in a cycle cover (or tour) for discrete milling.
Proof. Consider a rook placement and a cycle cover of the region, which must

in particular cover every rook. Suppose that one of the cycles visits rooks q1, . . . , qk
in that order. No two rooks can be connected by a single straight axis-parallel line
segment, so the cycle must turn between each rook, for a total of at least k turns.
Because each rook is traversed by at least one cycle, the number of turns (and hence
the number of segments in a tour) is at least the number of rooks.

In the integral orthogonal milling problem, the notions of strip cover and rook
placement are dual and efficient to compute.

Lemma 4.11. For integral orthogonal milling, a minimum strip cover and a
maximum rook placement have equal size. For a polygonal region with n edges and N
pixels they can be computed in time O(N2.376) or O(n2.5 logN).

Proof. For the case of N ∈ O(n), the claim follows from Proposition 2.2 in [26]:
We rephrase the rook-placement problem as a matching problem in a bipartite graph
G = (V1, V2, E). Let the vertices in V1 correspond to vertical strips, and let the
vertices in V2 correspond to horizontal strips. An edge e = (u, v) ∈ E exists if the
vertical strip corresponding to u and the horizontal strip corresponding to v have a
pixel in common (i.e., the strips cross). It is easy to see that a maximum-cardinality
matching in this bipartite graph corresponds to a rook placement: each edge (u, v)
in the matching corresponds to the unique pixel that vertical strip u and horizontal
strip v have in common.

Similarly, observe that the minimum strip-cover problem is equivalent to a min-
imum vertex-cover problem in the bipartite graph defined above. Each strip in the
strip cover defines a vertex in the vertex cover. The requirement that each pixel must
be covered by at least one strip is equivalent to the requirement that each edge of the
graph must be covered by at least one vertex.

By the famous König–Egerváry theorem, the maximum cardinality matching in
a bipartite graph is equal in size to the minimum vertex cover, and therefore both
can be solved in time polynomial in the size of the graph; more precisely, this can be
achieved in time O(Nω), the time needed for multiplying two N × N matrices, for

546 E. M. ARKIN ET AL.

example, ω = 2.376; see the paper [28], or the survey in chapter 16 of [43], which also
lists other, more elementary methods.

To get the claimed running time even for “large” N , using implicit encoding, we
decompose the region into “thick strips” by conceptually coalescing adjacent horizon-
tal strips with the same horizontal extent, and similarly for vertical strips. In other
words, thick strips are bounded by two vertices of the region, and hence there are only
O(n) of them. We define the same bipartite graph but add a weight to each vertex
corresponding to the width of the strip (i.e., the number of strips coalesced). Instead
of a matching, in which each edge of the graph is either included in the matching or
not, we now have a multiplicity for each edge, which is the minimum of the weights
of its two endpoints. The interpretation is that an edge corresponds to a rectangle in
the region (the intersection of two thick strips), and the number of rooks that can be
placed in such a rectangle is at most the minimum of its width and height.

The weighted-matching problem we consider is that each edge can be included
in the matching with a multiplicity up to its weight. Furthermore, the sum of the
included multiplicities of edges incident to a vertex cannot exceed the weight of the
vertex. A weighted version of the König–Egerváry theorem states that the minimum-
weight vertex cover is equal to the maximum-weight matching. (This weighted version
can be easily proved using the max-flow min-cut theorem.) Both problems can be
solved in polynomial time using a max-flow algorithm, on a modified graph in which
a source vertex s is added with edges to all vertices in V1, of capacity equal to the
weight of the vertex, and a sink vertex t is added with edges to it from all vertices
in V2 with capacity equal to the vertex capacity. Edges between V1 and V2 are
directed from V1 and have capacity equal to the weight of the edge. Currently, the
best known running time is O(

√
nm log nW) for a bipartite graph with n vertices, m

edges, and maximum weight W [23, 43]. For our purposes, this yields a complexity
of O(n2.5 logN).

Note that using weights on the edges is crucial for the correctness of our objective;
moreover, this has a marked effect on the complexity of the problem: Finding a
minimum number of axis-parallel rectangles (regardless of their size) that covers an
integral orthogonal polygon is known to be an NP-complete problem, even for the
case of polygon without holes [15].

For general discrete milling, it is possible to approximate an optimal strip cover
as follows. Greedily place rooks until no more can be placed (i.e., until there is no
unattackable vertex). This means that every vertex is attackable by some rook, so
by replacing each rook with all possible strips through that vertex, we obtain a strip
cover of size ρ times the number of rooks, where ρ is the maximum degree of the
underlying graph. (We call this type of strip cover a star cover.) But each strip in a
minimum strip cover can only cover a single rook, so this is a ρ-approximation to the
minimum strip cover. We have thus proved the following.

Lemma 4.12. In discrete milling, the number of stars in a greedy star cover is a
lower bound on the number of strips, and hence serves as a ρ-approximation algorithm
for minimum strip covers. Computing a greedy star cover can be done in time O(N).

Proof. Loop over the vertices of the underlying graph. Whenever an unmarked
vertex is found, add it to the list of rooks, and mark it and all vertices attackable by
it. Now convert each rook into a star as in the proof of Lemma 4.10. Each edge is
traversed only once during this process.

5. Approximation algorithms. We employ four main approaches to building
approximation algorithms, repeatedly in several settings:

OPTIMAL COVERING TOURS WITH TURN COSTS 547

(i) Star cover + doubling + merging.
The simplest but most generally applicable idea is to cover the region by a
collection of stars. “Doubling” these stars results in a collection of cycles,
which can then be merged into a tour using general techniques.

(ii) Strip cover + doubling + merging.
Tighter bounds can be achieved by covering directly with strips instead of
stars. Similar doubling and merging steps follow.

(iii) Strip cover + perfect matching of endpoints + merging.
The covering of the region is done by the strip cover. To connect these strips
into cycles, we find a minimum-weight perfect matching on their endpoints.
This results in a cycle cover, which can be merged into a tour using general
techniques.

(iv) Boundary tour + strip cover + perfect matching of odd-degree vertices.
Again coverage is by a strip cover, but the connection is done differently. We
add a tour of the boundary (by merging an optimal boundary cycle cover) and
attach each strip to this tour on each end. The resulting graph has several
degree-3 vertices, which we fix by adding a minimum-weight matching on
these vertices.

5.1. Discrete milling. As described in the preliminaries, we consider two sce-
narios: While general discrete milling focuses on vertices (and thus resembles the
TSP), thin discrete milling requires traveling a set of edges, making it similar to the
CPP.

5.1.1. General discrete milling. Our most general approximation algorithm
for the discrete milling problem runs in linear time. First we take a star cover ac-
cording to Lemma 4.12, which approximates an optimal strip cover to within a factor
of ρ. Then we tour the stars using an efficient method described below. Finally we
merge these tours using Theorem 4.7.

We tour each star emanating from a vertex v using the following method—see
Figure 5.1. Consider a strip s in the star, and suppose its ends are the vertices ui

and uj . A strip having both of its endpoints distinct from v is called a full strip; a
strip one of whose endpoints is equal to v is called a half strip. Half strips are covered
by three edges, (v, uj), (uj , uj), and (uj , v), making a U-turn at endpoint uj . (This
covering is shown for the half strip (v, u1) in Figure 5.1(b).) Full strips are covered by
five edges, (v, ui), (ui, ui), (ui, uj), (uj , uj), and (uj , v), with U-turns at both ends,
ui and uj . (This covering is shown for the full strip (u5, u2) in Figure 5.1(b).) Now
we have several paths of edges starting and ending at v. By joining their ends we can
easily merge these paths into a cycle.

