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Programmable Assembly With Universally
Foldable Strings (Moteins)

Kenneth C. Cheung, Erik D. Demaine, Jonathan R. Bachrach, and Saul Griffith

Abstract—Understanding how linear strings fold into 2-D and
3-D shapes has been a long sought goal in many fields of both
academia and industry. This paper presents a technique to design
self-assembling and self-reconfigurable systems that are composed
of strings of very simple robotic modules. We show that physical
strings that are composed of a small set of discrete polygonal or
polyhedral modules can be used to programmatically generate any
continuous area or volumetric shape. These modules can have one
or two degrees of freedom (DOFs) and simple actuators with only
two or three states. We describe a subdivision algorithm to produce
universal polygonal and polyhedral string folding schemas, and
we prove the existence of a continuous motion to reach any such
folding. This technique is validated with dynamics simulations as
well as experiments with chains of modules that pack on a regular
cubic lattice. We call robotic programmable universally foldable
strings “moteins” as motorized proteins.

Index Terms—Biologically inspired robots, cellular and modular
robots, folding robots, kinematics, micro/nano robots.

I. INTRODUCTION

THE EXACT method by which a 1-D code translates into
a 3-D structure in biological protein folding is currently

unknown (although science is making great progress). Still, the
complexity and diversity of 3-D structures that are accessible
by this 1-D to 3-D approach have long been appreciated [1].

This paper seeks to demonstrate the completeness and appli-
cability of simple forms of the 1-D to 3-D strategy in design-
ing new robotic systems that can take any shape. For clarity,
we will primarily discuss Euclidean space-filling curves in 2-
D and 3-D, with a brief analysis of more general space filling
curves, within the context of the presented algorithms. Further,
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we show the ability of these systems to geometrically achieve
the proposed results through continuous motion without self-
intersection. While the examples that are provided address Eu-
clidean orthogonal lattices in 2-D and 3-D, the concepts and
algorithms are extensible to non-Euclidean lattices and space
tilings (many of the experiments and simulations have been
successfully repeated with space-filling right-angle-tetrahedron
chains).

Powerful strategies already exist to design discretized robotic
systems with units that pack onto a lattice [2]. Many exam-
ples have been built (Atron, Fracta, I-Cube, M-Tran, Molecube,
Telecube, Superbot, Microunit, Crystalline, Robotic Molecule,
Stochastic Modular Robots, etc.), utilizing various schemes for
unit attachment, detachment, and self-manipulation [3]. In this
study, we propose that introducing a connectivity constraint—
that all units of a lattice robot are chained together as a string,
configuring to a space-filling curve—greatly simplifies the me-
chanical design of lattice robots, while retaining the ability to
universally reconfigure. The essential ability of units in a meta-
morphic system to travel across, attach to, and detach from other
units [4] becomes unnecessary. As each unit is constrained by
the previous unit (which is in turn constrained by its previous
unit), transformational periodicity and symmetry—which are
key aspects of universally reconfigurable lattice systems [2]—
can be maintained with one degree of freedom (DOF) per unit.

There is also prior work on folding robots [5] and robotic
origami [6], which shows the promise of serially performing
simple and single-DOF operations to form complex shapes.
Recent work has shown self-folding planar origami sheets [7].
The main distinction, here, is that our approach folds 1-D to
3-D, while classical and robotic origami folds 2-D to 3-D. We
chose to work toward the simplest possible unit design, with
low material loss in configuration. Planar folding (2-D to 3-D)
results in a maximum of square loss of material to reach some
shapes, whereas string folding (1-D to 3-D) results in a constant-
factor loss for all shapes, as we explain next.

II. FOLDING SCHEMA

Peano [8] and Hilbert [9] first constructed 2-D and 3-D space-
filling curves. These recursive infinite curves define a connected
linear mapping of 2-D or 3-D space. They have been of interest
across many areas of mathematics and information science. It is
known that a connected series of smaller and self-similar objects
(polygons in 2-D and polyhedra in 3-D) connected at similar
hinges can exist in a chained configuration that takes the form
of any pixellated 2-D [10], [11] or voxellated 3-D [12] object.
While, in 2-D, some of these chains are known to continuously
fold without intersection into all pixellated 2-D shapes [13], no
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Fig. 1. (a) Spanning tree is shown with red lines that connect the nodes (red dots) at the center of each “pixel.” (b) Subdivision of each pixel into four “subpixels,”
each group of which forms a Hamiltonian path, and any assembly of which contains a Hamiltonian path (the yellow tile shows the construction by the addition of
new tiles). (c) Six possible “pixel” configurations and their “subpixels” demonstrating edge connectivity. (d) Eight cubic voxels, arranged in constructive lattice,
each comprised of eight cubic subvoxels with Hamiltonian loops of connectivity shown in green and blue. (e) Constructive connection between two paths to make
a circuit that includes all subvoxels of the original two. (f) Fully face connected voxel, connected to all six adjacent voxels, enabling a connected path to all
surrounding voxels from any given voxel.

prior results attain continuous foldability with a method that is
generalizable across 2-D and 3-D. This is a goal that we achieve
here.

We start by viewing the collection of pixels as a graph. The
nodes of the graph are the centers of the pixels, and the edges
in the graph connect adjacent pixels. In order to construct the
shape by folding, it must be possible to connect all of the nodes
in the graph through a Hamiltonian (single and nonintersect-
ing) path. Not all graphs have Hamiltonian paths; for instance,
consider the yellow dog shape in Fig. 1(a), which does not con-
tain a Hamiltonian path. It is well known that even determining
whether a graph has one is an NP-complete problem [14].

