MORPION SOLITAIRE

Erik D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory
edemaine @mit.edu

Martin L. Demaine
MIT Computer Science and Artificial Intelligence Laboratory
mdemaine @mit.edu

Arthur Langerman
Langerman Diamonds
arthur @langerman.net

Stefan Langerman'
Université Libre de Bruxelles, Département d’informatique
stefan.langerman @ulb.ac.be

Abstract

We study a popular pencil-and-paper game called morpion solitaire. We present upper and
lower bounds for the maximum score attainable for many versions of the game. We also show
that, in its most general form, the game is NP-hard and the high score is inapproximable within
n'~¢ forany ¢ > O unless P = NP.

1. Introduction

The classic game of morpion solitaire starts with some configuration of points drawn
on the intersections of a square grid, typically the cross shown on the left of Figure 1.
In this game, the player makes a sequence of moves. Each move consists of placing
a new point at a grid intersection and drawing a new line segment connecting 5 con-
secutive points that include the new one. The line can be drawn in any of the four
directions: horizontal, vertical, or either diagonal. Moves are further constrained by
one of two constraints. In the disjoint model, line segments with the same direction
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Figure 1: The cross starting configuration for £ = 4, and four sample moves. The last move is
permitted only in the touching model.

cannot share a point. However, line segments with different directions are always per-
mitted to share points. In the fouching model, line segments with the same direction
are permitted to overlap just slightly, at a common endpoint, but cannot share more
than one point. In other words, the touching model allows point overlap but disallows
positive-length overlap of the line segments. The game is over when no further moves
can be made. The goal of the game is to maximize the number of moves before the
game ends.

The morpion solitaire game is famous in several European countries (mainly in
Belgium and France), where every elementary school student is required to have
graph paper in his schoolbag. The game is also commonly called “connector”, “pe-
tites croix” (“little crosses™), or “Malta cross”. The touching model is probably the
most popular of the two models. The first published reference we could find about the
game is in the magazine Jeux & Stratégie from September 1982 [3]. The article shows
a solution of 164 moves and claim a record of 170 moves by Charles-Henri Bruneau
without actually displaying it. The following two issues of the magazine mention that
they have received a large number of proposed solutions, but those solutions have not
been published either. Since then, several webpages have been dedicated to finding
better solutions to the touching version of the game [1, 6, 7], and games of 170 moves
due to Denis Excoffier, Charles-Henri Bruneau, and JB Bonté (bearing the date of 15
January 1982) have been published and verified. The game has also been used as a test
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case for an evolutionary algorithm by Hugues Juillé [5]. His program found a game
of 122 moves.

The disjoint model is the one that appears under the name Connector in the ex-
cellent book by Walter Joris [4]. The book describes a two-player variant as well. A
webpage maintaining the high scores for the disjoint-model solitaire game has been
maintained by the fourth author since 1996 [6]. High scores have alternated between
Stefan Schmieta, who used an implementation of a random-sampling algorithm with
local search, and the third author, who used exclusively pencil and paper. The current
record of 68 moves is held by the third author.

In this article, we consider combinatorial and computational issues for several
variations on both the touching and disjoint variants of morpion solitaire. We first
generalize the game so that, at every move, the drawn line segment joins k + 1 points,
rather than 5, for some specified value k, and scaling the initial cross configuration
accordingly. We also consider the more general case where the starting configuration
can be any given set of points. We present lower and upper bounds for the largest
number of moves in all versions of the game, in particular partially characterizing
when the number of moves can be infinite.

After the magazine Jeux & Stratégie received a large number of solutions, they
were faced with the computational problem of verifying them. In [2] they write “It
is horribly difficult, or even impossible to figure the order in which the line segments
have been drawn, and thus to verify if the proposed game is valid. Indeed, after the
30th move, or even before, the addition of a new point allows 2, 3, or 4 alignment pos-
sibilities: which to choose? The number of possibilities grows as the game continues.
Soon enough, it is a dead-end” (translated from French). In Section 4, we show that
reconstructing a valid ordering from a drawing is not as difficult as it seems: we give a
linear-time algorithm for this task. We then show that, on the other hand, determining
the maximum number of moves that can be made from a given set of points is NP-hard
and not approximable within n! ¢ for any ¢ > 0 (unless P = N P).