The number of turns in this cycle is 3 times the number of half strips, plus 5 times
the number of full strips. This is equivalent to the number of distinct directions at v
plus 2 times the degree of v. (The number of directions at v is equal to the number
of full strips plus the number of half strips, by definition. The degree of v is equal to
2 times the number of full strips plus the number of half strips.) Lemma 4.12 implies
that the number of stars is a lower bound on the number of turns in a cycle cover of
the region, proving the following.

Theorem 5.1. There is an O(N)-time (2δ + ρ)-approximation for finding a
minimum-turn cycle cover in discrete milling. Furthermore, the maximum coverage
of a vertex (i.e., the maximum number of times a vertex is swept) is δ, and the cycle
cover is a δ-approximation on length.

548 E. M. ARKIN ET AL.

5

u

u

u

3

uu

u

u
u

3

2

4

5
1

v

u

2

4

(b)(a)

1u

v

Fig. 5.1. (a) A star of degree 5 around vertex v. (v, u1), (v, u3), (v, u4) are half strips, and
(u2, u5) is a full strip. (b) A covering with three edges for a half strip, and a covering with five
edges for the full strip.

Proof. As the star cover, by definition, contains all vertices, the cycle cover
obtained by traversing the stars also does. As stated above, the number of turns in
each cycle covering a star is the number of directions at v, plus 2 times the degree of
v. Summing over all stars, we get the claimed approximation bound. The running
time follows directly from Lemma 4.12. Deriving the values for maximum coverage
and overall length is straightforward.

Corollary 5.2. There is a linear-time (2δ+ρ+2)-approximation for minimum-
turn discrete milling. Furthermore, the maximum coverage of a vertex is δ, and the
tour is a δ-approximation on length.

Proof. We apply Theorem 4.7. The number of cycles to be merged is the number
of stars, which by Lemma 4.12 is a lower bound on the number of turns in a tour of
the region. We pay at most two turns per cycle for the merge. There is no additional
cost of length due to the merge, as the stars form a connected graph.

5.1.2. Thin discrete milling. As described in section 2, a more special struc-
ture arises if the structure to be milled consists of a connected set of “channels” that
have to be milled. In this case, achieving a strip cover is trivial.

Lemma 5.3. In thin discrete milling a strip cover can be obtained in linear time
by merging edges that are collinear at some vertex.

Using method (ii) described at the beginning of the section, we get the following
approximation results.

Theorem 5.4. There is a 4-approximation of complexity O(n log n) for comput-
ing a minimum-turn cycle cover for a graph with n edges, and a 6-approximation of
the same complexity for computing minimum-turn tours.

Proof. Clearly, the number of strips is a lower bound on the cost of any cycle
cover or tour. Turning each strip into a cycle with two U-turns, i.e., 4 turns, yields
a cycle cover within a factor 4 of the optimum. Merging these cycles at a cost of 2
turns per merge yields a tour within a factor of 6 times the optimum, as each cycle
has 4 turns.

Clearly, all edges get covered twice (yielding a bound of 2 on the simultaneous
length approximation) and no vertex gets covered more than 2ρ times.

Using the more time-consuming method (iii), we get better approximation factors
for the turn cost.

OPTIMAL COVERING TOURS WITH TURN COSTS 549

Theorem 5.5. There is a 1.5-approximation of complexity O(n3) for computing
a minimum-turn cycle cover for a graph with n edges, and a 3.5-approximation of the
same complexity for computing minimum-turn tours.

Proof. As before, we can compute an optimal strip cover S in linear time. Anal-
ogous to the approach in section 4.1, define a weight function between endpoints of
strips, taking into account the direction when leaving a strip. Clearly, any feasible
tour consists of two different matchings M1 and M2 between strip endpoints; more-
over, if d(M1) and d(M2) are the total weights of the edges in the matchings, we get
d(M1) + d(M2) ≤ d(T). It follows that for an optimal matching M , we have d(M) ≤
opt/2. By construction, the edges of M and the strips of S induce a 2-factor of the
vertices that covers all edges. Thus, we get a cycle cover of cost at most 1.5 opt.

Now consider the c cycles in a cycle cover. c is at most the number of strips in
S, which is a lower bound on the cost of an optimal tour. As the cost of merging the
c cycles is at most 2c− 2, we get a total cost of not more than 3.5 opt.

5.2. Integral orthogonal. As mentioned in the preliminaries, just the pixel
count N may not be a satisfactory measure for the complexity of an algorithm, as the
original region may be encoded more efficiently by its boundary, and a tour may be
encoded by structuring it into a small number of pieces that have a short description.
It is possible to use the above ideas for approximation algorithms in this extended
framework. We describe how this can be done for the integral orthogonal case, where
the set of pixels is bounded by n boundary edges.

Theorem 5.6. There is a 10-approximation of (strongly polynomial) complexity
O(n log n) for computing a minimum-turn cycle cover for a region of pixels bounded
by n integral axis-parallel segments, and a 12-approximation of the same complexity
for computing minimum-turn tours. In both cases, the maximum coverage of a point
is at most 4, so the algorithms are also 4-approximations on length.

For the special case in which the boundary is connected (meaning that the region
has no holes), the complexities drop to O(n).

Proof. The basic idea is to find a greedy rook cover, then use it to build an
approximate tour. Lemma 4.12 still holds, and each strip in a star (as described in
the previous section) will be a full strip. The approximation ratios follow as special
cases of Theorem 5.1: In this case, ρ = 2 and δ = 4. It remains to show how we can
find a greedy rook cover in the claimed time.

Refer back to Figure 4.6. Subdivide the region by the n vertical chords through
its n vertices, resulting in at most n vertical strips X1, . . . , Xn, of widths x1, . . . , xn.
Similarly, consider a subdivision by the n horizontal chords through the n vertices
into at most n horizontal strips Y1, . . . , Yn, of width y1, . . . , yn. In total, we get a
subdivision into at most n2 cells Cij . Despite this quadratic number of cells, we can
deal with the overall problem in near-linear time: Note that both subdivisions can be
found in time O(n log n). For the case of a connected boundary, Chazelle’s linear-time
triangulation algorithm [12] implies a complexity of O(n).

Choose any cell Cij , which is a rectangle of size xi × yj . Then rij = min{xi, yj}
rooks can be placed greedily along the diagonal of Cij , without causing any interfer-
ence; such a set of rooks can be encoded as one “fat” rook, described by its leftmost
uppermost corner (ξij , ηij), and its width rij . Then the strip Xi can contain at most
xi−rij additional rooks, and Yj can contain at most yj−rij rooks. Therefore, replace
xi by xi − rij , and yj by yj − rij . This changes the width of at least one of the strips
to zero, effectively removing it from the set of strips. After at most 2n − 1 steps of
this type, all horizontal or all vertical strips have been removed, implying that we

550 E. M. ARKIN ET AL.

have a maximal greedy rook cover.

It is straightforward to see that for a fat rook at position (ξij , ηij) and width rij ,
there is a canonical set of rij cycles with 10 edges each that covers every pixel that can
be attacked from this rook. Furthermore, there is a “fat” cycle with at most 12rij −2
turns that is obtained by a canonical merging of the rij small cycles. Finally, it is
straightforward to merge the fat cycles.