We can get around the problem with an efficient subdivision
algorithm [11], by replacing each pixel with a collection of sub-
units that contains a Hamiltonian circuit. For our example of
square macrotiles, the simplest subdivision method that satis-
fies these requirements is to divide each square equally into four
smaller squares, thus increasing the number of pixels by a fac-
tor of 4. To illustrate what we obtain, we consider the spanning
tree of an original macro-pixellated figure, such as Fig. 1(a),
which is a subgraph that contains all of the pixels and a sub-
set of the edges. Enough edges must be included such that any
two pixels of the original graph are still connected by a single
path, which may go through any number of other edges and

pixels. Every graph has at least one spanning tree (for the types
of graphs we discuss, the upper bound on the number of span-
ning trees for a graph of n nodes is 2O (n)). If a Hamiltonian
path does not exist, as shown in Fig. 1(a), then the spanning
tree must be branched. If each of our original macropixels is
replaced by four micropixels, a one-micropixel wide perime-
ter can be created around any original spanning tree, as shown
in Fig. 1(b). This perimeter is always a Hamiltonian path (now
explicitly a circuit) on the enlarged graph that takes the new sub-
pixels as its nodes. It follows that this method exposes as many
Hamiltonian circuits as there are spanning trees for the original
graph.

This construction can also be viewed inductively, and it is this
perspective that allows for a simple extension to 3-D. Instead of
laying out the shape, finding a spanning tree, and subdividing
all pixels to create the Hamiltonian path, this path can be con-
structed by repeatedly adding subdivided Hamiltonian circuits
that contain macropixels, as sets of micropixels, until the desired
shape is constructed. The Hamiltonian circuits of any two adja-
cent subdivided pixels may be merged to form a single circuit,
which in turn may be merged with any other adjacent subdivided
pixels or circuits formed in this fashion. With each addition, the
path is extended to encompass the new subpixels (by replacing
adjacent paths with new connecting paths, which are shown as
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Fig. 2. Types of turning sequences that comprise a valid path, starting and
finishing with red-colored units. The numbers at each sequence indicate the unit
separation between the start and finish of the sequence. (a) Consecutive u-turns
or even-number-of-units separated u-turns. (b) Odd-number-of-units separated
chicanes (for clarity, not all are highlighted).

red in Fig. 1). By similar construction, any object can be built ad-
ditively by combination of Hamiltonian circuits in this manner.

The minimal 2-D tile set to programmatically determine the
folds according to the embedded sequence is a left-turning tile, a
right-turning tile, and a tile with a straight final position. Further
diagrammatic explanation of the resulting strings and folding
schemes can be found in Figs. 2 and 3(a). In any configuration
that results from this algorithm, the set of features in the path
is comprised of straight lines and right-angle turns. Turns in
the same direction (a right-hand or left-hand turn followed by
another right-hand or left-hand turn, respectively) only occur
consecutively or with an even number of units separating them
in a straight line [as shown in Fig. 2(a)], and chicanes (a right-
hand turn followed by a left-hand turn, or vice versa) only occur
with an odd number of units separating them, in a straight line
[as shown in Fig. 2(b)]. Because of this feature, only one bit
is required to represent each unit, for a specific shape—turn or
no-turn. The direction of a turn is simply based on the previous
turn direction and the parity of the number of no-turn units that
separate the two.

The simplest Euclidean 3-D case to consider is a cubic
macrovoxel that is subdivided into eight cubic microvoxels, with
Hamiltonian per-macrovoxel Hamiltonian circuits described by
the green or blue paths shown in Fig. 1(d). One entry and exit
subface per macroface is required for the Hamiltonian con-
struction used thus far, as demonstrated in the four sides (± in
two axes) of the square pixels in the 2-D proof. The analogous
volumetric pixel (voxel), therefore, has six faces—one for pos-
itive and one for negative translation in each axis, as shown in
Fig. 1(f)—and requires at least 12 subfaces derived from the
microvoxels that comprise it: two on each of the six faces analo-
gous to the two micropixel faces on each macropixel face in the
2-D case. For clarity, the example of two macrovoxel circuits
joined to form a single circuit is shown in Fig. 1(e). The cube
satisfies these constraints for a subvoxel; it is space filling with

Fig. 3. (a) Types of turning conditions that all paths—constructed with our
algorithm—are composed of (u-turn provides kinematic constraining condi-
tion for universal folding by continuous motion of disks on square lattice).
(b) Analogous diagram of kinematics required for universal folding by contin-
uous motion for spheres on cubic lattice.

six pairs of subfaces on six faces with normals to those faces on
three axes.

To perform the Hamiltonian circuit construction in 3-D,
a lattice constructed from alternating transformations of the
Hamiltonian circuit for the volumetric pixel (voxel) allows for
analogous circuit adjacencies between every voxel. These trans-
formations are accordingly tiled in space, as shown in Fig. 1(d),
and joined to form a final path, as shown in Fig. 1(d)–(f). This al-
gorithm again exposes as many Hamiltonian circuits as there are
spanning trees of the original macro-voxellated figure (at least
one, and for this 3-D system, there is an upper bound of 3O (n)

spanning trees for a figure composed of n voxels). Selection of
a spanning tree will be discussed later in this paper.

