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Abstract

We present a nondeterministic model of computation based on reversing edge directions in weighted
directed graphs with minimum in-flow constraints on vertices. Deciding whether this simple graph
model can be manipulated in order to reverse the direction of a particular edge is shown to be PSPACE-
complete by a reduction from Quantified Boolean Formulas. We prove this result in a variety of special
cases including planar graphs and highly restricted vertex configurations, some of which correspond to
a kind of passive constraint logic. Our framework is inspired by (and indeed a generalization of) the
“Generalized Rush Hour Logic” developed by Flake and Baum [3].

We illustrate the importance of our model of computation by giving simple reductions to show that
several motion-planning problems are PSPACE-hard. Our main result along these lines is that classic
unrestricted sliding-block puzzles are PSPACE-hard, even if the pieces are restricted to be all dominoes
(1 × 2 blocks) and the goal is simply to move a particular piece. No prior complexity results were
known about these puzzles. This result can be seen as a strengthening of the existing result that the
restricted Rush HourTM puzzles are PSPACE-complete [3], of which we also give a simpler proof. We
also greatly strengthen the conditions for the PSPACE-hardness of the Warehouseman’s Problem [5],
a classic motion-planning problem. Finally, we strengthen the existing result that the pushing-blocks
puzzle Sokoban is PSPACE-complete [2], by showing that it is PSPACE-complete even if no barriers are
allowed.

1 Introduction

Figure 1: The Donkey Puzzle:
move the large square to the
bottom center.

Motivating Application: Sliding Blocks. Motion planning of rigid ob-
jects is concerned with whether a collection of objects can be moved (trans-
lated and rotated), without intersection among the objects, to reach a goal
configuration with certain properties. Typically, one object is distinguished,
the remaining objects serving as obstacles, and the goal is for that object to
reach a particular position. This general problem arises in a variety of ap-
plied contexts such as robotics and graphics. In addition, this problem arises
in the recreational context of sliding-block puzzles [6], where the pieces are
typically integral rectangles, L shapes, etc., and the goal is simply to move a
particular piece to a specified target position. See Figure 1 for an example.

TheWarehouseman’s Problem [5] is a particular formulation of this prob-
lem in which the objects are rectangles of arbitrary side lengths, packed in-
side a rectangular box. In 1984, Hopcroft, Schwartz, and Sharir [5] proved
that deciding whether the rectangular objects can be moved so that each object is at its specified final posi-
tion is PSPACE-hard. Their construction critically requires that some rectangular objects have dimensions
that are proportional to the box dimensions.
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Although not mentioned in [5], the Warehouseman’s Problem captures a particular form of sliding-block
puzzles in which all pieces are rectangles. However, two differences between the two problems are that sliding-
block puzzles typically require only a particular piece to reach a position, instead of the entire configuration,
and that sliding-block puzzles involve blocks of only constant size. More generally, it is natural to ask for
the complexity of the problem as determined by the goal specification and the set of allowed block types.

In this paper, we prove that the Warehouseman’s Problem and sliding-block puzzles are PSPACE-hard
even for 1 × 2 rectangles (dominoes) packed in a rectangle. In contrast, there is a simple polynomial-time
algorithm for 1× 1 rectangles packed in a rectangle. Thus our results are in some sense tight.

Hardness Framework. To prove that sliding blocks and other problems are PSPACE-hard, this paper
builds a general framework for proving PSPACE-hardness which simply requires the construction of a couple
of gadgets that can be connected together in a planar graph. Our framework is inspired by the one developed
by Flake and Baum [3], but is simpler and more powerful. We prove that several different models of increasing
simplicity are equivalent, permitting simple constructions of PSPACE-hardness. In particular, we derive
simple constructions for sliding blocks, Rush Hour [3], and a restricted form of Sokoban [2].

Nondeterministic Constraint Logic Model of Computation. Our framework can also be viewed as
a model of computation in its own right. We show that a Nondeterministic Constraint Logic (NCL) machine
has the same computational power as a space-bounded Turing machine. Yet, it has a more concise formal
description, and has a natural interpretation as a kind of logic network. Thus, it is reasonable to view NCL
as a simple computational model that corresponds to the class PSPACE, just as, for example, deterministic
finite automata correspond to regular languages.