If we are willing to invest more time for computation, we can find an optimal
rook cover (instead of a greedy one). As discussed in the proof of Lemma 4.11, this
optimal rook cover yields an optimal strip cover. An optimal strip cover can be used
to get a 6-approximation, and the new running time is O(n2.5 log n) or O(N2.376).

Theorem 5.7. There is an O(n2.5 logN)-time or O(N2.376)-time algorithm that
computes a milling tour with number of turns within 6 times the optimal, and with
length within 4 times the optimal.

Proof. Apply Lemma 4.11 to find an optimal strip cover of the region. (See
Figure 4.6.) As described in the proof of that lemma, the cardinality of an optimal
strip cover is equal to the cardinality of an optimal rook cover. As stated, the number
of strips is a lower bound on the number of turns in a cycle cover or tour.

Now any strip from u to w is covered by a “doubling” cycle with edges (u,w),
(w,w), (w, u), (u, u). This gives a 4-approximation to minimum-turn cycle covers.
Finally apply Corollary 4.8 to get a 6-approximation to minimum-turn tours.

The claim about coverage (and hence overall length) follows from the fact that an
optimal strip cover has maximum coverage 2, and hence the cycle cover has maximum
coverage 4.

By more sophisticated merging procedures, it is possible to reduce the approx-
imation factor for tours to a figure closer to 4. Note that in the case of N being
large compared to n, the above proof grossly overestimates the cost of merging, as
all cycles within a fat strip allow merging at no additional cost. However, our best
approximation algorithm achieves a factor less than 4 and uses a different strategy.

Theorem 5.8. For an integral orthogonal polygon with n edges and N pix-
els, there are 2.5-approximation algorithms, with running times O(N2.376 + n3) and
O(n2.5 logN + n3), for minimum-turn cycle cover, and hence there is a polynomial-
time 3.75-approximation for minimum-turn tours.

Proof. As described in Lemma 4.11, find an optimal strip cover S, in time
O(N2.376) or O(n2.5 logN). Let s be its cardinality and let opt be the cost of an
optimal tour; then opt ≥ s.

Now consider the end vertices of the strip cover. By construction, they are part
of the boundary. Because any feasible tour T must encounter each pixel and cannot
cross the boundary, either any endpoint of a strip is crossed orthogonally or the tour
turns at the boundary segment. In any case, a tour must have an edge that crosses
an end vertex orthogonally to the strip. (Note that this edge has zero length in the
case of a U-turn.)

As in section 4.1 and the proof of Theorem 5.5, define a weight function between
endpoints of strips, taking into account the direction when leaving a strip. Again any
feasible tour consists of two different matchings M1 and M2 between strip endpoints,
and for an optimal matching M , we have d(M) ≤ opt/2.

Computing such a matching can be achieved as follows. Note that for N pixels, an
optimal strip cover has O(min{

√
N,n}) strips; by matching endpoints of neighboring

strips within the same fat strip, we are left with O(n) endpoints. As described in
the proof of Lemma 4.11, the overall cost for computing the link distance between

OPTIMAL COVERING TOURS WITH TURN COSTS 551

(b)(a)

Fig. 5.2. A bad example for the 3.75-approximation algorithm: (a) Half the cycles constructed
by the algorithm. (b) An optimal tour.

all pairs of endpoints can be achieved in O(min{N logN,n2 log n}). Computing a
minimum-weight perfect matching can be achieved in time O(max{N1.5, n3}).

The edges of M and the strips of S induce a 2-factor of the endpoints. Because
any matching edges leave a strip orthogonally, we get at most 2 additional turns
at each strip for turning each 2-factor into a cycle. The total number of turns is
2s + w(M) ≤ 2.5·opt. Because the strips cover the whole region, we get a feasible
cycle cover.

Finally, we can use Corollary 4.8 to turn the cycle cover into a tour. By the
corollary, this tour does not have more than 3.75·opt turns.

The class of examples in Example 5.9 shows that the cycle cover algorithm may
use 2·opt turns, and the tour algorithm may use 3·opt turns, assuming that no special
algorithms are used for matching and merging. Moreover, the same example shows
that this 3.75-approximation algorithm does not give an immediate length bound on
the resulting tour.

Example 5.9. The class of regions shown in Figure 5.2 may yield a heuristic cycle
cover with 2·opt turns, and a heuristic tour with 3·opt turns.

The region consists of a “square donut” of width k. An optimal strip cover
consists of 4k strips; an optimal matching of strip ends yields a total of 8k + 2 turns,
and we get a total of 2k cycles. (In Figure 5.2(a), only the vertical strips and their
matching edges are shown to keep the drawing cleaner.) If the merging of these cycles
is done badly (by merging cycles at crossings and not at parallel edges), it may cost
another 4k − 2 turns, for a total of 12k turns. As can be seen from Figure 5.2(b),
there is a feasible tour that uses only 4k+2 turns. This shows that optimal tours may
have almost all turns strictly inside of the region. Moreover, the same example shows
that this 3.75-approximation algorithm does not give an immediate length bound on
the resulting tour. However, we can use a local modification argument to show the
following theorem.

Theorem 5.10. For any given feasible tour (or cycle cover) of an integral or-
thogonal region, there is a feasible tour (or cycle cover) of equal turn number that

552 E. M. ARKIN ET AL.

(c)

(a)

(b)

3’2

1 3 1’ 2’

1 1’

2

2’3

3’

1 3 1’ 2’

3’2

Fig. 5.3. Rearranging a tour to ensure that no pixel is covered more than three times in each
direction: (a) A set of horizontal edges that covers some pixel three times. (b) A rearranged tour, if
the second matching between endpoints connects two left and two right endpoints. (c) A rearranged
tour, if the second matching between endpoints connects any left with a right endpoint.

covers each pixel at most four times. This implies a performance ratio of 4 on the
total length.

Proof. See Figure 5.3. Suppose there is a pixel that is covered at least five times.
Then there is a direction (say, horizontal) in which it is covered at least three times.
Let there be three horizontal segments (1, 1′), (2, 2′), (3, 3′) covering the same pixel,
as shown in Figure 5.3(a); we denote by 1, 2, 3 the endpoints to the left of the pixel,
and by 1′, 2′, 3′ the endpoints to the right of the pixel.

Now consider the connections of these points by the rest of the tour, i.e., a second
matching between the points 1, 2, 3, 1′, 2′, 3′ that forms a cycle when merged with

OPTIMAL COVERING TOURS WITH TURN COSTS 553

the first matching (1, 1′), (2, 2′), (3, 3′). This second matching is shown dashed in
Figure 5.3(b,c). We consider two cases, depending on the structure of the second
matching.

In the first case, there are two right endpoints that are matched, say 1′ and 2′.
Then there must be two left endpoints that are matched; because both matchings must
form one large cycle, these cannot be 1 and 2. Without loss of generality, we may
assume they are 1 and 3. Thus, 2 and 3′ must be matched, as shown in Figure 5.3(b).
Then we can replace (1, 1′), (2, 2′), (3, 3′) by (1, 2′), (2, 3), (1′, 3′), respectively, which
yields a feasible tour with the same number of turns, but with some pixels being
covered fewer times, and no pixel being covered more times than was the case in the
original tour.