As in the 2-D construction, we can use an additive construc-
tion technique to show that these modules can fold from a string
to fill any voxellated 3-D object. The fully face-connected case
is presented in Fig. 1(f), where it is demonstrated that, indeed,
the return paths to six additional cubes—one connected to each
of the six faces of the original (central) cube—are possible. The
two (green and blue) circuits shown here may be utilized in the
same method, in rotation, and the direction of travel along the
circuit may be right handed or left handed. This is an arbitrary
choice; it is only required that the algorithm continues to follow
the handedness that is initially decided upon.

As with the 2-D system, such a configuration in 3-D is implic-
itly required to have a Hamiltonian circuit with certain turning
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motifs, if it is a configuration of the chain. In this configura-
tion, the set of features in the path is again comprised of straight
lines and right-angle turns. For aggregated turns within the same
plane, the same rules as in the 2-D system apply (turns in the
same direction only occur consecutively or with an even number
of units separating them, in a straight line, and chicanes only
occur with an odd number of units separating them, in a straight
line).

For this example, the minimal 3-D unit set to programmati-
cally determine the folds according to the embedded sequence
is an x-axis turning tile, a y-axis turning tile, and a z-axis turning
tile. As in the 2-D system, where each unit turns left or right
relative to its own coordinate system and the preceding tile only,
each unit in the 3-D system is defined to turn in a direction in
3-D space relative to the tile preceding it, according to its own
local coordinate system.

III. CONTINUOUS FOLDABILITY

The spanning graphs that are produced by the aforementioned
methods are non-self-intersecting paths, and since the resulting
paths are circuits, the position of the beginning and end of a
constructive string is arbitrary. If we take a virtual string, fold
it into a path constructed with these methods, and then pull on
the ends (regardless of their position on the string), we get a
single loop with no knots. The folding of the string into, or
out of its intended figure does not require passage through the
spatial position of previously folded components. However, this
does not address self-interference of units during the folding.
There exists a subset of constructions for many (perhaps all)
figures that produce non-self-interfering folding, when folded
sequentially. Future work will explore whether this is also true
for folding in parallel. However, neither are intrinsic require-
ments for these systems, given that it is geometrically possible
for a string of particularly shaped units to achieve any con-
figuration defined by our construction methods, including the
intuitively most self-interfering configuration. One end of the
string could be essentially threaded into the figure at a point on
the border of the figure and fed through the path of the final
configuration. Given the theorem that this continuous non-self-
intersecting motion works between any two grid configurations
of a string of zero thickness [15], it suffices to prove that every
possible set of turning features in any final configuration can
coexist on these strings, without collision, during the feeding
motion.

When considering a physical string composed of a chain of
discrete units, there are many possible shapes of the units as well
as methods of attachment between each unit. For simplicity, we
consider each unit to be a disk or ball and attach each unit
to the center of the previous unit so that each maintains this
distance while it is free to rotate about this point (the center of
the previous unit).

For the 2-D case, consider a string of unit-diameter disks,
connected together by hinges that pivot about the center of the
previous unit. Each unit allows the following unit to rotate a
fixed distance (2π/3 rad in either direction) about the point that
is antipodal to its own hinge. Thus, the center points of any

Fig. 4. (a) Minkowski sum of unit disk and Hamiltonian path. (b) Minkowski
sum of unit sphere and Hamiltonian path.

three units may subtend an angle no less than π/3 rad in either
direction.

A valid grid configuration is a configuration of the string
of units such that the centers of the units are on points of the
unit square grid and such that neighboring units are tangent
(at midpoints of grid edges). Note that such a configuration is
implicitly required to have a Hamiltonian cycle with certain
turning restrictions, in order to even be a configuration of the
string, resulting from the previously described algorithm. One
end of the string could be essentially threaded into the figure at
a point on the border of the figure and fed through the path of
the final configuration.

Every local situation that arises in our Hamiltonian path con-
struction (straights, u-turns surrounded by straights, and turns
surrounded by straights) can be navigated by three disks, while
maintaining their connections to the previous and next disk. The
rotational configuration spaces of units in these local situations,
intersected along any valid assemblage of straights and turns,
are therefore connected. As illustrated in Fig. 4(a), a contin-
uous area that the units can fit into—and that does not self-
intersect—can be trivially constructed as the Minkowski sum of
the Hamiltonian circuit and the unit disk. Therefore, the linear
grid configuration can be folded into any grid configuration, so
by transitivity, the string can be folded between any two grid
configurations, without self-intersection.

A simple extension of this proof shows that there is also a
continuous non-self-intersecting motion between any two grid
configurations of a string of units in 3-D, where the elements
along the string are unit-diameter spheres (instead of disks), with
final configurations centered on a 3-D cubic unit grid. Consider
again that units along such a string are connected together by
hinges that pivot about the center of the previous unit. Each unit
allows the following unit to rotate a fixed distance of 2π/3 rad in
one direction about the point that is antipodal to its own hinge,
and π/2 rad in either direction about the axis from its center to
the center of the previous unit.