Roadmap. Section 2 describes our model of computation in more detail. Section 3 proves increasingly
simple formulations of NCL to be PSPACE-complete. Section 4 proves various puzzles and motion-planning
problems to be PSPACE-hard using the restricted forms of our model of computation.

2 Nondeterministic Constraint Logic

In this section we formally define the nondeterministic constraint logic (NCL) model of computation, and
give a family of related decision problems whose complexity we are interested in. We then describe in detail
a special case of NCL graphs, called AND/OR constraint graphs. In the following section we will show the
decision problems to be PSPACE-complete, even for the restricted And/Or constraint graphs.

2.1 Graph Formulation

An NCL “machine” is specified by a constraint graph: an undirected graph together with an assignment of
nonnegative integers (weights) to edges and integers (minimum in-flow constraints) to vertices. A configu-
ration of this machine is an orientation (direction) of the edges such that the sum of incoming edge weights
at each vertex is at least the minimum in-flow constraint of that vertex. A move from one configuration to
another configuration is simply the reversal of a single edge such that the minimum in-flow constraints re-
main satisfied. The standard decision question from a particular NCL machine and configuration is whether
a specified edge can be eventually reversed by a sequence of moves. We can view such a sequence as a
nondeterministic computation.

Two related decision problems are also of interest:

1. Given two configurations A and B of an NCL machine, is there a sequence of moves from A to B?

2. Given two edges EA and EB of an NCL machine, and orientations for each, are there configurations
A and B such that EA has its desired orientation in A, EB has its desired orientation in B, and there
is a sequence of moves from A to B?
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We refer to these three decision problems as configuration-to-edge, configuration-to-configuration, and
edge-to-edge. We will show that all of these problems are PSPACE-complete. (The fourth possibility, edge-
to-configuration, is the same as configuration-to-edge, by reversibility.)

2.2 AND/OR Constraint Graphs

Certain vertex configurations in NCL graphs are of particular interest. A vertex with minimum in-flow
constraint 2 and incident edge weights of 1, 1, and 2 behaves as a logical And, in the following sense: the
weight-2 edge may be directed outward if and only if both weight-1 edges are directed inward. (Otherwise,
the in-flow constraint of 2 would not be met.) We will call such a vertex an AND vertex.

Similarly, a vertex with minimum in-flow constraint 2 and incident edge weights of 2, 2, and 2 behaves
as a logical Or: a given edge may be directed outward if and only if at least one of the other two edges is
directed inward. We will call such a vertex an OR vertex.

In our reductions we will be concerned primarily with graphs containing only And and Or vertices; we
call such graphs AND/OR constraint graphs 1. When drawing graphs, we will follow the convention that
all vertices have in-flow constraint 2, red (light gray) edges have weight 1, and blue (dark gray) edges have
weight 2. Figure 2 shows And and Or vertices.

(a) And vertex. Edge C may be directed outward if and
only if edges A and B are both directed inward.

(b) Or vertex. Edge C may be directed outward if and
only if either edge A or edge B is directed inward.

Figure 2: And and Or vertices. Red (light gray) edges have weight 1, blue (dark gray) edges have weight
2, and all vertices have a minimum in-flow constraint of 2.

Circuit Interpretation. With these And and Or vertex interpretations, it is natural to view an And/Or

graph as a kind of digital logic network, or circuit. One can imagine signals flowing through the graph, as
outputs activate when their input conditions are satisfied. This is the picture that motivates our description
of NCL as a model of computation, rather than simply as a set of decision problems. Indeed, it is natural to
expect (even before our PSPACE-completeness results) that a finite assemblage of such logic gadgets could
be used to build a polynomial-space bounded computer.

