O(1)-Approximations for Maximum Movement
Problems

Piotr Berman', Erik D. Demaine?, and Morteza Zadimoghaddam?

! Department of Computer Science and Engineering, Pennsylvania State University, University
Park, PA 16802, USA
2 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA
02139, USA

Abstract. We develop constant-factor approximation algorithms for minimizing
the maximum movement made by pebbles on a graph to reach a configuration
in which the pebbles form a connected subgraph (connectivity), or interconnect
a constant number of stationary nodes (Steiner tree). These problems model the
minimization of the total time required to reconfigure a robot swarm to achieve a
proximity (e.g., radio) network with these connectivity properties. Our approxi-
mation factors are tight up to constant factors, as none of these problems admit a
(2 — ¢)-approximation assuming P # NP.

1 Introduction

A central problem in swarm robotics is to reconfigure the robots into an arrangement
with a desired property. For example, in the connectivity goal, the proximity of the
robots should form a connected graph. Two motivations for this goal are forming a
connected data network with short-range radios, and forming a connected physical net-
work for transporting materials. In the first situation, the robots initially communicate
via another channel, e.g., via slow and/or power-intensive long-distance communication
(such as satellite or the same radios with power turned up high), or via two traversals by
aircraft to locate robots and disseminate locations. Another connectivity goal is Steiner
connectivity, where a subset of the robots should form a connected network that con-
tains k stationary nodes (such as buildings or sensors) which need to be interconnected.
In both of these problems, we suppose that we know the initial locations of robots, and
that we have a map of the environment the robots can traverse and defining proximity
among the robots. Our goal is to move the robots as quickly as possible into a configu-
ration with the desired property.

These problems fit into the broad family of movement problems, introduced in [5],
and further explored in [6l8]]. In general, we have a graph G with pebbles on some of
the vertices. The goal is to move some of the pebbles along edges to obtain a desired
property P, while minimizing either the maximum movement or the total movement
of the pebbles, motivated by minimizing either execution time or energy usage. Spe-
cific problems considered in [5] include the connectivity movement problem mentioned
above, where property P is that the vertices with at least one pebble induce a connected
graph, and the s-t path movement problem, where property P is that the vertices with at
least one pebble induce a graph in which two given vertices are in a common connected
component (the special case of the Steiner connectivity movement problem with two
terminals).

Several approximation algorithms and inapproximability results for these move-
ment problems were presented in [S]]. Of primary relevance to this paper, the connectiv-
ity and s-t path movement problems with the maximum movement objective function
have an O(y/n)-approximation algorithm Furthermore, both of these problems are
(2 — ¢)-inapproximable assuming P # NP. On the other hand, with the total move-
ment object function, the connectivity movement problem is £2(n!~¢)-inapproximable,
and there is an O(n)-approximation algorithm. This negative result motivates our focus
here on the maximum movement objective.

In FOCS 2008, Friggstad and Salavatipour [8] considered a facility location move-
ment problem: moving pebbles of two types, facilities and clients, to achieve the prop-
erty that each client is at a vertex that contains some facility. This problem was first
introduced in [5], which presented a simple 2-approximation algorithm for this prob-
lem with the maximum movement objective function. But the problem with the total
movement objective remained an open problem until Friggstad and Salavatipour devel-
oped an LP-based constant-factor approximation algorithm.

Demaine et. al. characterize the tractable and intractable movements problems in
a general setting in [[6]. They consider the class of edge-deletion minimal graphs that
have the desired property P, and can be the final destination of the pebbles, e.g. for
connectivity this class is the set of subtrees of graph G with at most m nodes where m
is the number of pebbles. They prove that if for property P the treewidth is bounded by
a constant, the movement problem of this property is Fixed Parameter Tractable. They
consider the number of pebbles as the parameter of their algorithms. So their results are
applicable only for small number of pebbles, e.g. m = O(log(n)).

As some applications of these movement problems in Wireless Networks, we can
refer to the works of Basagni et. al. who consider movements of some mobile sinks in
order to maximize the network lifetime [[1.2J3]]. There are several fixed (non-mobile)
sensor nodes with limited power. The mobile nodes should move between some fixed
sites to gather data from the sensor nodes. We have to find the best schedule for mobile
sinks’ movements to maximize the network lifetime, i.e. lifetime is equal to the time
duration in which all nodes have enough energy supply to handle all their operations
including sensing, transmitting, and etc.