2. Notation

Let G (.S) denote the maximum number of moves in a game starting with an initial
set S C Z? of points on the unit lattice, where at each step a line joining k + 1 points
is drawn through £ existing points and a new one, and where two lines with the same
direction cannot share a point (disjoint model). Let G},(S) be the maximum number
of moves in the variant where two lines are allowed to share one point but not two
(touching model). Let A, be the traditional initial set of points formed by a plus sign
of thickness k. For example Ay is the configuration shown on the left of Figure 1, and
G4(A4) is number of lines in the best possible solution of the original puzzle.
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3. Combinatorial Results

In this section, we present upper and lower bounds on the values of G (.S), G}.(S5),
Gi(Ay) and G}, (Ay). Because the touching model is less restrictive than the disjoint
model, Gi(S) < G}.(S) for any S and any k.

3.1. Potential Function

Every point drawn on the board can be seen as having 8 slots to which line segments
connect, coming from 8 directions. We define the potential of a point to be the number
of directions in which it is not connected, i.e. the number of empty slots. The potential
¢(D) of a drawing D is then the sum of the potential of all its points. Considering
G1(S), the potential at the beginning is 8|S|. Each move adds a new point, which adds
8 to the potential, and a line which removes 2(k + 1) directions. No further moves
can be made when the potential is less than 2k. This implies that 8|S| — (2(k + 1) —
8)(Gk(S) — 1) > 2k, and so when k > 3,

Gr(S) <1+ (4]S|—-k)/(k - 3).

For G.(S), the situation is identical except that adding a line only removes 2k
from the potential, and no further line can be added when the potential is less than
2k — 1. So, for k > 4,

GL(S) <1+ (8]S|—2k+1)/2(k — 4).

For example, this gives G4(A4) < 141. Unfortunately, this simple argument does
not produce a bound for G (A4). In fact, in that case, a move keeps the potential
unchanged.

3.2. Boundary Bound for G, (S)

Let D be a drawing at some point in the game G7.(.S), and let P be the set of points
in D. Form a new drawing I'(P) by connecting every adjacent pair of points of P,
horizontally, vertically or diagonally. A(P) forms a superset of the drawing D. This
implies that ¢(I'(P)) < ¢(D). By extension, we define the potential of any set of
points Q: #(Q) = ¢(I'(Q)). We can assume I'(P) is connected. This assumption can
be later removed by considering each connected component separately. Let C H(P)
be the convex hull of P, and let CH (P) the set of all grid points contained in the
convex hull of P. We first observe that

LEMMA 1 ¢(P) > ¢(CH(P)).
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Proof: Consider an edge (u,v) of CH(P), where u is before v in clockwise order.
We assume no other point of P is incident to the edge (u, v), otherwise we split the
edge. We define ¢(u,v) to be the number of edges of the complete grid I'(Z?) which
have an endpoint to the left of (u,v) and which intersect the interior of edge (u,v).
Each of these edges connect to an empty slot of CH (P), and so ¢(P) is less or equal
to the sum of ¢(u, v) for all u and v consecutive on the convex hull of P. Since I'(P)
is connected, we can walk between the two endpoints of e, walking along the edges
of A(P). Furthermore, a path can be found using the right hand rule: starting at u,
take the first edge (u, u’) clockwise from (u, v), then the next edge (u’, u”) clockwise
from (u.u’), and so on until v is reached. The set of empty slots to the left of this path
for all points encountered along the path is at least as large as ¢(u, v). This proves the
lemma because each empty slot can be counted by at most one edge of CH(P). O

On the other hand, we have |P| < \C/’E(Pﬂ Using Pick’s Theorem [8], we can
compute the area A of CH(P): A = Area(CH(P)) = |C/'E(P)| —B(CH(P))/2-
1, where B(C'H(P)) is the number of points of C/'E(P) on the boundary of CH (P).
Because CH(P) is convex, we know that each of those points contribute at least
3 empty slots to the potential function, and so B(CH(P)) < q/)(C/'—I? (P))/3. And
A > |C/'-FI(P)| - ¢(C/'-FI(P))/6 — 1. The area A of CH(P) can be bounded by a
function of its perimeter L: A < L2 /AT