However, several differences between And/Or constraint graphs and ordinary digital logic circuits are
noteworthy. First, NCL machines are inherently nondeterministic; digital logic circuits are deterministic.
Second, with the above And and Or vertex interpretations, there is nothing to prohibit “wiring” a vertex’s
“output” (e.g. the weight-2 edge of an And vertex) to another “output”, or an “input” to an “input”; in
digital logic circuitry, such connections would be illegal, and meaningless. Finally, although we have And-
and Or-like devices, there is nothing like an inverter (or Not gate) in NCL; inverters are essential in ordinary
digital logic.

This last point deserves some elaboration. The logic that is manifested in NCL graphs is a passive
constraint logic; nothing forces an And vertex, say, to direct its weight-2 edge outward when its other two
edges are directed inward. A signal is thus permitted, but not required, to flow. For there to be an inverter
vertex in NCL would require that an edge be permitted to be directed outward if and only if another edge
is not permitted to be directed inward. But there is no way for the vertex to know, so to speak, whether an
edge can be directed inward; the constraints are in terms of what is directed inward.

Flake and Baum require the use of inverters in a similar computational context [3]. They define gadgets
(“both” and “either”) that are essentially the same as our And and Or vertices, but rather than use them

1Wemention without proof that every NCL graph is logspace-reducible to an equivalent And/Or constraint graph (equivalent
with respect to the decision problems). The reduction is rather elaborate, and the result is not needed for any of our main
results, so we omit it.
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as primitive logical elements, they use their gadgets to construct a kind of dual-rail logic. With this dual-rail
logic, they can represent inverters. We do not need inverters for our reductions, so we may omit this step.

Directionality; Splitting. As implied above, although it is natural to think of And and Or vertices as
having inputs and outputs, there is nothing enforcing this interpretation. A sequence of edge reversals could
first direct both red edges into an And vertex, and then direct its blue edge outward; in this case, we will
sometimes say that its inputs have activated, enabling its output to activate. But the reverse sequence could
equally well occur. In this case we could view the And vertex as a split : directing the blue edge inward
allows both red edges to be directed outward, effectively splitting the signal.

In the case of Or vertices, again, we can speak of an active input enabling an output to activate. However,
here the choice of input and output is entirely arbitrary, because Or vertices are symmetric.

Red-Blue Conversion. Viewing And/Or graphs as circuits, we might want to connect the output of an
Or, say, to an input of an And. We can’t do this directly by joining the loose ends of the two edges, because
one edge is blue and the other is red. But we can insert a subgraph that has the desired effect, allowing the
And input edge to activate (point inward) just when the Or output edge is activated (pointing outward).
More generally, the subgraph on the left side of Figure 3 effectively copies a singal between a red edge and a
blue edge. Edge C permanently satisfies the incident Or vertex’s constraint, allowing D to point away from
it. This lets E point down, providing an extra in-flow of 1 to the vertex between A and B. Either A or B can
now satisfy this vertex’s constraint by pointing inward; the other edge is free to point away. In other words,
a signal can propagate out from A precisely if it was passed in via B, and vice versa.

This subgraph has an extra red edge (F), whose direction is not constrained; we must somehow deal with
its loose end. A little reflection shows that such extra edges must always occur in pairs: red edges only exist
on red-red-blue vertices, therefore the sequence F, E, A, must continue on in an unbranching chain, ending
at another unattached red edge. We can then identify F with that edge, forming a cycle.

We use the shorthand notation on the right side of Figure 3 to denote this subgraph; this will simplify
the figures.

Figure 3: Red-to-blue conversion subgraph, with shorthand notation.

3 PSPACE-completeness

In this section, we show that all three NCL decision problems are PSPACE-complete, and extend these
results to apply to simplified forms of NCL.

3.1 Nondeterministic Constraint Logic

We show that configuration-to-edge is PSPACE-hard by giving a reduction from Quantified Boolean Formulas
(QBF), which is known to be PSPACE-complete [4], even when the formula is in conjunctive normal form
(CNF). A simple argument then shows that configuration-to-edge is in PSPACE, and therefore PSPACE-
complete. The PSPACE-completeness of the other two decision problems also follows simply.