Our Results. Connectivity is the quintessential movement problem. For the total move-
ment objective function, the best possible approximation ratio is known to be roughly
linear [5] (assuming P # NP). But for the maximum movement objective function,
which models the parallel execution time or makespan required for the motion, there
is a huge gap in the best possible approximation ratio, between 2 — ¢ and O(y/n). In
this paper, we close this gap up to constant factors, by obtaining the first constant-factor
approximation algorithm for the connectivity movement problem.

An ingredient in this result is a constant-factor approximation algorithm for the s-¢
path movement problem. This result is also a breakthrough, as again the best possible
approximation ratio was previously only known to be between 2 — & and O(y/n). We
use our approximation algorithm for s-¢ path problem as a black box in our solution to
the connectivity problem.

Finally we introduce the Steiner connectivity movement problem, which is a natural
generalization of the s-¢ path movement problem. Here we are given a set 7" of terminal

3 In fact the approximation ratio is O(/m/OPT) where m is the number of pebbles and OPT
is the maximum movement of the optimum solution. This ratio can be as large as ©(y/n),
when m = ©(n) and OPT = O(1).

vertices, and the goal is to move some of our pebbles to interconnect all terminal ver-
tices. More precisely, property P is that the vertices with at least one pebble induce a
graph that places all terminals in the same connected component. For |T'| = O(logn),
we present an O(|T'|)-approximation algorithm for the Steiner connectivity movement
problem with the maximum movement objective, again using our approximation algo-
rithm for s-¢ path. Note that we cannot hope to approximate the Steiner connectivity
movement problem for arbitrary |T'|, because even deciding whether there is a feasible
solution with the available pebbles is the NP-hard node-weighted Steiner tree problem.
Unfortunately we include this result only in the complete version because of space lim-
its.

Techniques. Our algorithms introduce several new techniques for approximating move-
ment problems with the maximum movement objective. In general, these problems
would be easy if we allowed approximating the number of pebbles (via resource aug-
mentation) in addition to the cost. But robots cannot (yet) replicate themselves, so re-
source augmentation is not very useful. We develop powerful tools to resolve multiple
desires for the location of a single pebble/robot.

In the s-t path movement problem (Section[2), we define a concept of a locally con-
sistent paths such that (a) a correct solution is also locally consistent, (b) the minimum
length locally consistent solution can be found in polynomial time, and (c) with only
limited additional pebble movement, it can be converted to a consistent solution. For the
sake of simplicity, we describe an algorithm with an extremely large polynomial time
bound that achieves a 7-approximation; in the full paper, we will describe the available
trade-off between the running time and the approximation of the maximum movement.

In the connectivity movement problem (Section [3), we present a three stage algo-
rithm. In all stages, we maintain a set of pebbles S (initially empty), and try to move
some pebbles and insert them into S. The new locations of pebbles in .S form a con-
nected subgraph. In the first stage, we define dense vertices which are basically the
vertices with a large enough number of pebbles around them. Once we find a dense
vertex, we can use the s-t¢ path algorithm, and the pebbles around the dense vertex to
insert a subset of pebbles into set S. We do this process iteratively in the first stage until
there exists no dense vertex.

Then we analyze the structure of the remaining pebbles in the optimal solution. The
final locations of all pebbles in the optimal solution is a connected subgraph and has
a spanning tree 7. In Figure [I] (page [7), you can see an instance of our problem, and
its optimal solution on the left. The spanning tree 7" is shown with bold edges on the
right. After the first stage, some pebbles are inserted into .S, we remove these pebbles
from tree T'. The remaining subgraph is a forest F' with some interesting properties. We
prove that there can not be a vertex in this forest with three long paths attached to it, call
such a vertex “tripod vertex”, e.g. vertex v in Figure[I] We prove that after the first stage
there exists no tripod vertex in forest F'. We then prove that every subtree in F' either
has low diameter or is a long path with some low-diameter branchlets attached to it, call
it a thick path treeﬂ If the subtree has low diameter, we prove that all its pebbles are
close to set S, so we can insert them into .S by moving them directly toward this set. If
it is a thick path tree, we enumerate to find the head and tail of its longest path, then we
use s-t path algorithm to connect its head and tail using its own pebbles. We also prove
that every other pebble in this subtree is close to the path we find (we need the second
stage for proving this claim), and we can move all these pebbles to connect them to set
S with O(M) movement where M is the maximum movement of an optimum solution.

4 We call it Caterpillar Shape tree as well.

We note that one can enumerate on all possible values of M which are 1,2,--- ,n, or
use binary search to find it. So we can assume that our algorithm known the value of
M.