In turn, we can bound the perimeter L by a function of the potential. Consider
an edge (u,v) of CH(P) (in clockwise orientation), and let Az = v, — uy, Ay =
vy — Uy, and suppose wlog that Az > 0 and Ay > 0. There are Az — 1 vertical lines,
and Ay — 1 horizontal that contribute to ¢(u,v). The number of lines of slope —1
contributing to ¢(u, v) is Ax+ Ay — 1, and the number of lines of slope 1 contributing
to ¢(u, v) is max(0, |Az — Ay| — 1). Thus, assuming Az > Ay, we have ¢(u,v) >
3Axz + Ay — 4. And if the slope of the edge (u,v) is ¢, Ay = cAz, ¢p(u,v) >
(3+ ¢)Ax — 4. The length L(u,v) of the edge (u,v) is V1 + ¢2Ax and so ¢(u,v) >
(34 ¢)/V1+ c?)L(u,v). Minimizing (3 4+ ¢)/v'1+ ¢? over ¢ € [0, 1], we obtain
é(u,v) > 2v/2L(u,v). Summing over all edges, we have L < 2\/§¢(C/'—FI(P))

Putting it all together, we obtain |C/’E(P)| - gb(C/’E(P))/G —1<A<L?/4n <
o(CH(P)?/(32n), |CH(P)| < o(CH(P))?/(32m) + 6(CH(P))/6 + 1, which
implies |P| < ¢(P)?/(327) + ¢(P)/6 + 1. If n is the number of moves performed,
we have |P| = |S| + n, and in the game G7.(S), ¢(P) < ¢(D) = 8|S| + n(8 — 2k).
So, | S|4+ n < (8]S|+ n(8 — 2k))?/(327) + (8]|S| + n(8 — 2k))/6 + 1. In particular,
when k = 4, the maximum number of moves is n < |S|?/(47) + |S|/3 + 1, which
implies that the original G/;(Ay) < 838. This upper bound applies to any starting set
of 36 points.
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33. k=1

Starting with one point, the game G1(P) can continue indefinitely, as shown in Fig-
ure 2. Thus, for any S with |S| > 0, G1(S) = G},(S) = .

O OO &= @B W) @
) O W W WY
Figure 2: G1(S) = G},(S) = 0.

34. k=2

A set of two points allow no more than one move: G3(2) = G4(2) = 1. But there
exists a starting set of three points with which one can play indefinitely (see Figure 3).
So, G3(3) = G4(3) = oo and in particular, G3(As) = G4(A3) = 0.

Figure 3: G2(A2) = G5(A2) = G2(3) = G5(3) = oo.

35. k=3

The case k = 3 is really the first interesting one. The potential argument does not
help since for G5(.9), the potential remains unchanged after a move. Moreover, there
exists a starting set of 7 points with which one can play indefinitely (see Figure 4). So:
G3(7) = G4(7) = .

Nevertheless, we can show that both G3(A3) and G3(A3) are bounded. Assume
the bottom leftmost point of A3 has coordinates (1, 1). Notice that every point of A3
has at least one of its coordinates odd. This implies that no point with both coordinates
even can ever be played during the game. To see this, just notice that any segment of
length 4 incident to one even point has to be incident to exactly two event points. This
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Figure 4: GQ(AQ) = GIZ(AZ) = G2(3) = G/g(3) = OQ.

reduces the number of slots available at every point: an (odd,odd) point has 4 slots
and an (even,odd) point has 6 slots available. So the starting potential is 120.