In this system, turns in orthogonal planes are also, conceptu-
ally, orthogonal in that they do not constrain their corresponding
planar configuration spaces. Therefore, any rotational motions
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Fig. 5. Mechanical design of the C-motein. The green part in the center rep-
resents a servo motor with a bearing at the interface between adjacent modules;
the red grid on the right shows how the modules pack into final configurations.

that are required to move through a sequence of turns in one
plane will not affect the ability of the string to achieve rotational
motions in an orthogonal plane. Given this, it suffices to prove
that each of the three projections, for each axis, of all possible
3-D paths possesses the same characteristics as the 2-D paths
discussed earlier. Since the three orthogonal projections of the
3-D path construction algorithm presented earlier follow the
same basic turning aggregation interval rules as the 2-D sys-
tem, the intersection of the rotational configuration spaces of
any valid assemblage of turns still results in a continuous con-
figuration space for each projection. Therefore, the linear grid
configuration can be folded into any 3-D grid configuration, and
therefore, the string can be folded from any 3-D grid configura-
tions to any other 3-D grid configuration.

Furthermore, as illustrated in Fig. 5, there is always a contin-
uous non-self-intersecting solid that the units can fit into, which
can be constructed as the Minkowski sum of the Hamiltonian
circuit and the unit sphere. Therefore, once again, the string can
be folded between any two configurations. It is important to note
here that the rounded corners of the path are necessary not only
for our proof technique but for a physically realistic system as
well.

IV. FOLDING TOOL(S)

In summary, the aforementioned constructions prove that
any space-filling structure can be built of a string of con-
nected geometric primitives. These structures can be folded
without self-intersection, and it is geometrically possible for
any valid configuration to reach any other valid configura-
tion through continuous motion. The length of strings (num-
ber of units) produced with these methods scales linearly
with the number of discretized pixels or voxels in the de-
sired shape (in the given examples, 4n, where n is the
number of pixels of the original figure in 2-D, and 8n,
where n is the number of pixels of the original figure in
3-D). Such favorable scaling, combined with the small num-
ber of required primitive components in these constructions,
suggests that they are a promising direction for high-throughput
fabrication methods, through mesoscale printing processes, mi-
croelectromechanical systems, or even chemical or biological
systems [16].

Our workflow starts with an algorithmic representation of
a shape. This is then evaluated over a lattice, to construct a
Hamiltonian path, which is then processed into the code for
the string (see Fig. 11). We have fabricated small-scale proofs
of concept, and are experimenting with kinematics models that
are a subset of that which is described in the proof in order to

Fig. 6. Interconnection patterning: 1-D to 2-D (top) and 1-D to 3-D (bottom), a
working model with magnets. The top example of a vertex-connected 1-D to 2-D
string is shown for clarity. The direct 1-D to 2-D analog for our implementation
of the 1-D to 3-D string would be shown but with alternating (left and right)
faces permanently connected and the hinges occurring across the diagonals so
that the device comes out of plane and into the third dimension during the
folding process (similar to 2-D configuration of Rubik’s Snake toy). The left
bottom diagram shows the physically discrete units of our 3-D implementation
as alternating red and green.

rapidly adopt known mechanisms (novel motors, bearings, or
connectors are not required to implement this strategy). Large-
scale fabrication processes are simulated (see supplementary
movies 1–3), and a key aspect of the simulations is that each
unit in the simulation solves for a local solution at each time
step—the global solution is a product of the aggregated local
results of the programs of each unit. This program can be as
simple as a string of instructions for each single DOF revolute
joint, such as “turn or go straight,” in the case of 2-D, or “turn
clockwise, counterclockwise, or go straight,” in the case of 3-D.

V. EXPERIMENT AND SIMULATION

In order to validate the applicability of these techniques for
engineered systems, we implemented examples of robotic pro-
grammable universally foldable strings (moteins) in simulation
and built short robotic strings in order to verify the mechanics
used in the simulations. Two scales of the cubic lattice-based
motein (C-motein) will be discussed: here—a centi-C-motein
(cC-motein) with about a 1 cm diameter unit size and a mole-
cuboid C-motein (MC-motein) with about a 10 cm diameter unit
size. These two examples possess the same fundamental kine-
matics (the difference between them is that the latter is about
ten times larger than the former).

The larger physical MC-motein (see Fig. 8 and supplemen-
tary movie 5) was built to quickly test these ideas in a fully
actuated test-bed. Each unit is constructed similarly to a mole-
cube unit [17], with a single bearing and servo motor housed in
a printed thermoplastic (Dimension Elite) chassis. The smaller
physical cC-motein (see Fig. 6 and supplementary movie 9)
shown here was built as a passive kinematic test-bed to study
connectivity and reconfigurability characteristics. These were
printed as complete strings in acrylic (3D Systems InVision si)
with magnets pressed in afterward. We expect that a fully ac-
tuated physical cC-motein is realizable, given the simplicity of
these units.
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Fig. 7. Kinematic scaling with subloops, showing the ability to perform translation (top) and rotation (bottom) routines with closed kinematic loops of the
universally foldable chain.

Fig. 8. ODE simulation (green) and actual movement of eight-module string, showing the ability of chains of the module geometry to perform parallel folding.

Both C-moteins presented here, as well as all simulations,
employ a single revolute joint as the single DOF per unit. The
MC-motein robot and all simulations employ a servo motor to
actuate this joint. Observed and simulated mass density is about
0.4 gm/cm3 for both C-moteins.

Our goal in this section is to address practical implications,
such as motion-planning schemes (i.e., parallel versus serial
folding) and their impact on the amount of time that it would
take for this type of robot to perform (re)configuration.