The important problem is that these subtrees are not easily distinguishable. Since
pebbles from different subtrees can be close to each other in their starting configuration,
we can not find out which pebbles are in which subtree. We know that two adjacent
pebbles in the optimum solution have distance at most M + 1 + M = 2M + 1 from
each other in their starting configuration. We make graph H with the remaining pebbles
(outside set .S) as its vertices. We put an edge between two pebbles if their distance is at
most 2M + 1 from each other. This way we can be sure that all pebbles in a subtree of
F are in the same connected component in /. But there might be pebbles from several
subtrees of I in the same connected component in H.

We define some relaxed versions of dense vertices, and try to insert more pebbles
into set S by finding these vertices in the second stage. In the third stage, we find all
remaining pebbles close to set .S, and insert them to set .S by moving them toward .S.
The second stage helps us prove that there can not be pebbles from more than two thick
path trees in a connected component of H. We can distinguish two thick path trees
in a common connected component of H with some other techniques in polynomial
time. But there might be pebbles from several low diameter subtrees in this connected
component as well. We prove that all pebbles in low diameter subtrees are close to set S,
and in the third stage we take care of all of them. So after the third stage, we might have
some connected components in H containing up to 2 thick path trees. If the connected
component has no thick path tree, we can show that all its pebbles are close to set .S,
so we just move them toward set S. If it has one thick path tree, we can enumerate to
find the head and tail of the longest paths of this thick path tree, and run our s-¢ path
algorithm to take care of its pebbles. If it has two thick path trees, we prove that all
pebbles from the two thick path trees that are close to each other are around the tails of
the longest paths of these two thick path trees. So we enumerate to find the tail of one
of the thick path trees, and remove all pebbles in the vicinity of the tail vertex. This way
we can distinguish between the two thick path trees, and handle each of them by the s-¢
path algorithm.

2 s-t Path Movement Problem

In the s-t path movement problem, we are given a graph G with two vertices s and
t, and a set of pebbles with positions on the vertices of our graph. We want to move
some pebbles to construct a path between s and ¢ with at least one pebble on each of its
vertices. Our objective is to minimize the maximum movement. The following theorem
presents a constant-factor approximation algorithm for this problem.

Theorem 1. There is a polynomial-time algorithm that finds solution to the s-t the path
movement problem such that if there exists a solution that forms a path of length ¢ and
moves each pebble along at most M edges, then the algorithm finds a path of length at
most £ and which moves each pebble along at most 7TM—4 edges.

Note that we do not move pebbles more than a constant factor of the maximum
movement in the optimal solution, and at the same time we use no more pebbles than
the optimal solution to construct a path between s and ¢. So our algorithm can be seen
as a bicriteria approximation algorithm: it is optimal in terms of the number of pebbles
used in the path, and it is a constant factor approximation with respect to the maximum

movement. The fact that we are optimal in terms of the number of pebbles used in
the path helps us later to find approximation algorithms for the Steiner connectivity
movement problem.

Our algorithm for the s-t path movement problem has two main parts which can be
described as follows (with a bit of oversimplification):

1. Find a minimum length locally consistent path . A pebble can be moved along at
most 3M—2 edges to a node of P, but we allow to move a pebble to multiple nodes
on P, provided that they are sufficiently far apart (about 14 M edges).

2. Convert P to a consistent path Q as follows: for each pebble moved to multiple
nodes of P select one of them, which creates gaps in the path; then fill the gaps
by moving some pebbles along additional (7M—4)—(3M—2) = 4M—2 edges. The
length of the path cannot increase.

Because the optimum solution, say of length ¢, is locally consistent, the length of
the locally consistent path that we will find cannot be larger than ¢, and as we shall see,
local consistency is easier to assure than actual consistency. In the same time, under our
assumption each inconsistency offers an opportunity of making a shortcut: if a pebble
can be moved by distance at most 3M/—2 to two locations that are 14/ apart on the
path, a section of the path with length 14M can be replaced with a shorter path with
length 6//—4, provided that we move pebbles from the longer section to the shortcut.
This presents a challenge, of course, how to do it in a consistent manner.

2.1 Straighter Paths

We will use the following notation: d(u, v) is the distance from w« to v (the length of a
shortest path), disk D(u, R) is the set {v € V : d(u,v) < R}, and a disk set P(u, R)
is the set of pebbles with the initial location within D(u, R).

A valid solution has a path P = (s = wg,uy,...,ug = t) so that fori = 0,...,¢
there exists a pebble p; such that p; € P(u;, M), moreover, p; # p; for0 <1i < j <.

Given such a solution P, we can find another, Q, which we will call the straighter
path.