In the other case, all right endpoints are matched with left endpoints. Clearly, 1′

cannot be matched with 1; without loss of generality, we assume it is matched with 2,
as shown in Figure 5.3(c). Then the cycle condition implies that the second matching
is (1, 3′), (2, 1′), (3, 2′). This allows us to replace (1, 1′), (2, 2′), (3, 3′) by (1, 3), (2, 3′),
(1′, 2′), respectively, again producing a feasible tour with the same number of turns,
but with some pixels being covered fewer times, and no pixel being covered more
times than was the case in the original tour.

This can be repeated until no pixel is covered more than four times. As the
above procedure can be carried out as part of the merging phase (i.e., after an op-
timal weighted matching has been found), the overall complexity is not affected.
Furthermore, it is straightforward to see that it also works for the case of “thick”
strips, where N is large compared to n, by treating parallel edges in a thick strip
simultaneously.

5.3. Nonintegral orthogonal polygons. Nonintegral orthogonal polygons pre-
sent a difficulty in that no polynomial-time algorithm is known to compute a minimum
strip cover for such polygons. Fortunately, however, we can use the boundary tours
from section 4.1 to the approximation factor of 12 from Theorem 5.6 for the integral
orthogonal case.

Theorem 5.11. In nonintegral orthogonal milling of a polygonal region with
n edges and N pixels, there is a polynomial-time 4.5-approximation for minimum-
turn cycle covers and 6.25-approximation for minimum-turn tours, with a simultane-
ous performance guarantee of 8 on length and cover number. The running time is
O(N2.376 + n3), or O(n2.5 logN + n3).

Proof. Take the 2.5-approximate cycle cover of the integral pixels in the region
as in Theorem 5.8; for a tour, turn it into a 3.75-approximate tour. This may leave a
fractional portion along the boundary uncovered. See Figure 5.4.

Now add an optimal cycle cover of the boundary which comes from Theorem 4.4.
This may leave only fractional boundary pieces uncovered that are near reflex vertices
of the boundary, as shown in Figure 5.4. Whenever this happens, there must be a
turn of the boundary cycle cover on both sides of the reflex vertex. The fractional
patch can be covered at the cost of an extra two turns, which are charged to the two
turns in the boundary cycles. Therefore, the modified boundary cover has a cost of at
most 2·opt. Compared to an optimal cycle cover of length opt, we get a cycle cover
of length at most 4.5·opt, as claimed. For an optimal tour of length opt, merging
all modified boundary cycles into one cycle can be done at a cost of at most 2 turns
per unmodified boundary cycle, i.e., for a total of 1

2 ·opt.
Finally, the remaining two cycles can be merged at a cost of 2 turns. This yields

an overall approximation factor of 3.75 + 2.5 = 6.25. The claim on the cover number

554 E. M. ARKIN ET AL.

region boundary
uncovered area

integer pixels

boundary cycle cover

detour of boundary tour

fractional region along boundary

Fig. 5.4. Milling a nonintegral orthogonal polygon.

(and thus length) follows from applying Theorem 5.10 to each of the two cycles.

The running times follow from Theorems 4.4 and 5.8.

5.4. Milling thin orthogonal polygons. In this section we consider the spe-
cial case of milling thin polygons. Again, we focus on the integral orthogonal case.
Formally, a thin polygon is one in which no axis-aligned 2×2 square fits, implying
that each pixel has all four of its corners on the boundary of the polygon. Intuitively,
a polygon is thin if it is composed of a network of width-1 corridors, where each pixel
is adjacent to some part of the boundary of the region, making this related to discrete
milling.

5.4.1. Basics of thin orthogonal polygons. Any pixel in the polygon has one,
two, three, or four neighbor pixels; we denote this number of neighbors as the degree
of a pixel. See Figure 5.5. Degree-1 pixels (1) are “dead ends,” where the cutter has to
make a U-turn. There are two types of degree-2 pixels, without forcing a turn (2a) or
with forcing a turn (2b); in either case, applying Lemma 4.3 in an appropriate manner
will suggest that they should be visited in a canonical way: after one neighbor, and
before the other. Neighbors of degree-3 pixels (3) form “T” intersections that force
duplication of paths. Degree-4 pixels (4) are the only pixels in thin polygons that are
not boundary pixels as defined in section 4; however, in the absence of 2×2 squares
of pixels, all their neighbors are of degree 1 or 2.

In the following, we will use the ideas developed for boundary cycle covers in
section 4.1 to obtain cycle covers for thin polygons. The following is a straightforward
consequence of Theorems 4.4 and 4.7.

Corollary 5.12. In thin orthogonal milling, there is an O(n3) algorithm for
computing a minimum-turn cycle cover, and an O(n3) 1.5-approximation for comput-
ing a minimum-turn tour.

Proof. Apply the strongly polynomial algorithm described in Theorem 4.4 for
computing a minimum cost boundary cycle cover. By definition, this covers all pixels
of degree 1, 2, and 3. Moreover, degree-4 pixels are surrounded by pixels of degree 1
or 2, implying that they are automatically covered as neighbors of those pixels, when
applying Lemma 4.3. Using Theorem 4.7, we can turn this into a tour, yielding the
claimed approximation factor.

More interesting is that we can do much better than general merging in the case

OPTIMAL COVERING TOURS WITH TURN COSTS 555

(2b)(1) (2a)

(4)(3)

Fig. 5.5. Pixel types in a thin polygon.

of thin orthogonal milling. The idea is to decompose the induced graph into a number
of cheap cycles and a number of paths.

5.4.2. Milling thin Eulerian orthogonal polygons. We first solve the spe-
cial case of milling Eulerian polygons, that is, polygons that can be milled without
retracing edges of the tour, so that each edge in the induced graph is traversed by the
cutting tool exactly once. In an Eulerian polygon, all pixels have either two or four
neighbors, meaning there are no odd-degree pixels.

Although one might expect that the optimal milling is one of the possible Eulerian
tours of the graph, in fact, this is not always true, as Example 5.13 points out.

Example 5.13. There exist thin grid graphs, such that no turn-minimal tour of
the graph is an Eulerian tour.

Proof. See Figure 5.6. Observe that an optimal milling is not an Eulerian tour.
The best Eulerian tour for this figure requires 22 turns, as shown symbolically in the
bottom left of the figure: Each cycle uses 4 turns and an additional 6 turns can be used
to connect the 4 cycles together. On the other hand, the optimal milling traverses
the edges in the internal pixel twice, both times in the same direction: The order
of turns is 1, 2, C, 13, 16, 15, 14, D, 9, 12, 11, 10, B, 5, 8, 7, 6, A, 3, 4, 1, and the structure
is shown symbolically in the bottom right. Thus, the optimal milling only requires
20 turns, where each cycle uses 4 turns and an additional 4 turns connect the cycles
together.

By strengthening the lower bound, we can achieve the following approximation
of an optimal tour of length opt.