Reduction. First we give an overview of the reduction and the gadgets we need; then we analyze the
gadgets’ properties.
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Figure 4: Schematic of the reduction from Quantified Boolean Formulas to NCL.

The reduction is illustrated schematically in Figure 4. We translate a given quantified Boolean formula
φ into an And/Or constraint graph, so that a particular edge in the graph may be reversed if and only if φ
is true.

One way to determine the truth of a quantified Boolean formula is as follows: Consider the initial
quantifier in the formula. Assign its variable first to false and then to true, and for each assignment,
recursively ask whether the remaining formula is true under that assignment. For an existential quantifier,
return true if either assignment succeeds; for a universal quantifier, return true only if both assignments
succeed. For the base case, all variables are assigned, and we only need to test whether the CNF formula is
true under the current assignment.

This is essentially the strategy our reduction shall employ. We define quantifier gadgets, which are
connected together into a string, one per quantifier in the formula, as in Figure 5(a). Each quantifier gadget
outputs a pair of edges corresponding to a variable assignment. These edges feed into the CNF network,
which corresponds to the unquantified formula. The output from the CNF network connects to the rightmost
quantifier gadget; the output of our overall graph is the satisfied out edge from the leftmost quantifier gadget.
(We use the attached subgraph for the other decisions problems.)

Quantifier Gadgets. When a quantifier gadget is activated, all quantifier gadgets to its left have fixed
particular variable assignments, and only this quantifier gadget and those to the right are free to change their
variable assignments. The activated quantifier gadget can declare itself satisfied if and only if the Boolean
formula read from here to the right is true given the variable assignments on the left.

A quantifier gadget is activated by directing its try in edge inward. Its try out edge is enabled to be
directed outward only if try in is directed inward, and its variable state is locked. A quantifier gadget may
nondeterministically “choose” a variable assignment, and recursively “try” the rest of the formula under
that assignment and those that are locked by quantifiers to its left. The variable assignment is represented
by two output edges (x and x), only one of which may be directed outward. For satisfied out to be directed
outward, indicating that the formula from this quantifier on is currently satisfied, we require (at least) that
satisfied in be directed inward.

We construct both existential and universal quantifier gadgets, described below, satisfying the above
requirements.

Lemma 1 A quantifier gadget’s satisfied in edge may not be directed inward unless its try out edge is directed
outward.

Proof: By induction. The condition is explicitly satisfied in the construction for the rightmost quantifier
gadget, and each quantifier gadget requires try in to be directed inward before try out is directed outward,
and requires satisfied in to be directed inward before satisfied out is directed outward. ¤
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(a) Quantifier gadget connections (b) Part of a CNF formula graph

Figure 5: QBF wiring.

CNF Formula. In order to evaluate the formula for a particular variable assignment, we construct an
And/Or subgraph corresponding to the unquantified part of the formula, fed inputs from the variable
gadgets, and feeding into the satisfied in edge of the rightmost quantifier gadget, as in Figure 4. The satisfied
in edge of the rightmost quantifier gadget is further protected by an And vertex, so it may be directed inward
only if try out is directed outward and the formula is currently satisfied.

Because the formula is in conjunctive normal form, and we have edges representing both literal forms of
each variable (true and false), we don’t need an inverter for this construction. We use the signal-splitting
and red-blue conversion techniques described in Section 2.2 to construct the graph. Part of such a graph is
shown in Figure 5(b).

Lemma 2 The satisfied out edge of a CNF subgraph may be directed outward if and only if its corresponding
formula is satisfied by the variable assignments on its input edge orientations.

Proof: Definition of And and Or vertices, and the CNF construction described. ¤

(a) Locked, A active (b) Unlocked, A active (c) Unlocked, B active (d) Locked, B active

Figure 6: Latch gadget, transitioning from state A to state B.

Latch Gadget. Internally, the quantifier gadgets use latch gadgets, shown in Figure 6. This subgraph
effectively stores a bit of information, whose state can be locked or unlocked. With edge L directed left, one
of the other two Or edges must be directed inward, preventing its output red edge from pointing out. The
orientation of edge C is fixed in this state. When L is directed inward, the other Or edges may be directed
outward, and the red edges are free to reverse. Then when the latch is locked again, by directing L left, the
state has been switched.