We define milestones of P as a subsequence vy, ..., vy of P, and in turn they define
Q, a straighter version of IP, that connects s,t and the milestones using the shortest
paths: from s to vy, from vy to vy, etc., and finally from vy to ¢. A milestone v; is
responsible for the section of Q that is contained in D(v;, M—1) and which consists of
r; nodes, where r; = 2M—1 for i < f, while ry < 2M—1 is the distance from ¢ to
D(’Uf_l7 M,l)

The initial milestone v is u; such that j = max{k : d(s,ur) < M—1}. Assume
that milestone v; is defined. If d(v;,t) < M—1 then v; is the final milestone. If M <
d(v;, t) < 2M—1 then v; 11 = t is the final milestone. If d(v;, t) > 2M—1 then v; 1 =
u; where j = max{k : d(v;,uy <2M-1}.

We modify the pebble movement as follows: consider a node ' of Q that is a steps
before milestone v (or after), where a < M. Then we have node u of [P that is a steps
before v (or after) on IP and the pebble p that was moved to u (along at most M edges).
The modified movement of p traverses a path to u, then to v and finally to u’, hence it
uses at most m + 2a < 3M—2 edges.

Now suppose that we do not know P or QQ but only the milestones vy,...,vs. We
can find the Q by connecting s, ¢ and the milestones with shortest paths (between the
milestones).

A solution of that form exists if and only if there exist pairwise disjoint sets of
pebbles Si,...,Sy such that S; C P(v;,2M-1) and |S;| = r;. This justifies the
following definition:

A consistent solution is a sequence of nodes vy, . . ., vy and a sequence of sets S1,..., S
such that
1. d(v1,8) = M—1and d(v;,v;11) = 2M—1fori=1,...,f — 2;
2. either d(vy_1,vy) = 2M—1and d(vy,t) < M orvy =t and d(vy_1,t) < 2M;
3. =2M-1fori=1,...,f—landry =d(vf,vs_1) +d(vs,t) — M+ 1;
4. S; C P(’U“2M—1) and |Sz| =T
5.8 N8; =@fori#j.

A locally consistent solution satisfies a weaker version of condition 5: 5; N S; = @
for i < j < i+ 7. The length (or the number of pebbles that are used) is Z{ﬂ .

Lemma 1. There exists a polynomial time algorithm that find a locally consistent so-
lution with the minimum length.

Lemma 2. In polynomial time we can transform a locally consistent solution Q of
length £ to a solution that uses at most { pebbles that are moved along at most TM—4
edges.

To conclude the proof of Theorem [I| observe that we can perform the algorithm de-
scribed in Lemma [I] for different values of M, to find the smallest value for which it
concludes successfully, and then we finish using the algorithm described in Lemma 2]

3 Connectivity Movement Problem

In the connectivity movement problem, we want to move pebbles so that their final po-
sitions induce a connected subgraph of graph GG. The goal is to minimize the maximum
movement of pebbles. Without loss of generality we can assume that a vertex r is given,
and the induced subgraph of the final positions of pebbles should contain r, i.e., there
should be a path from the root r to all pebbles in their subgraph. The following theorem
is the main result of this section:

Theorem 2. Given a polynomial-time A-approximation algorithm for the s-t path move-
ment problem, we can construct a polynomial-time (8 + 80)-approximation algorithm
for the connectivity movement problem.

Definition 1. Suppose there are m pebbles: p1,ps, ..., Pm. Let u; be the starting po-
sition of pebble p;, and v; be its final destination in the optimum solution. Vertices
V1, V2, . .., Uy form a connected subgraph in G. This connected subgraph has a span-
ning tree. Let T be one of its spanning trees. So tree T’ has at most m vertices because
there is at least one pebble on each vertex in T'in the optimal solution. In Figure[l} you
can see a sample graph before the movements on the left, and with maximum movement
one edge, all pebbles form a connected subgraph. Tree T is shown on right by bold
edges.

Because of lack of space, we present main ideas in this paper, and include detailed
description and proofs in the complete version.

(@)

Fig. 1. Each black node contains a pebble, and gray nodes are vertices without pebbles. The
arrows show the movements of pebbles in the optimum solution. The maximum movement is
one.

3.1 A Constant factor Approximation for Connectivity Movement Problem

During our algorithm, the set .S’ consists of all pebbles that are connected to root r
(via other pebbles) up to now, i.e., this set might be empty at the beginning. We try to
add pebbles into S by moving them. Our algorithm basically has three main phases.
In Phase 1, we define Operations 1 and 2. We perform these two operations iteratively
as long as we can perform them. During these two operations, whenever we move a
pebble p, and add it to set S, we make sure that there exists a pebble p’ € S such
that its current position has distance at most AM from the starting position of pebble
p. Note that pebble p’ might or might not be the same as pebble p (in Operation 1 they
are the same). When we cannot perform any of these two operations anymore, we can
prove some interesting properties about the structure of the remaining pebbles (pebbles
outside S).