Theorem 5.14. There is an O(n log n) (or O(N)) algorithm that finds a tour of
turn cost at most 6

5 ·opt.
Proof. By applying Theorem 4.4, we get an optimal boundary cycle cover. There

are three observations that lead to the claimed stronger results.
(1) For a thin polygon, extracting the collinear strips can be performed in strongly

polynomial time O(n log) (or weakly polynomial time O(N)).
(2) For an Eulerian thin polygon, no vertices in GP remain unmatched after

repeatedly applying Lemma 4.3. Instead, we get an optimal cycle cover right away.
This cycle cover can be merged into one connecting tour by merging at pixels where
two cycles cross each other: Let the optimal cycle cover be composed of c disjoint

556 E. M. ARKIN ET AL.

1 2

34

5 6

78

9

10 11

12

1314

15 16

A

C

B

D

1,2,3,4

13,14,15,16

5,6,7,8

9,10,11,12

5,6,7,8

1,2,3,4

13,14,15,16

9,10,11,12

Fig. 5.6. A thin Eulerian polygon consisting of four overlapping cycles (above). Shown symbol-
ically below is how to obtain an overall tour by merging the four canonical cycles: A tour obtained
by iteratively merging cycles incurs a total of 16 + 6 = 22 turns (bottom left). An optimal tour has
16 + 4 = 20 turns (bottom right).

cycles, where c ≥ 1. Let t be the cost of the optimal cycle cover. At each phase of the
cycle-merging algorithm, two cycles are merged into one. Therefore, the algorithm
finds a solution having cost t + 2 · (c− 1).

(3) We can strengthen the lower bound on an optimal tour as follows. Consider
(for c > 1) a lower bound on the cost of the optimal solution. Just like in the proof of
Theorem 3.1, all turns in a cycle cover are forced by convex corners of the polygon,
implying that any solution must contain these t turns. In addition, turning from one
cycle into another incurs a crossing cost of at least one turn; thus, we get a lower
bound of t + c. Observe that there are at least 4 turns per cycle so that t ≥ 4c.

Therefore, t+2·(c−1)
t+c ≤ t+2c

t+c ≤ 6
5 .

5.4.3. Milling arbitrary thin orthogonal polygons. Now we consider the
case of general thin polygons. For any odd-degree vertex, and any feasible solution,
some edges may have to be traversed multiple times. As in Corollary 5.12, we can
apply Theorem 4.4 to achieve a minimum-cost cycle cover and merge them into a
tour. Using a more refined analysis, we can use this to obtain a 4/3-approximation
algorithm for finding a minimum-cost tour.

Theorem 5.15. For thin orthogonal milling, we can compute a tour of turn cost
at most 4

3 ·opt in time O(n3), where opt is the cost of an optimal tour.
Proof. We start by describing how to merge the cycles into one connected tour.
1. Find an optimal cycle cover as provided by Theorem 4.4.
2. Repeat until there is only one cycle in the cycle cover:

• If there are any two cycles that can be merged without any extra cost
(by having partially overlapping collinear edges), perform the merge.

OPTIMAL COVERING TOURS WITH TURN COSTS 557

• Otherwise,
– find a vertex at which two cycles cross each other;
– modify the vertex to incorporate at most two additional turns,

thereby connecting the two cycles.
Now we analyze the performance of our algorithm. Consider the situation after

extracting the cost zero matching edges from Lemma 4.3. This already yields a set K
of cycles, obtained by only turning at pixels of degree 2 that force a turn. Let k denote
the number of cycles in K, and let c be the number of turns in K. Let P be the set of
“dangling” paths at degree-1 or degree-3 pixels, and let p be the number of turns in
P , including the mandatory turn for each endpoint. Let M be a minimum matching
between odd-degree vertices, and let m be the number of turns in M . Finally, let O
be the matching between odd-degree pixels that is induced by an optimal tour, and
let o be the number of turns in O.

First note that P is a matching between odd-degree nodes.
P , M , and O may connect some of the cycles in K. In P a path between two

odd-degree pixels connects the two cycles that the two nodes belong to. On the other
hand, a path in M and O between two odd-degree nodes can encounter several cycles
along the way, and thus it may be used to merge several cycles at no extra cost.

Therefore, let j be the number of cycles after using P for free merging, let i be
the number of components with P and M used for free merging, and let h be the
number of components with P and O used for free merging.

Note that

1 ≤ i ≤ j ≤ k(5.1)

and

1 ≤ h ≤ j ≤ k.(5.2)

Now consider the number of cycles encountered by a path in the matching. It is
not hard to see that this number cannot exceed the number of its turns. Therefore,

m ≥ k − i ≥ j − i,(5.3)

o ≥ k − h ≥ j − h.(5.4)

If a particular matching results in x components, we would need at least x more
turns to get a tour. Thus with O we need at least h more turns.

Thus, for an optimal tour of cost opt, we have

opt ≥ c + p + o + h.(5.5)

Our heuristic method adds the minimum matching to C and P and merges the
remaining components with two turns per merge, and hence the cost heur of the
resulting tour is

heur ≥ c + p + m + 2(i− 1).(5.6)

Thus we get the following estimate for the approximation factor R ≥ 1:

R ≤ c + p + m + 2i

c + p + o + h
.(5.7)

558 E. M. ARKIN ET AL.

Because each cycle has at least four turns, we know that

c ≥ 4k ≥ 4j.(5.8)

Using the fact that c + p + m + 2i ≥ c + p + o + h (because R ≥ 1), we see that
the ratio on the right in (5.7) gets larger if we replace c in the numerator and in the
denominator by the smaller nonnegative value 4j; thus,

R ≤ 4j + p + m + 2i

4j + p + o + h
.(5.9)

Because P is also a matching, we have

p ≥ m,(5.10)

which implies that

R ≤ 4j + 2m + 2i

4j + m + o + h
.(5.11)

We also know that

m ≤ o.(5.12)

Using this, together with the fact that R can be assumed to be less than 2, we can
argue that R is maximal for maximal values of m; hence,

R ≤ 4j + 2o + 2i

4j + 2o + h
.(5.13)

Using (5.4) in (5.13), we see that R is maximal for minimal o; hence,

R ≤ 4j + 2(j − h) + 2i

4j + 2(j − h) + h
=

6j − 2h + 2i

6j − h
.(5.14)

Using h > o in (5.14) and the facts that R < 2 and i ≤ j, we get that

R ≤ 6j − 2o + 2i

6j − o
≤ 6j + 2i

6j
≤ 4

3
.(5.15)

The following shows that the estimate for the performance ratio is tight.
Theorem 5.16. There is a class of examples for which the estimate of 4/3 for

the performance ratio of the algorithm for thin orthogonal milling is tight.
Proof. See Figure 5.7. The region consists of k = 2s+ 4 cycles, all with precisely

4 turns, s cycles without degree-three vertices, and s + 4 cycles with two degree-3
vertices each. We get c = 4k = 8s+16 and p = 2(s+4) = 2s+8. Figure 5.7(b) shows
a min-cost matching of cost m = 2(s + 4) = 2s + 8 and one of cost o = 2s + 8 that is
induced by an optimum tour. As Figure 5.7(c) suggests, merging all cycles, odd-degree
paths, and matching paths is possible without requiring any further turns, resulting
in opt = c + p + o = 12s + 32. On the other hand, using the min-cost matching of
cost m leaves k cycles that cannot be merged for free; thus, merging two cycles at a
time at a cost of 2 turns requires an additional cost of 2(k− 1) = 4s+6, for a total of
heur = c + p + m + 2(k − 1) = 16s + 38 turns, which gets arbitrarily close to 4

3opt

for large s.
Note that the argument of Theorem 5.10 remains valid for this section, so the

bounds on coverage and length approximation still apply.