A. Design

We chose the most basic kinematic design that provides con-
tinuous motion between all necessary final configuration states,
for a string system that closely packs on a cubic lattice. Each
module in this device would have to be able to position its fol-
lowing module at any one of three positions (shown by the blue
arrows in Fig. 5) relative to its previous module (shown by the
white arrow in Fig. 5, considering rotational symmetry). This
is accomplished with a single rotational joint about a longest
interior chord connecting two vertices of the cube (see the green
line in Fig. 5).

An even bisection with a plane that is orthogonal to this
axis produces the regular hexagonal bisection of the cube (the
resulting cross-sectional face is a regular hexagon). When these
are arranged as a string with rigid bonds between hemicubes
arranged such that each is a mirror image of its neighbor (across
the bonding plane shared with the neighbor cube), we obtain the
module design shown on the right-hand side of Fig. 5.

While this design can form any shape (fits with the construc-
tive proof of universal foldability), it meets only a subset of
the requirements to navigate all folding motions with continu-
ous motion. We are providing this example for simplicity and
in order to suggest that the fundamental algorithms for fold-
ing schema presented here may be applied to chained versions
of most existing reconfigurable robotic systems [17], [18] with
useful results. The rest of this paper addresses this simplified
model, in both simulation and hardware. This hexagonally bi-
sected cube geometry was first realized in the field of reconfig-
urable robotics with the molecube system [17], with its cubic
modules whose connections are reconfigurable, as opposed to
being constrained as a chain. The example that we present here
is also somewhat similar to Rubik’s Snake toy (which can be
approximated by other robots, such as Atron) but with modules
that closely pack on a cubic lattice and with a corresponding

2(ArcTan(1/(
√

2 − (1/
√

2)))) ≈ 109.4713◦ (0a)

dihedral angle between bearing faces (instead of the π/2 dihedral
angle of Rubik’s Snake module).

Since this architecture includes an integral backbone, data and
power transfer can simply run through a continuous conductor
bus (reliable electrical collectors/slip rings are trivial to integrate
if the ability to perform large numbers of net twists is desired).
The outer surfaces of the chains are free to be left to carry
functions other than reconfiguration, such as carrying payloads.

These unnecessary but potential interconnections between
spatially adjacent units that are far apart along the string
may still be desired, for instance, to parallelize power and
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data transfer. Corresponding connector plates require only
twofold rotation symmetry, with a very simple layout. This
is perhaps easiest to visualize in the 2-D example at the top
of Fig. 6. If each unit in the square lattice has male (−)
connector plates (blue in Fig. 6) on the down-string side and
female (+) connector plates (orange in Fig. 6) on the up-string
side, then the string will always pack with proper pairing
of connector plates. This follows from the path construction
algorithm, as a single-square macropixel mates properly on
all four sides with another macropixel, and the connection
patterning of the macropixel surface remains intact throughout
the path construction operation (some faces are “replaced”
with permanent connections in order to create the string and,
therefore, become irrelevant to the interconnection scheme).

With our implementation in 3-D, each unit in the cubic lattice
has four potential connector faces, since the up-string and down-
string faces are permanently attached to other units. These four
faces may be grouped into two groups of two, as divided by
the hexagonal bisection line previously described. If we desig-
nate that the group that is connected down-string has male (−)
connector plates and the group that is connected up-string has
female (+) connector plates, for all units (as shown in Fig. 8),
then all valid configurations will result in correctly paired con-
nector plates. As with the 2-D example, a single 3-D macrovoxel
mates properly on all six sides with other macrovoxels, and the
connection patterning of the macrovoxel surface remains intact
throughout the path construction operations.

Fig. 7 (and supplemental movie 9) shows examples of larger-
than-unit scale translation and rotation routines that can be per-
formed by closed subloops of these string robots. As such, one
might imagine suites of locomotion and/or manipulation robots
that can reconfigure between functions—with a key attribute that
they are all composed of strings of simple and identical units.

B. Implementation

To summarize the design, we chose a string system that packs
on a cubic lattice, with one rotational DOF per module. The
single corresponding bearing/hinge and actuator per module has
three states: {0, 2π/3,−2π/3}. Therefore, the only information
that has to be sent to each unit is “stay straight,” “turn counter-
clockwise,” or “turn clockwise,” for each module, together with
an addressing scheme.

To obtain a better sense of the kinematic constraints of the
design when a number of units are connected in a string, we
built a number of prototypes and found the system to be quite
flexible. For instance, the bearing gap seen in Fig. 5 may be
significantly enlarged (along the rotation axis) to create a sparse
structure, as the symmetry of the folding is such that in the
final configuration the main body of the modules will occupy
corresponding corners of the cubes on the packing lattice, such
that incident faces of the modules still line up (for structural
and/or latching purposes).

The final design (shown in Fig. 8 and supplemental movies 4
and 5) utilized the compact integration of the dynamixel AX-12
servo motor and ring gear of the molecube design [17]. Power
and data were carried on the stock dynamixel three-wire bus.

The packing lattice for this string has a 27-in3 unit. Since this
design desirably gears down the AX-12 units by a factor of
3, and the closed loop servo mode of the AX-12 unit does not
allow full rotation, reconfiguration commands to each module
were accomplished by first implementing a timed directional
free run, followed by a switch to servo mode for precise
positioning of the goal state. The geared-down drive systems
provide less than one-tenth of a degree of resolution; therefore,
we find it unnecessary to include an active connection interface
to connect units that are far apart along the string but spatially
adjacent in their final configuration.