Then in the second phase, we introduce new Operations 3 and 4, and iteratively
perform them. We should note that Operations 3 and 4 are very similar to Operations
1 and 2, but existence of these two similar phases is essential in our algorithm. In the
second phase when we move a pebble p, and add it to .S, we make sure that there exists
a pebble p’ € S that its current position has distance at most xM from the starting
position of pebble p where x is a parameter we define later in the second phase.

In the last phase, we present Operation 5, and perform it once. Then we show how
to decompose the remaining pebbles into some groups, and take care of each group.
In this phase we connect all remaining pebbles to set .S, and therefore our connecting
task is complete. The maximum movement is a constant times the optimum maximum
movement M.

In Operation 2 of the first phase, we define dense vertices, and while there exists a
dense vertex, we find a path from it to root r. Using this path we add some pebbles into
set S. We iteratively perform Operations 1 and 2 if one of them is possible to do. If both
of them are possible to do, Operation 1 has priority. Before performing the following
operations, we move all pebbles with distance at most M from root r toward r. We
also add them to set S. This way we make sure that .S is not empty, and the following
operations are feasible.

Operation 1. While there is a pebble p ¢ S whose distance to current position of
some pebble p’ € S is at most AM + 1, we move pebble p towards pebble p’ to make
them neighbors. We can do this by moving p at most AM edges. Now we can add p to
S.

Operation 2. Here we explain the main ideas. Vertex v is called dense, if there are
at least (2A 4 2) M pebbles outside set S with distance at most AM from v. Let A be
the set of the pebbles outside .S with distance at most AM from v. If there exists a dense
vertex v (with |A| > (2A + 2)M), we do the following. We gather all pebbles of A
on vertex v. This can be done by moving these pebbles along at most AM edges. If the

distance of v from at least one pebble in S is at most (2A+2) M, we can use the pebbles
in A to connect vertex v to set S. This way we add pebbles of A to set S by moving
them along at most AM + (2A 4+ 2)M = (3A +2)M.

Otherwise (if v has distance greater than (2A+2)M from all pebbles in .S), we know
that a subset of pebbles outside S and A form a path from a pebble in A to a pebble in
S in the optimal solution with maximum movement M. This path should start from a
vertex with distance at most AM + M from v to a vertex with distance at most M + AM
from set .S. So we use our path movement algorithm to build this path. Then we use the
pebbles of A to connect v to the first part of this path, and also connect the last part of
this path to set S. So we can connect and join all these pebbles to S with maximum
movement at most AM + 2(A + 1)M = (3\ + 2)M.

We keep doing the above operations until there is no dense vertex, and no pebble
close to set of pebbles S. Following we show some interesting facts about the structure
of the optimal solution after deleting pebbles of S when the first phase is finished, and
we cannot perform Operations 1 and 2.

We keep vertices in tree 7' (defined in Definition [I) that have at least one pebble
outside set S and remove the rest of them. The remaining graph is a forest, call it
F'. Suppose this forest has & connected components 77,75, ..., T;. Each of these k
connected components is a subtree of 7.

Lemma 3. For each tree T;, at least one of the following two conditions holds: (1) T;
has diameter less than 2(\ — 1) M. (2) Every vertex in T; has distance less than 4M
from the longest path in T.

Now that we cannot perform Operations 1 and 2 anymore, we start the second phase. In
this phase, we define Operations 3 and 4, and we perform them iteratively. Like before,
we stop when we cannot perform Operations 3 and 4 anymore. Define x to be 2\ + 22
in the rest of the algorithm.

Operation 3. Consider a vertex v with distance dis(v, S) from set S, i.e., dis(v, S)
is the minimum distance of v from pebbles in S. For 0 < i < xM, let N(v,1i) be the
number of pebbles outside S that has distance at most ¢ from v. If N (v, 1) is at least
dis(v,S) — (xM — i) for some 0 < i < xM, and dis(v,S) is at most (2z + 2) M,
we can do the following. We can gather all pebbles with distance at most ¢ from v,
on vertex v, and move them along the shortest path from v to set .S to form a path
attaching to the current set .S. This way we can add some pebbles to S. We cannot
necessarily fill the shortest path from v to S completely, but because N (v, i) is at least
dis(v,S) — (xM — i), we lack at most zM — i pebbles. Because we moved each
pebble at most ¢ in the gathering part, we can say that the starting position of each
moved pebble has distance at most ¢ + (xM — i) = M from the current position of
a pebble in S (consider the last pebble in the path we just made and attached to set .S).
The maximum movement in this operation is at most ¢ + dis(v,.S) which is at most
aM + (2z + 2)M = (3z + 2) M. The interesting property of this operation is that we
can use it for different values of 0 < ¢ < M.