OPTIMAL COVERING TOURS WITH TURN COSTS 559

1

1

2 3 4 5

6

7891011

12

2 3 4

5678

(s+4 with paths,
k = 2s+4 subtours

 s without paths)

p=2s+8 end points
s+4 paths with

matching induced
by optimum tour,
with o=2s+8 turns

with m=2s+8 turns
min−cost matching

D

D D D D D

D

DDDDD

C C

CC C C

CC

(c)
6

12

16

1514

5

2

8

4

9

1011

13

17

187 19

1 20

3

(b)

(a)

(d)

1

2 3
7

8

6

45

10

129

14 15

18 19

17
11

16

2013

Fig. 5.7. An example with performance ratio 4/3 for our heuristic. (a) The structure of the
example for s = 8. (b) A min-cost matching of the odd-degree vertices, and the matching induced
by an optimal tour. (c) A portion of the optimal tour: Subtours can be merged without extra cost.
(d) A corresponding portion of the heuristic tour: Subtours still need to be merged, which results in
an additional cost of 2(k − 1) = 4s + 6.

5.5. PTAS. We describe a polynomial-time approximation scheme (PTAS) for
the problem of minimizing a weighted average of the two cost criteria: length and
number of turns. Our technique is based on using the theory of m-guillotine subdivi-
sions [38], properly extended to handle turn costs. We prove the following result.

Theorem 5.17. Define the cost of a tour to be its length plus C times the number
of (90-degree) turns. For any fixed ε > 0, there is a (1 + ε)-approximation algorithm,
with running time 2O(h) · NO(C), for minimizing the cost of a tour for an integral
orthogonal polygon P with h holes and N pixels.

Proof. Let T ∗ be a minimum-cost tour and let m be any positive integer. Follow-
ing the notation of [38], we first apply the main structure theorem of that paper to

560 E. M. ARKIN ET AL.

claim that there is an m-guillotine subdivision, TG, obtained from T ∗ by adding an
appropriate set of bridges (m-spans, which are horizontal or vertical segments) of total
length at most 1

m |T ∗|, with length at most (1 + 1
m) times the length of T ∗. (Because

T ∗ may traverse a horizontal/vertical segment twice, we consider such segments to
have multiplicities (1 or 2), as multiedges in a graph.)

We note that part of TG may lie outside the polygon P , because the m-spans
that we add to make T ∗ m-guillotine need not lie within P . We convert TG into
a new graph by subtracting those portions of each bridge that lie outside of P . In
this way, each bridge of TG becomes a set of segments within P ; we trim each such
segment at the first and last edges of TG that are incident on it and call the resulting
trimmed segments subbridges. (Note that a subbridge may be a single point if the
corresponding segment is incident on a single edge of T ∗; we can ignore such trivial
subbridges.) As in the TSP method of [38], we double the (nontrivial) subbridges: We
replace each subbridge by a pair of coincident segments, which we “inflate” slightly
to form a degenerate loop, such that the endpoints of the subbridge become vertices
of degree 4, and the endpoints of each edge incident on the interior of the subbridge
become vertices of degree 3 (which occur in pairs). Refer to Figure 5.8. We let T ′

G

denote the resulting graph. Now T ′
G ⊂ P , and, because T ′

G is obtained from T ∗,
a tour, we know that the number of odd-degree vertices of T ′

G that lie on any one
subbridge is even (the degree-3 vertices along a subbridge come in pairs).

l ll ll

su
b−

br
id

ge

in
fl

at
ed

 s
ub

−
br

id
ge

Fig. 5.8. Definitions of subbridges and the graph T ′
G. A vertical line l is shown, which defines

a cut. The slice of an optimal solution along l is shown, with thinner lines drawn along the edges of
the solution (which is not intended to be an accurate instance of an optimal solution, but is drawn
to illustrate some of the possible cases). Also shown is an enlargement of one portion of the cut l,
showing a segment of the m-span between two portions of the boundary of P , the trimmed segment
that forms the subbridge, and the portion of the resulting graph T ′

G in the vicinity of the inflated
subbridge.

The cost of the optimal solution T ∗ is its length, |T ∗|, plus C times the number
of its vertices. We consider the cost of T ′

G to be also its (Euclidean) length plus C
times the number of its vertices. Because the number of vertices on the subbridges is
proportional to their total length, and each edge multiplicity is at most two, we see

OPTIMAL COVERING TOURS WITH TURN COSTS 561

l

(a) (b)

Fig. 5.9. (a) The vertical decomposition of P (holes in dark gray). (b) The decomposition of P
into junctions (light gray) and corridors, with the dual graph overlaid. The nodes of the dual graph
are shown as hollow for junctions and as smaller solid disks for the corridors.

that the cost of T ′
G is O((1 +C)/m) · |T ∗| greater than the optimal cost, i.e., the cost

of T ∗.

In order to avoid exponential dependence on n in our algorithm, we need to
introduce a subdivision of P that allows us to consider the subbridges along an m-
span to be grouped into a relatively small (O(h)) number of classes. We now describe
this subdivision of P .

By standard plane sweep with a vertical line, we partition P into rectangles, us-
ing vertical chords, according to the vertical decomposition; see Figure 5.9(a). We
then decompose P into a set of O(h) regions, each of which is either a “junction” or
a “corridor.” This decomposition is analogous to the corridor structure of polygons
that has been utilized in computing shortest paths and minimum-link separators (see,
e.g., [32, 33, 40]), with the primary difference being that we use the vertical decom-
position into rectangles, rather than a triangulation, as the basis of the definition.
Consider the (planar) dual graph, G, of the vertical partition of P ; the nodes of G are
the rectangles, and two nodes are joined by an edge if and only if they are adjacent.
We now define a process to transform the vertical decomposition into our desired
decomposition. First, we take any degree-1 node of G and delete it, along with its
incident edge; in the vertical decomposition, we remove the corresponding vertical
chord (dual to the edge of G that was deleted). We repeat this process, merging a
degree-1 region with its neighbor, until there are no degree-1 nodes in G. At this
stage, G has h+1 faces and all nodes are of degree 2 or more. Assume that h ≥ 2 (the
case h ≤ 1 is easy); then not all nodes are of degree 2, implying that there are at least
two higher-degree nodes. Next, for each pair of adjacent degree-2 nodes, we merge
the nodes, deleting the edge between them and removing the corresponding vertical
chord separating them in the decomposition. The final dual graph G has nodes of two
types: those that are dual to regions of degree 2, which we call the corridors, and
those that are dual to regions of degree greater than 2, which we call the junctions.
Each corridor is bounded by exactly two vertical chords, together with two portions of

562 E. M. ARKIN ET AL.

the boundary of P . (These two portions may, in fact, come from the same connected
component of the boundary of P .) Each of the h bounded faces of G contains exactly
one of the holes of P . Refer to Figure 5.9.

Let V denote the decomposition of P just described; there is an analogous hor-
izontal partition, H, of P into O(h) regions. The vertical subbridges of a vertical
bridge are partitioned into O(h) classes according to the identity of the region, τ ,
that contains the subbridge in the vertical decomposition V. A subbridge intersecting
a region τ of V is called separating if it separates some pair of vertical chords on the
boundary of τ ; it is trivial otherwise. (Corridor regions have only two vertical chords
on their boundary, while junctions may have several, as many as Θ(h) in degenerate
cases.)

First, consider a corridor region τ in V, and let a and b denote the two vertical
chords that bound it. An important observation regarding subbridge classes in cor-
ridors is this: The parity of the number of times a tour crosses a must be the same
as the parity of the number of times a tour crosses b. The consequence is that we
can specify the parity of the number of incidences on all separating subbridges of a
given corridor class by specifying the parity of the number of incidences on a single
subbridge of the class; the trivial subbridges always have an even parity of crossing.