We will split the potential into 3: ¢,, is the sum of all horizontal and vertical free
slots at (odd,odd) points, ¢, is the sum of all horizontal and vertical free slots at
(odd,even) or (even,odd) points, and ¢, is the sum of all diagonal free slots (those
never appear at (odd,odd) points). Let m o, be the number of moves placing a
(odd,odd) point and drawing a horizontal or vertical line, m g, 0. the number of moves
placing a (odd,even) or (even,odd) point and drawing a horizontal or vertical line, and
mg the number of diagonal moves (those only place (even,odd) points). The potentials
can be expressed by the following equations:

(bH,oo = 48— 4mH,oe
24 — 2mH,oe — 4mH700 + 2my

d)H,oe
¢H,oe = 48+ 4"TLH,oe - 4md

Solving the linear program of maximizing m g oo + M 0e + Mg subject to non-
negativity constraints ¢ 00, @ H,0e;, Pds MH, 005 MH,0e, M4 = 0, we obtain mg oo =
12, mu0e = 12,mg = 24, which imply that G3(As) < 48. Figure 5 shows that
G3(Asz) > 31.

For the second variant G4(Ag), the potentials are defined as follows:

OHoo = 48+ mp 00— 3MH e
(bH,oe = 24— MH,ce — 3WLH,OO + 2md
(bH,oe = 48+ 4'rnH,oe - 2md

Solving the linear program of maximizing m g 0 + M H,0e + Mq subject to non-
negativity constraints ¢ g 00, @ H,0e;, Pds MH, 005 M H,0e, Md = 0, we obtain mg oo =
60, mp,0e = 96, mg = 36, which imply that G4(As) < 192. Figure 6 shows that
G%(As) > 56.
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Figure 5: G3(As) > 31.

Figure 6: G5(A43) > 56.

36. k=4

The case k = 4 is the original game. The potential function argument from Section 3.1
shows that G4(n) < 4n — 3, in particular, G4(A4) < 141. Figure 7 shows that
G4(Ay) > 68.

Several lower bounds on G(A4) are described in the introduction; the longest
known sequence of moves is 170. According to [7], Achim Flammenkamp has ob-
tained an (unpublished) upper bound of 324 on G (A4).

37.k>5

Figure 8 shows all the new points that can be generated in the case k£ > 5. The addition
of those points does not form any line of sufficient density to perform another move.
Furthermore, only 12 of those 24 points can appear simultaneously in a game. This
shows that G (A) = G (Ax) = 12 for k > 5.

4. Algorithmic Results

4.1. Verifying a Drawing

In this section, we present algorithms for verifying a drawing without an ordering on
the added points. We use a simple greedy algorithm: at every step, find a line in the
drawing that covers k existing points and one point not yet played. Play that point
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Figure 7: G4(A4) > 68. Figure 8: k& > 5.

and line, repeat. If all lines have been played, report a success and the ordering of the
lines. Otherwise, if no playable line exists, report a failure.

LEMMA 2 The drawing is valid if and only if the greedy algorithm succeeds.

Proof: Because the greedy algorithm obeys the rules of the game, if it is successful,
then the drawing is valid. So we just have to show that if the drawing is valid, then
the greedy algorithm will succeed. So suppose there is a valid ordering /1, o, ..., 0y,
for drawing the lines, that the greedy algorithm has already drawn ¢4, . .., ¢;, and let
¢; be a drawable line chosen by the greedy algorithm. We just have to show that
O, il a1, g, ..., €y is also a valid ordering. If this is not the
case, it would mean that some line £;,7 4+ 1 < j " < j — 1 cannot be drawn because
of the presence of ;. It cannot be because £, collides with £, (i.e., they share a point
in the same direction in the disjoint model, or they share two points in the touching
model), because the collision is independent of the order in which the lines are drawn.
he only other possible reason is that when drawing ¢;, we drew the point that was
supposed to be drawn for £;,. But then drawing £ before £; would produce the same
problem, contradicting that ¢4, /o, . . ., £, is a valid ordering. O

THEOREM 1 Given S and a set of n lines, it is possible to verify whether those n
lines are a solution for either G, (S) or G1,(S) in O(n + |S|) time, and if so, report
an order in which the lines can be drawn.