Operation 4. Vertex v is called dense with diameter x M, if there are at least (2x +
2) M pebbles outside set S with distance at most M from v. Like Operation 2, let A be
the set of the pebbles outside .S with distance at most z M from v. If there exists a dense
vertex v (with |A| > (22 + 2) M), we do the following. We gather all pebbles of set A
on vertex v. If the distance of v from at least one pebble in S is at most (2z + 2) M, we
can use these pebbles in A to connect vertex v to set S. This way we add pebbles of A
to set S by moving them along at most xM + (2z + 2)M = (3z + 2)M.

Similarly to Operation 2, if the distance of v from set .S is more than (2x + 2)M,
we can construct a path from a vertex wy with distance at most (z + 1) M from vertex

v to a vertex wo with distance at most (x + 1) M from set S using pebbles outside S
and A. Like before we can shift this path toward set S, and use the (2 + 2) M pebbles
gathered on v to fill in the empty vertices of the path we are building from v to set S.
The maximum movement in this case is at most M az{(3z+2)M, \M +(2z+2)M } =
(3z +2)M.

We now want to investigate the structure of the pebbles outside S in the optimal
tree T'. So we again delete all vertices from tree 7' that contain some pebbles of set S.
We note that tree T is a spanning tree of the subgraph induced on the final positions
of the pebbles in the optimum solution. Like before let 77,75, . .., T}, be the resulting
subtrees of the forest we obtain after removing the above vertices from tree 7T'.

Now we are ready to finish our algorithm in the third phase which is a non-iterative
phase. We explain the main idea at first. If we knew which pebbles belong to each 77
(the pebbles that move to vertices of Tl’ in the optimum solution) for every 1 < < k/,
we would do the following. For every tree 7] we know that it either has diameter less
than 2(\ — 1) M or is a tree such that all its pebbles are close to its longest path. If it has
small diameter, we can say that all its pebbles have distance at most (z + 2A)M from
some pebble in S. We prove this claim later in Lemma[d} About the second type trees,
we can find a path connecting two vertices of T with some specific properties. Then we
can claim that every pebble in tree 77 is close to some vertices of the path we find. This
is just a raw idea without details. We will show how to distinguish between pebbles of
different subtrees, and how to handle each tree (specially the second type trees).

At first we note that two adjacent pebbles in a subtree have distance at most M + 1+
M = 2M + 1 from each other. So if we construct a graph with pebbles as its vertices,
and connect each pair of pebbles that have distance at most 2/ + 1 from each other,
we can say that the pebbles of a subtree T/ are in the same connected component in this
graph. But there might be more than one subtree in a connected component. So we still
have the distinguishing problem in a connected component.

The following trick helps us deal with this problem. We do the following operation
to get rid of the small diameter subtrees. Note that the following operation is non-
iterative; we do it once.

Operation 5. We mark all pebbles outside set .S that has distance at most (z +
2A)M from the current position of at least a pebble in S. After marking pebbles, we
move all marked pebbles toward some pebbles in S with maximum movement at most
(x +2M\)M.

Lemma 4. Every pebble in a tree T! with small diameter (less than 2(\ — 1)M) is
marked and inserted into set S.

After Operation 5, we know that all small diameter subtrees are taken care of. Now
we might be able to separate different subtrees with large diameter. There are two main
issues here. The first one is that some pebbles of a tree T with large diameter might be
deleted. The second issue is that two pebbles in two different large diameter subtrees
might have distance at most 2M + 1 (and therefore adjacent in the graph of pebbles we
build).

Following we consider the graph of remaining pebbles, and show that both of these
problems can be handled in a sophisticated way. Construct graph /I with the remaining
pebbles (outside S) as its vertices. And we connect two pebbles via an edge if its dis-
tance is at most 2\ + 1. If this graph has multiple connected components, we treat each
connected component separately. So we assume that this graph has only one connected
component. At first we prove some properties of the remaining subtrees. This helps us
understand the structure of the graph H.

Definition 2. Define P; to be the longest path of subtree T!. A subtree T} is called long
tree, if P; has length more than 2x M. Let], be the length of path P;, and g; ; be the jth
pebble of the path P; for 1 < j < ;. Also define v; ; be the jth vertex of the path P;.
Note that there might be also some medium diameter trees other than small diameter
and long trees.