Open dynamics engine (ODE) [19] was used for the sim-
ulations, with values for dimensions, mass, and motor torque
matched to the compact robots in Fig. 8. Continuing work ad-
dresses smaller (∼100 μm) and larger (∼1 m) folding systems
on various lattice geometries, but here, we will primarily discuss
mass, force, and dimensional scales that are conventional in the
field of reconfigurable robotics.

C. Folding Simulation

Our goal with the simulations is to broadly investigate the
characteristics of these systems when they have large numbers
of units. We describe initial experiments with folding using three
motion-planning techniques here—naı̈ve parallel folding, re-
verse explosion planning, and the probabilistic roadmap method
(PRM).

1) Parallel Folding: Simple parallel folding, where the fold-
ing instruction is distributed to all modules and they are
allowed to actuate simultaneously with even power distri-
bution, can work well but is quite sensitive to the nature of
the initially chosen folding path. Primarily due to inertial
factors at these scales, the effect that we observe in the
simulations is delayed folding in the middle or anchored
end of the string, as the modules toward the end(s) com-
plete their configurations first. These precompleted ends
must fit together easily in order for this strategy to be
efficient and not require refolding.

2) Reverse Explosion: In experimenting with various refold-
ing heuristics, we observe that it may be easier to unfold
than to fold. This reverse explosion method starts with the
target configuration in simulation and applies repulsive
forces to unfold the chain, while recording the joint an-
gles at predefined time steps. The folding forces include
outward forces to all modules in the direction originating
from the center of mass of the entire ensemble, as well as
a repelling force between nonadjacent modules during the
unfolding. Therefore, the modules not only explode from
the center but maintain distance from nearby modules as
well. During this part of the process, the motors on the
joints are turned OFF and the joints themselves merely en-
force the passive between-module kinematic constraints.
The resulting motion plan is to servo to the list of recorded
angles in reverse chronological order. Each recorded set of
angles acts as a target to which we servo until the largest
angle error is less than some given threshold. Fig. 9 gives
pseudocode for this reverse explosion algorithm.
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Fig. 9. Pseudocode for reverse explosion algorithm.

We compute the radial force as a vector in the outward di-
rection or a module’s position minus the center of mass of the
ensemble

ei = λ
pi − c

d
(1a)

where λ is the radial force gain, pi is the module position of the
ith module, d is the diameter of the configuration, and c is the
center of mass

c =
n∑

i=0

pi

n
. (1b)

The radial force increases with distance from the center of mass,
causing modules on the outside to explode faster than ones in the
inside. This also lowers the chance of collisions by encouraging
modules to be maximally distant from each other. The repelling
force is computed as a 1/d2 force between nonadjacent modules

ri =
n∑

j=0

γ

(pj − pi)
2 (1c)

where γ is the repulsion force gain. In order to speed up the
simulation, a maximum unit distance for application of repulsion
forces may be applied.

Results from this reverse explosion method are shown in
Fig. 10 and movies 6 and 10 in the supplementary materials.
Fig. 10 shows a 160-module chain and a configuration shape
of a wrench. Relevant parameters for these simulations are λ =
0.1, γ = 1, and maximum squared error threshold of 0.15. The
companion video shows the algorithm that runs on a number of
canonical geometric shapes.

The naı̈ve parallel folding could be viewed as a form of this
reverse explosion method but with zero intermediary steps. In-
versely, the reverse explosion method could be viewed as a
composition of naı̈ve folding steps. As such, the number of
required intermediary steps for a successful reverse explosion

method is also very sensitive to the nature of the initially chosen
folding path.

D. Folding Analysis

Noting a large scope of serial, parallel, or other heuristic
motion-planning methods that can be applied to our folding
schema, we have analytically estimated lower and upper bounds
on the amount of time that the folding process will take to com-
plete, assuming significant inertial effects, and critical damping
of the string’s motion (see Fig. 11).

Our estimation for the upper bound on folding time assumes
that the largest possible inertia term for the nth module will result
from the 0th through (n−1)th modules that exist in a straight-
chain configuration. For parallel folding, this upper bound on
the time to fold is equal to the time to fold of the module at
the middle or anchored end of the string (2c), shown below.
For serial folding, this upper bound on the time to fold is the
sum of all tn , shown below in (2d). In the following equations,
α represents the angular acceleration, τ represents the torque,
which is assumed to be a fixed scalar, I represents the moment of
inertia, and δ represents the one unit distance between modules.

(For a string of length n units)

2π

3
=

1
2
αnt2n ; αn =

τ

In
(2a)

(time to fold as a function of distance, torque, and inertia)

In =
n∑

i=1

m(iδ)2 ; |tn | =

√
4π

∑n
i=1 m(iδ)2

3τ
(2b)

(maximum inertial term; “least folded” chain configuration)

|tn | =
√

2π

3

√
nm(2n2 + 3n + 1)δ2

τ
; tparallel = O(n3/2)

(2c)
(maximum single fold time, for parallel folding)

tserial ≈
∫ n

0
ki

3
2 di = O(n

5
2 ) (2d)

(sum of fold times for serial folding).
Our estimation for the lower bound on fold time assumes

that the smallest possible inertia term for the nth module will
result from the 0th through (n−1)th modules existing in a folded
configuration whose center of mass is a distance of one unit from
the center of mass of this nth module. Similar to the upper bound
calculation, for parallel folding, this lower bound on the time
to fold is equal to the time to fold of the module at the middle
or anchored end of the string in (3b), shown below; for serial
folding, this lower bound on the time to fold is the sum of all
tn , as in (3c), shown below.