Proof: By the previous lemma, all we need to do is to be able to find drawable lines
quickly. For this task, we preprocess the drawing, pointing each drawn point to the
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< 8 lines it is covered by, and maintaining a counter for each line, initially zero.
Whenever we draw a point, we increment the counter of all the lines pointed to by the
point. If a counter reaches k, we put it in a drawable queue. First, the algorithm draws
the points from the starting configuration. Then, at every step, a line is taken from the
drawable queue, and drawn. The running time for the preprocessing is O(|S| + n),
and every of the n steps takes O(1) time. O

4.2. General Dot Patterns are Hard

In this section we prove that maximizing the number of lines played starting from a
general dot pattern is hard, even to approximate:

THEOREM 2 Forany k > 3, it is NP-hard to find the longest play from a pattern of n
dots, or even to find a play of length within n'=¢ of the longest play, for any constant
€ > 0. This result holds for both variants of the game.

To prove this theorem we reduce from 3-SAT. The reduction is identical for both
variants of the game. The construction is only slightly different for different k; in the
figures, we focus on k = 3.

Our construction represents boolean values by whether certain dots can be placed
to make certain lines. The wire gadget in Figure 9 propagates this information across
the construction. Specifically, one unit of a wire consists of £k — 1 dots in a row
(diagonally). If a dot is placed on one side of these k& — 1 dots, then we can draw a
line and create a dot on the other side of the £ — 1 dots. By arranging several of these
k — 1 repeats to share the blank spaces on their ends, we obtain a wire that propagates
a single dot placement at one end to a dot placement at the other end. To allow for the
disjoint model, we do not allow two k — 1 repeats in a row to be collinear, but this
restriction does not cause any difficulties routing.

To start the wires with values corresponding to variables, we use the variable gad-
get shown in Figure 10. This gadget simply consists of k dots in a row instead of
k — 1. Thus the wire on either end can be started, but both wires cannot be started
from this gadget because of the nonoverlapping constraint. Thus, one wire represents
the variable being true and the other wire represents the variable being false.

To route the value of a variable to multiple clauses, we need the split gadget shown
in Figure 11. This gadget consists of joining three wire gadgets together. However, to
avoid multiple wires joining collinearly, we need to use some horizontal wires. Any
of the wires can be the effective “input” that triggers the other two “outputs”.

Before we can define the clause gadget, we need a one-way gadget that prevents
information flow in one direction. Figure 13 shows such a gadget. The basic idea is to
split the input wire into two so that two X’s can be created in close proximity, enabling

10
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us to trigger the output wire. On the other hand, the output wire itself creates only one
X, but the relevant row is lacking two X’s before a line can be drawn. Thus the input
wire cannot be triggered from this gadget even if the output wire is triggered.

The clause gadget is essentially three one-way input wires brought together, to-
gether with an output wire, as shown in Figure 14. Thus whenever any of the input
wires is triggered, the output wire can be triggered, but the triggered input wire does
not contaminate the other input wires.

We connect all of the output wires of clause gadgets to a final checker gadget,
shown in Figure 15, which offers a large reward for setting all clause output wires
correctly. The checker gadget is self-triggered by k dots in a row, but the trigger can
continue at each stage only if another wire has triggered it. Thus the output wire in
the lower-right can be triggered only if all clauses have been satisfied.

The output wire is connected to “treasure” which is a wire of length n!/=+O(1),
The reward of this treasure is so large compared to the n®(!) possible lines obtained
elsewhere in the construction that even approximate solution to the instance requires
solving the 3-SAT instance to gain the treasure.

Two technical issues not yet addressed in this construction are crossings and parity.
Crossings in the wiring map can be handled with the crossover gadget in Figure 16.
Parity issues arise when trying to connect gadgets whose sizes do not evenly divide
each other. These issues can be resolved using the shift gadget in Figure 12, which
moves a wire one step (modulo 3) in any desired direction. By repeating O(1) shift
gadgets, wires can be aligned horizontally or vertically to match any target gadget.
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plication in the reverse direction. Small X po-
sitions can be triggered but are irrelevant.
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Figure 14: Clause gadget, which uses three
one-way gadgets. The output wire on the bot-
tom can be triggered if any of the three input
wires can be triggered, but no other implica-
tions hold.
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Figure 16: Crossover gadget. Wires A and B
act as if they did not cross.