Following we prove that one of the last vertices of the longest paths of every re-
maining tree (with diameter at least 2(A — 1) M) is close to set S.

Lemma 5. For every tree T] with diameter at least 2(\ — 1) M, there exists a vertex
v in tree T' such that v has distance at most 10M from vertex v, ,,, the last vertex of

the longest path in T!, and vertex v is also the final position of some pebble in S in

the optimum solution. Therefore vertex v. ,, has distance at most 10M + M + M =
(x + 11)M from set S.

Now we prove that the middle pebbles of long trees (which are the main parts of
these trees) are not removed in Operation 5.

Lemma 6. Consider a long tree T). Pebble g; ; is unmarked (and therefore is not
deleted) for all values of tM + 1 < j <, — xM.

Now that we have more information about the structure of the remaining subtrees,
we can take care of them. We consider two cases. Note that H is the graph we con-
structed with the remaining pebbles as its vertices.

Case 1. Every pebble in H has distance at most M +2x M+ M+aM = (3z+2)M
from some pebble in S. In this case we can move all pebbles of H and connect them to
S. The problem is solved completely in this case and the maximum movement of these
remaining pebbles would be at most (3z 4 2) M. Note that if there is no long tree among
our trees, our problem will be solved in this case. Because we know that in a subtree,
there exists a vertex v which is adjacent to the final position of some pebble p in .S in
the optimum solution (refer to the beginning of proof of Lemma 3)). If the longest path
of this subtree is at most 2x M, it means that the current position of each pebble has
distance at most M + 2x M from vertex v. We also know that it takes M + x M edges to
reach set S from vertex v because this subtree is obtained after the first four operations.
The total distance is not more than M + 2z M + M +xM = (3z + 2) M. We conclude
that if we have no long tree, the problem is solved in this case.

Case 2. As proved above, in this case we have some long trees. In Lemma [6] we
proved that the middle parts of the longest paths of long trees do not get marked, and
still exist in graph H. We just need to somehow add the pebbles of these middle parts
of the long trees to set S. Because every pebble in a long tree has distance at most 41/
from a pebble in the longest path in the tree. Each pebble in the longest path is either in
the middle part of the path or has distance at most M + M + M = (x + 2) M from a
pebble in the middle part. So every pebble in a long tree would be close (with distance
at most a constant times M) to set .S, if we add the pebbles in the middle parts of the
longest paths of long trees to S. We also know that a tree that is not long has diameter
at most 2z M. This is enough to see that every pebble in a not long tree (medium tree)
is close to set S already. So the main problem is finding a way to add pebbles of the
middle parts of the longest paths of long trees into .S.

Before starting we note that we still might have pebbles from several trees in our
graph . But we know that all middle pebbles of a long tree exist in the same connected
component. In fact every pair of pebbles in graph H that are adjacent in tree 7', are also

adjacent in H. We now show that there cannot be pebbles from three different trees in
our connected graph H. There might be pebbles of two trees in H, but we show how
to separate pebbles of these two trees from each other. The following lemma shows
the limitations of the edges between pebbles of different trees. In fact, the following
Lemma is the main reason that we are able to separate different subtrees.

Lemma 7. If there is an edge in graph H between two pebbles q € T| and ¢’ € T},
we have that the distance between v} ; and q is at most 11M, and the distance between

vy 1 and q' is also at most 11M.

Using Lemma [/} we can prove that there cannot be pebbles from three different
trees in H as follows.

Lemma 8. There can be pebbles from at most two trees in graph H.

Now we know that there are pebbles from at most two trees in our graph H. We also
know that all edges between pebbles of these two trees are close to the tail vertices of
the longest paths of two trees. So we can get rid of all these edges by removing vertices
around one of this tail vertices. Formally we do the following.

Let 7 and T3, be the two trees that contribute in H (this approach also works when
there is only one tree). We can assume that we know vertex vﬂ’l because we can guess
it (there are at most n possible guesses and one of them is correct)

We remove all pebbles of distance at most 11/ from v} ;. We now have a graph H’
with probably several connected components. Following we show that the middle parts
of the long paths is safe. In fact we prove that we might remove at most the first 20\
pebbles of the longest path, and we do not remove the pebbles g1 20741, G1,200425 - - - -
Otherwise we will have a dense vertex which is a contradiction.

Lemma 9. After deleting pebbles with distance at most 11M from vl 1, we do not
have any edge between pebbles of our two different trees. We also do not delete any of
pebbles v} oonr415 V) 200425 - - - i tree TY is a long tree. And we do not delete pebbles

/ / . ! -
Uy 90M+15 Vaon 42, - - - If tree Ty is a long tree.