(For a string of length n units)

In = (nm)δ2 ; |tn | =

√
4π(nm)δ2

3τ
(3a)

(maximum inertial term; “most folded” chain configuration)

|tn | = 2
√

π

3

√
(nm)δ2

τ
; tparallel = Ω(n1/2) (3b)
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Fig. 10. Reverse explosion motion planning method. (Top) First, a prefolded target shape of 160 chained cubes is subjected to the radial unfolding forces applied
from its center of mass outward. While the chain unfolds, multiple successive snapshots of all joint angles are recorded over time. (Bottom) From the unfolded
shape, the joint actuators are servoed to the recorded angle snapshots in the reversed sequence. As a result, the chain folds into the target shape. The brightness of
red color denotes normalized amount of joint error.

Fig. 11. Automated algorithmic planning for folding any shape. (a) Original stereolithography mesh. (b) Mesh vertices. (c) Lattice model of an object.
(d) Folding code. (f) Folding simulation. (g) Final folded object.
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(maximum single fold time, for parallel folding)

tserial ≈
∫ n

0
ki1/2di = Ω(n3/2) (3c)

(sum of fold times, for serial folding).
These results show that for strings with large numbers of

units, parallel folding schemes can be much quicker to fold than
serial folding schemes, which is not surprising. The slowest n-
unit long serial folding scheme will take a factor of n2 more time
to fold than the fastest parallel folding scheme. However, these
results also suggest that the least time-efficient parallel folding
schemes, in terms of time needed to fold, can be approximately
matched by the most time-efficient serial folding schemes due
to inertial effects. Therefore, we may consider serial folding
strategies as viable even for long strings especially when other
advantages are taken into account, such as managing the power
requirements of the system or enabling the folded modules to
be passive, while folded by a robot [5], [6], [20].

E. Reconfiguration Simulation

So far, we have implied methods of folding between two
configurations—by unfolding completely from the first config-
uration before folding into the second configuration. We would
prefer to investigate more efficient paths between any two con-
figurations. In this section, we briefly show the applicability
of existing robotic motion-planning strategies to folding digi-
tal chains, by demonstrating the use of a PRM. This method
of finding motions between configurations, developed for the
protein folding problem, has been shown to be reasonably effi-
cient, and has already seen applications in a number of robotic
systems [21].

The PRM initially samples configuration space for collision-
free configurations. We employed simple random sampling in
this example, but more sophisticated sampling algorithms are
available. These initial configurations serve as the initial nodes
in a roadmap graph. Nearby pairs of nodes are then chosen and
approved to be collision free by running a simple local planner
until a connected graph is formed. Finally, a path from a start
and end configuration is found in the roadmap graph.

There are some particulars, which are unique to digital chains,
that we need to address. First, a configuration for a chain is a
vector of n joint angles. We could choose configurations with
each joint’s continuous range of motion (−2π/3 to 2π/3), but
we find that using discrete positions is preferable. All configu-
rations are first filtered using a self-intersection algorithm—for
continuous positions, this can employ a high-speed collision
detector, such as the Software Library for Interference Detec-
tion (SOLID) [22]. However, when the initial configurations
are restricted to discrete positions, collision detection can be
performed very quickly, since each position can be represented
efficiently, and examining the validity of a configuration simply
requires stepping around a discrete lattice, instead of summing a
long list of vectors. Further, simple patterns and algorithms can
be used to prune invalid configurations (e.g., “if your directions
say to make four consecutive turns in the same direction on a

Manhattan grid, then you have bad directions”). This can be
efficiently performed in an O(n × n × n) matrix.

Neighbors in the configuration space are found by consid-
ering configurations in distance order, to see whether they are
reachable using simple linear interpolation local path planning.
We use the binary search approach to decide whether interme-
diate linearly interpolated configurations are self-intersecting.
The distance metric between configurations can simply be the
L2 norm or the sum of the squared angle errors between config-
urations.

We use Dijkstra’s algorithm for shortest path determination,
which starts by marking the final (goal) configuration node as
visited and with zero distance. Then, iteratively, neighbors of
newly visited nodes are marked, and their distances to the end
configuration are updated as a function of their local distance
to their neighbors and their neighbors’ best estimate to the end
configuration. The smoothing algorithm to shorten paths found
using Dijkstra’s algorithm is very straightforward and previ-
ously reported [23]. Random configuration pairs from the short-
est path are chosen, and intervening configurations are removed
if there is a locally plan-able path between them.

In summary, with discrete configurations as way points in
the PRM, the path can be described efficiently as discrete dif-
ferences between configurations. In the binary case, the differ-
ence between configurations can be described as a Hamming
distance [24]. Path fitness can be measured in terms of the ham-
ming difference between the start and end target configurations
and the sum of the hamming distances between configurations
along the path.

The results are quite promising; see supplementary movie 11,
for a simulation of reconfiguration of a 140-module digital chain
between the words hello and world and a few other shapes.

VI. DISCUSSION

We see three main topics for future work with this type of
folding string: initial selection of a space-filling curve from the
space of curves that are possible for a given shape, further work
on motion planning, and applications.