Now consider a junction region τ in V. Because, in the merging process that
defines V, we never merge a degree-2 region with a higher-degree region, we know
that τ consists of a single high-degree (> 2) rectangle, Rτ , from the original vertical
decomposition, together with possibly many other rectangles that form a “pocket”
attached to Rτ , corresponding to a tree in the dual graph (so that removal of degree-
1 nodes leads to a collapse of the tree and a merging of the pocket to Rτ). The
consequence of this observation is that there can be at most one separating subbridge
in a junction class. (There may be several trivial subbridges.)

Our algorithm applies dynamic programming to obtain a minimum-cost m-guillo-
tine subdivision, T ∗

G, from among all those m-guillotine subdivisions that have the
following additional properties:

(1) It consists of a union of horizontal/vertical segments, having half-integral
coordinates, within P .

(2) It is connected.
(3) It covers P , in that the center of every pixel of P is intersected by an edge of

the subdivision.
(4) It is a bridge-doubled m-guillotine subdivision, so that every (nontrivial) sub-

bridge of an m-span appears twice (as a multiedge).
(5) It interconnects the subbridges in each of a specified partition of the classes

of subbridges.
(6) It obeys a parity constraint on each of the O(h) classes of subbridges: The

number of edges of the subdivision incident on each separating subbridge of
the class corresponding to a region τ is even or odd, according to the specified
parity for τ .

A subproblem in the dynamic programming algorithm is specified by a rectangle,
having half-integral coordinates, together with boundary information associated with
the rectangle, which specifies how the subdivision within the rectangle interacts with
the subdivision outside the rectangle. The boundary information includes (a) O(m)
attachment points, where edges meet the boundary at points other than along the m-
span; (b) the multiplicity (1 or 2) of each attachment point, and the interconnection
pattern (if any) of adjacent attachment points along the rectangle boundary; (c)
the endpoints of a bridge on each side of the rectangle (from which one can deduce

OPTIMAL COVERING TOURS WITH TURN COSTS 563

the subbridges); (d) interconnection requirements among the attachment points and
the classes of subbridges; and (e) a parity bit for each class of subbridge, indicating
whether an even or an odd number of edges should be incident to the separating
subbridges of that class. There are NO(m) · 2O(h) subproblems. At the base of the
dynamic programming recursion are rectangles of constant size (e.g., unit squares).

The optimization considers each possible cut (horizontal or vertical, at half-
integral coordinates) for a given subproblem, together with all possible choices for
the new boundary information along the cut, and minimizes the total resulting cost,
adding the costs of the two resulting subproblems to the cost of the choices made at
the cut (which includes the length of edges added, plus C times the number of vertices
added).

Once an optimal subdivision, T ∗
G, is computed, we can recover a valid tour from

it by extracting an Eulerian subgraph obtained by removing a subset of the edges on
each doubled subbridge. The parity conditions imply that such an Eulerian subgraph
exists. An Eulerian tour on this subgraph is a covering tour, and its cost is at most
O(C/m) · |T ∗| greater than optimal. For any fixed ε > 0, we set m =
C/ε�, resulting
in a (1 + ε)-approximation algorithm with running time O(NO(C/ε) · 2O(h). The
techniques of [38], which use “grid-rounded” m-guillotine subdivisions, can be applied
to reduce the exponent on N to a term, O(C), independent of m.

Remarks. It should be possible to apply a variant of our methods to obtain a
PTAS that is polynomial in n (versus N), with a careful consideration of implicit
encodings of tours. We note that our result relies on effectively “charging off” turn
cost to path length, because the objective function is a linear combination of the two
costs (turns and length). We have not yet been able to give a PTAS for minimizing
only the number of turns in a covering tour; this remains an intriguing open problem.

6. Conclusion. We have presented a variety of results for finding an optimal
tour with turn cost. Many open problems remain. The most curious seems to be the
following, which highlights the difference between turn cost and length, as well as the
difference between a cycle cover and a 2-factor.

Problem 6.1. What is the complexity of finding a minimum-turn cycle cover in
a grid graph?

This problem has been open for several years now; in fact, it is Problem # 53 on
the well-known list [17], known as “The Open Problems Project.” Finding a minimum
weighted turn cycle cover is known to be NP-hard for a set of points in the plane [1];
however, the proof uses the fact that there are more than two directions for the edges
in a convex cycle. While we tend to believe that Problem 6.1 may have the answer
“NP-complete,” a polynomial solution would immediately lead to a 1.5-approximation
for the orthogonal case, and a (1 + 2

3)-approximation for the general case.
For various optimization problems dealing with geometric regions, there is a no-

table difference in complexity between a region with holes and a simple region that
does not have any holes. (In particular, it can be decided in polynomial time whether
a given grid graph without holes has a Hamiltonian cycle [44], even though the com-
plexity of the TSP on these graphs is still open.) Our NP-hardness proof makes strong
use of holes; furthermore, the complexity of the PTAS described above is exponential
in the number of holes. This raises the following natural question.

Problem 6.2. Is there a polynomial-time algorithm for exactly computing a
minimum-turn covering tour for simple orthogonal polygons?

It may be possible to improve the performance of some of our approximation
algorithms. In particular, the following remains unclear.

564 E. M. ARKIN ET AL.

Problem 6.3. Is the analysis of the 3.75-approximation algorithm tight?
We believe that it may be possible to improve the factor. We also believe that

there is room for improvement in approximating nonintegral orthogonal milling, in
particular by improving the cost of finding a strip cover.

Problem 6.4. What is the complexity of computing a minimum strip cover in
nonintegral orthogonal polygons?

An important tool for our approximation algorithms is a strip cover of small cost;
finding a strip cover remains a possible approach even if strips may be parallel to
more than two directions. This is closely related to other decomposition problems;
see [34] for a survey.

Problem 6.5. What is the complexity of computing minimum strip covers in
nonorthogonal polygons?

The answer may very well be “NP-hard, even for three directions”: Hassin and
Megiddo [26] show that the problem of hitting a set of points with a minimum number
of lines with three slopes is hard. However, their proof constructs a disconnected set
of grid points and cannot be applied directly to milling problems. In any case, even an
approximation would be of interest, in particular if it achieves the following property.

Problem 6.6. Is there a strip cover approximation algorithm for d directions
whose performance ratio is independent of d?

This would imply a positive result for a special case of the following, even more
general, problem.

Problem 6.7. Can one obtain approximation algorithms for unrestricted direc-
tions in an arbitrary polygonal domain, and an appropriately shaped cutter?

Acknowledgments. We are obliged to Valentin Polishchuk for a very thorough
list of suggestions, and thank three anonymous referees for various comments that
helped to improve the presentation of the paper. We thank Regina Estkowski for
helpful discussions.

REFERENCES

[1] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber, The angular-
metric traveling salesman problem, in Proceedings of the 8th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SIAM, Philadelphia, 1997, pp. 221–229.

[2] M. H. Alsuwaiyel and D. T. Lee, Minimal link visibility paths inside a simple polygon,
Comput. Geom. Theory Appl., 3 (1993), pp. 1–25.

[3] M. H. Alsuwaiyel and D. T. Lee, Finding an approximate minimum-link visibility path inside
a simple polygon, Inform. Process. Lett., 55 (1995), pp. 75–79.