So we do not delete any pebble from middle parts of the long trees. We also removed
a set of pebbles in Operation 4. But in Lemma [6] we proved that the middle parts of the
longest paths of long trees survive. We conclude the following general lemma.

Lemma 10. In the graph of remaining pebbles, graph H', pebbles q1 yr1+1, G1,2M+2,
-» 1,1~z exist and are in the same connected component for a long tree T].

So there might be at most two connected components containing the middle pebbles
of longest paths of long trees. Remember these are the only parts we should handle, the
rest of the pebbles are either close to set .S or close to these two middle parts. In this
part, we again treat pebbles of each connected component of graph H' separately. If
all pebbles of a connected component in H' are close to set .S, we can treat it like case
1 (we can move them directly toward set .S). Otherwise this connected component has
the middle pebbles of the longest path of either T} or T4 (and not both of them for
sure). Without loss of generality, assume that it has the middle pebbles of 7}. So we
know that all pebbles g1 znr+1,q1,2M+2, - - -5 Q11— are in the this connected com-

ponent. We can assume that we know vertices v} ./, and v} 1~z (We can guess,

and there are at most n? possibilities). We know that there is a way to move some peb-
bles of this connected component to connect s to ¢ with maximum movement at most

M. Using our algorithm for path movement problem, we can move some pebbles to
connect these two vertices with maximum movement at most AM. We prove that all
pebbles g1 oar+1, ¢1,an42, - - -, Q1,1 —x M Are either used in the path we constructed, or
are close to some pebble that we used in this path. At first we note that there is no edge
between two pebbles from different trees. So all pebbles that we use are in the tree T7.

Lemma 11. Forevery M +1 <1 <} —axM —2(A— 1) M, pebble ¢, ; has distance
at most (2\ + 20) M from either the starting position of one of the pebbles we used in
the path we constructed from vertex vy , s, to vertex v'u,l _pp OF one of the vertices

of this path.

We can gather all pebbles of our connected component on the path we constructed as
follows.

Lemma 12. Every pebble of our connected component in graph H', has distance at
most (x + 2\ + 3)M from some vertex of the path we constructed.

Using Lemma we can gather all pebbles of the connected component on our
path. Now we have to move this path and connect it to .S. Note that we can shift the
path we constructed to make it connected to S. Vertex v} ,, __,, has distance at most

U1

xM from v} ;. Vertex v} ,, has distance at most (x+ 11)M from set S using Lemma
sty sl

So we can shift the pebbles of this path along at most M + (z +11)M = (2x+11)M
edges to make them connected to set S. So the maximum movement of all these parts
(gathering and shifting) is at most (z + 2\ +3)M + (2o 4+ 11)M = 3z + 2\ +14)M
which is equal to (8\ + 80)M. Now everything is connected to .S, and no pebble is
remained.

References

1. Stefano Basagni, Alessio Carosi, and Chiara Petrioli. Heuristics for Lifetime Maximization in
Wireless Sensor Networks with Multiple Mobile Sinks. In Proceedings of IEEE International
Conference on Communications (ICC 2009), pages 1-6.

2. Stefano Basagni, Alessio Carosi, Chiara Petrioli, and Cynthia A. Phillips. Coordinated and
Controlled Mobility of Multiple Sinks for Maximizing the Lifetime of Wireless Sensor Net-
works. to appear in ACM/Springer Wireless Networks (WINET).

3. Stefano Basagni, Alessio Carosi, Chiara Petrioli, and Cynthia A. Phillips. Moving multiple
sinks through wireless sensor networks for lifetime maximization. In Proceedings of IEEE
International Conference on Mobile Ad Hoc and Sensor Systems (MASS 2008), pages 523—
526.

4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, Third Edition.

5. Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Shayan Oveis Gharan,
Amin Sayedi-Roshkhar and Morteza Zadimoghaddam. Minimizing movement. ACM Trans-
actions on Algorithms, 5(3), Article 30, July 2009. Preliminary version appeared at SODA
2007.

6. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Daniel Marx. Minimizing Movement:
Fixed-Parameter Tractability. In Proceedings of the 17th Annual European Symposium on
Algorithms (ESA 2009), pages 718-729.

. Douglas B. West. Introduction to Graph Theory. Published by Prentice Hall, 2001.

. Zachary Friggstad and Mohammad R. Salavatipour. Minimizing movement in mobile facility
location problems. In Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2008), pages 357-366.

9. Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Math-

ematics and its Applications. Oxford University Press, 2006.

[l

	O(1)-Approximations for Maximum Movement Problems