The selection of a most suitable spanning tree for a given
shape remains an open question. There are many strategies to
develop this initial pre-subdivided tree from which the final 3-D
space-filling curve is generated. We expect that specific answers
will derive from functional (e.g., structural) requirements. Some
strategies may derive from the ability to tune anisotropic bulk
structural properties. It is relatively simple to achieve high dif-
ferential strength between the permanent (with one rotational
DOF) connections between units along the string and the other
spatially adjacent connections (or lack of mechanical connec-
tion). Other strategies may relate to reconfiguration.

For example, it may be desirable to perform the least possible
turning in the path or as much as possible. The former may be
achieved by following the perimeter of a figure and spiraling in
as necessary, only branching to fill areas of the figure that cannot
be reached with a single spiral. This is suitable for serial folding
schemes. One method to achieve relatively many turns involves
performing a distance transform to the edge of a voxellated
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figure, then constructively generating the spanning graph by
starting with the voxels with the highest values (the most in-
terior voxels), and always performing the constructive addition
of the remaining voxels to neighbors with lower values (more
exterior). Thus, the spanning graph has a medial axis back-
bone with many spines leading to the extremities so that the
folding is most accordion like. This kind of structure has ad-
vantages for parallel folding schemes. Such consideration of
actuation sequence—and the implication that one can use in-
formation about future desired configurations in order to plan
earlier configurations—leads us back to the topic of motion
planning.

In this paper, we have just touched on the topic of motion
planning, in order to show the viability of the design. Prior work
in motion planning has shown many techniques that could be
applied to universally foldable string robots, which explore the
space of folding strategies for reconfigurable systems. Many
methods applied to the motion-planning problem for lattice
robots, such as subdividing with similarity metrics [25] and
simulated annealing [26], can be extended to apply to chained
configurations. Perhaps, the most clearly applicable methods
are derived from PRMs developed for the protein folding prob-
lem, and which already have been specifically applied to robotic
folding systems [27]. It is worth noting that the applications of
these types of motion planning methods toward closed kine-
matic loop mechanisms [28], [29] also point toward the wide
range of potential functional applications of universally foldable
string robots beyond shape making.

We know that geometry is sometimes regarded to be a corner-
stone of many functional (i.e., biological) systems, and this may
provide an avenue toward programming various types of mech-
anisms, through geometric arrangement of functional units. The
folding system as described here could have functionality su-
perimposed on different pixels or voxels, and sequencing would
allow the positioning of those functional components at any de-
sired location in the global 3-D structure. Furthermore, since
the string can be folded between any two configurations, this
directly implies a route to reconfigurable matter, where a sin-
gle string with simple actuators could fold from any one con-
figuration to any other in order to serve different and com-
plex mechanical (i.e., locomotion) and/or computational [30]
functions.

VII. CONCLUSION

We have shown a technique to design universally foldable
string robots, with proof of existence of continuous motion for
self-assembly and self-reconfiguration. These results may fur-
ther the revolution from analog to digital materials and fabrica-
tion processes, through computational tools to employ biologi-
cally inspired assembly systems and by enabling low cost and
reversible de novo systems. We know how to make communica-
tion and computation systems that scale well enough to operate
as designed, with Avogadran numbers of units. This is largely
achieved through error reduction and correction strategies that
make good bets on the physics of the system. Biology shows
that these goals can be satisfied in a system to fabricate things,

or “programming matter,” through the encoding of structural
and functional information in 1-D, with a small and discrete set
of parts. Furthermore, there is some evidence to indicate that
complex biological structures can result from the aggregated
behavior of large quantities of discrete components with ever
simpler physical models [31].

Reconfigurable robotics has come a long way and has a
long and interesting road ahead, that is, toward successful pro-
grammed assembly of very large and complex structures [32];
we hope that the techniques presented here will be useful as a
method of programmatically making vast libraries of parts from
any very basic set of mechanisms. In the shorter term, we hope
that with these techniques and the simplifications afforded by
having an integral backbone and very low DOF and states per
unit, many existing reconfigurable robotics benchmarks might
be surpassed—such as the number of active modules in a single
system, actuated module size (smallness), and robustness of self-
reconfiguration. A crux of many existing reconfigurable robotics
systems is the reconfigurable communications and power con-
nections (the ability for modules to attach and detach from each
other)—these are difficult and expensive to build; our robots
(moteins) are not reliant on such mechanisms.

Clearly, the most exciting and most open problem is that of ap-
plications. This technique of algorithmic generation of programs
for self-folding matter presents a new method of working toward
truly digital artificial fabrication systems. The old question that
we strive to answer is how we can effectively and efficiently get
from a description of an object to the functional object itself,
with an eye toward material life cycles. This study suggests a
manner to describe objects by their generative programs so that
the description itself is also the very digital information needed
to fabricate the object.

Ongoing work is aimed toward addressing folding strategies,
including reconfiguration motion planning and the advantages
of different geometric properties of the initial lattice used. 2-D
and 3-D patchworks of polygons and polyhedra allow for a final
result with tuned sparseness and correspondingly faster folding
times (due to decreased string length). Other relevant ongoing
work includes analysis of bulk properties of these kinds of as-
semblies [33], development of actuators specifically geared to-
ward this application [34], and cellular computing based models
for executing programs across these kinds of modules (such as to
compute reconfiguration strategy) with extremely low per-unit
cost [35], [36].

OPEN SOURCE CODE

Programs and open source code that execute the algorithms
described in this paper are available for research and educational
use from the authors.
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