[4] E. M. Arkin, M. A. Bender, E. D. Demaine, S. P. Fekete, J. S. B. Mitchell, and

S. Sethia, Optimal covering tours with turn costs, in Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2001, pp. 138–147.

[5] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell, The lawnmower problem, in Proceedings
of the 5th Canadian Conference on Computational Geometry, University of Waterloo,
Waterloo, ON, Canada, 1993, pp. 461–466.

[6] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell, Approximation algorithms for lawn
mowing and milling, Comput. Geom. Theory Appl., 17 (2000), pp. 25–50.

[7] E. M. Arkin, M. Held, and C. L. Smith, Optimization problems related to zigzag pocket
machining, Algorithmica, 26 (2000), pp. 197–236.

[8] E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko, Minimum-link watchman tours, Inform.
Process. Lett., 86 (2003), pp. 203–207.

[9] S. Arya, S.-W. Cheng, and D. M. Mount, Approximation algorithm for multiple-tool milling,
Internat. J. Comput. Geom. Appl., 11 (2001), pp. 339–372.

[10] A. A. Assad and B. L. Golden, Arc routing methods and applications, in Network Routing,
M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, eds., Handbooks Oper.
Res. Management Sci. 8, Elsevier Science, Amsterdam, 1995, pp. 375–483.

OPTIMAL COVERING TOURS WITH TURN COSTS 565

[11] E. Benavent and D. Soler, The directed rural postman problem with turn penalties, Trans-
portation Sci., 33 (1999), pp. 408–418.

[12] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991),
pp. 485–524.

[13] J. Clossey, G. Laporte, and P. Soriano, Solving Arc Routing Problems with Turn Penalties,
Technical report G-2000-05, Le Groupe d’études et de recherche en analyse des décisions
(GERAD), Montréal, Canada, 2000.

[14] M. J. Collins and B. M. E. Moret, Improved lower bounds for the link length of rectilinear
spanning paths in grids, Inform. Process. Lett., 68 (1998), pp. 317–319.

[15] J. Culberson and R. A. Reckhow, Orthogonally convex coverings of orthogonal polygons
without holes, J. Comput. System Sci., 39 (1989), pp. 166–204.

[16] E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell, Folding flat silhouettes and wrapping
polyhedral packages: New results in computational origami, in Proceedings of the 15th
Annual ACM Symposium on Computational Geometry, 1999, pp. 105–114.

[17] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke, The Open Problems Project, http://
maven.smith.edu/˜orourke/TOPP/.

[18] H. A. Eiselt, M. Gendreau, and G. Laporte, Arc routing problems, part I: The Chinese
postman problem, Oper. Res., 43 (1995), pp. 231–242.

[19] H. A. Eiselt, M. Gendreau, and G. Laporte, Arc routing problems, part II: The rural
postman problem, Oper. Res., 43 (1995), pp. 399–414.

[20] S. P. Fekete, Geometry and the Travelling Salesman Problem, Ph.D. thesis, Department of
Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada, 1992.

[21] S. P. Fekete and G. J. Woeginger, Angle-restricted tours in the plane, Comput. Geom.
Theory Appl., 8 (1997), pp. 195–218.

[22] D. S. Fernández, Problemas de Rutas por Arcos con Giros Prohibidos, Ph.D. thesis, Vniver-
sitat de Valencia, Valencia, Spain, 1995.

[23] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM J.
Comput., 18 (1989), pp. 1013–1036.

[24] H. N. Gabow, Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs,
Ph.D. thesis, Department of Computer Science, Stanford University, Stanford, CA, 1973.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, New York, 1979.

[26] R. Hassin and N. Megiddo, Approximation algorithms for hitting objects by straight lines,
Discrete Appl. Math., 30 (1991), pp. 29–42.

[27] M. Held, On the Computational Geometry of Pocket Machining, Lecture Notes in Comput.
Sci. 500, Springer-Verlag, Berlin, 1991.

[28] O. H. Ibarra and S. Moran, Deterministic and probabilistic algorithms for maximum bipartite
matching via fast matrix multiplication, Inform. Process. Lett., 13 (1981), pp. 12–15.

[29] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, Hamilton paths in grid graphs, SIAM
J. Comput., 11 (1982), pp. 676–686.

[30] K. Iwano, P. Raghavan, and H. Tamaki, The traveling cameraman problem, with applications
to automatic optical inspection, in Proceedings of the 5th Annual International Symposium
on Algorithms and Computation, Lecture Notes Comput. Sci. 834, Springer-Verlag, Berlin,
1994, pp. 29–37.

[31] D. S. Johnson and C. H. Papadimitriou, Computational complexity and the traveling sales-
man problem, in The Traveling Salesman Problem, E. Lawler, J. Lenstra, A. R. Kan, and
D. Shmoys, eds., John Wiley and Sons, New York, 1985, pp. 68–74.

[32] S. Kapoor and S. N. Maheshwari, Efficient algorithms for Euclidean shortest path and visi-
bility problems with polygonal obstacles, in Proceedings of the 4th Annual ACM Symposium
on Computer Geometrics, 1988, pp. 172–182.

[33] S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell, An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane, Discrete Comput. Geom., 18 (1997),
pp. 377–383.

[34] J. M. Keil, Polygon decomposition, in Handbook of Computational Geometry, J.-R. Sack and
J. Urrutia, eds., Elsevier Science, North-Holland, Amsterdam, 2000, pp. 491–518.

[35] R. Klein, Personal communication, 2000.
[36] E. Kranakis, D. Krizanc, and L. Meertens, Link length of rectilinear Hamiltonian tours on

grids, Ars Combinatorica, 38 (1994), p. 177.
[37] J. S. B. Mitchell, L1 shortest paths among polygonal obstacles in the plane, Algorithmica, 8

(1992), pp. 55–88.
[38] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple

polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,
SIAM J. Comput., 28 (1999), pp. 1298–1309.

566 E. M. ARKIN ET AL.

[39] J. S. B. Mitchell, Geometric shortest paths and network optimization, in Handbook of Com-
putational Geometry, J.-R. Sack and J. Urrutia, eds., Elsevier Science, North-Holland,
Amsterdam, 2000, pp. 633–701.

[40] J. S. B. Mitchell and S. Suri, Separation and approximation of polyhedral objects, Comput.
Geom. Theory Appl., 5 (1995), pp. 95–114.

[41] E. M. Molada and D. S. Fernández, Exact solution of the Chinese postman problem with
turn penalties, in Proceedings of the 15th Congress on Differential Equations and Applica-
tions and Congress on Applied Mathematics, Vols. I and II, Colecc. Congr. 9, Servicio de
Publicacións da Universidade de Vigo, Vigo, Spain, 1998, pp. 1111–1115 (in Spanish).

[42] S. Ntafos, Watchman routes under limited visibility, Comput. Geom. Theory Appl., 1 (1992),
pp. 149–170.

[43] A. Schrijver, Combinatorial Optimization, Springer-Verlag, Berlin, 2003.
[44] C. Umans and W. Lenhart, Hamiltonian cycles in solid grid graphs, in Proceedings of the

38th Annual IEEE Symposium on Foundations of Computer Science, 1997, pp. 496–507.
[45] D. West, Introduction to Graph Theory, Prentice–Hall, Upper Saddle River, NJ, 1996.