Existential Quantifier. An existential quantifier gadget (Figure 7(a)) uses a latch subgraph to represent
its variable, and beyond this latch has the minimum structure needed to meet the definition of a quantifier
gadget. If the formula is true under some assignment of an existentially quantified variable, then its quantifier
gadget may lock the latch in the corresponding state, enabling try out to activate, and recursively receive
the satisfied in signal. Receiving the satisfied in signal simultaneously passes on the satisfied out signal to the
quantifier on the left.

Here we exploit the nondeterminism in the model to choose the correct variable assignment.

Universal Quantifier. A universal quantifier gadget is more complicated (Figure 7(b)). It may only
direct satisfied out leftward if the formula is true under both variable assignments. Again we use a latch for
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(a) Existential quantifier (b) Universal quantifier

Figure 7: Quantifier gadgets.

the variable state; this time we split the variable outputs, so they can be used internally. In addition, we use
a latch internally, as a memory bit to record that one variable assignment has been successfully tried. With
this bit set, if the other assignment is then successfully tried, satisfied out is allowed to point out.

Lemma 3 A universal quantifier gadget may direct its satisfied out edge outward if and only if at one time
its satisfied in edge is directed inward while its variable state is locked in the false (x) assignment, and at a
later time the satisfied in edge is directed inward while its variable state is locked in the true (x) assignment,
with try in directed inward throughout.

Proof: First, observe that with try in directed outward, edge E must point right: C must point up, therefore
D must point left. Also, since satisfied out must point right, F and therefore L must also; this means that E
must point right in order to satisfy its Or vertex.

Suppose that try in is directed inward, the variable is locked in the false state (edge A points right), and
satisfied in is directed inward. These conditions allow the internal latch to be unlocked, by directing edge L
left. With the latch unlocked, edge E is free to point left. The latch may then lock again, leaving E pointing
left (because C may now point down, allowing D to point right). Now, the entire edge reversal sequence that
occurred between directing try out outward and unlocking the internal latch may be reversed. After try out
has deactivated, the variable may be unlocked, and change state. Then, suppose that satisfied in activates
with the variable locked in the true state (edge B points right). This condition, along with edge E pointing
left, is both necessary and sufficient to direct satisfied out outward. ¤

We summarize the behavior of both types of quantifiers with the following property:

Lemma 4 A quantifier gadget may direct its satisfied out edge out if and only if its try in edge is directed
in, and the formula read from the corresponding quantifier to the right is true given the variable assignments
that are fixed by the quantifier gadgets to the left.

Proof: By induction. By Lemmas 1 and 3, if a quantifier gadget’s satisfied in edge is directed inward and
the above condition is inductively assumed, then its satisfied out edge may be directed outward only if the
condition is true for this quantifier gadget as well. For the rightmost quantifier gadget, the precondition is
explicitly satisfied by Lemma 2 and the construction in Figure 4. ¤

Theorem 5 Configuration-to-edge is PSPACE-complete, even when the constraint graph is restricted to an
And/Or graph.

Proof: The graph is easily seen to have a legal configuration with the quantifier try in edges all directed
leftward. We start with the graph in some such configuration. Because of the blue loop edge attached to the
leftmost quantifier’s try in edge, we may direct that edge rightward and activate its quantifier. By Lemma 4,
the satisfied out edge of the leftmost quantifier gadget may be directed leftward if and only if φ is true.

7



Therefore, deciding whether that edge may reverse also decides the QBF problem, so configuration-to-edge
is PSPACE-hard.

Configuration-to-edge is in PSPACE because the state of the constraint graph can be described in a linear
number of bits, specifying the direction of each edge, and because the list of possible moves from any state
can be computed in polynomial time. Thus we can nondeterministically traverse the state space, at each
step nondeterministically choosing a move to make, and maintaining the current state but not the previously
visited states. Savitch’s Theorem [7] says that this NPSPACE algorithm can be converted into a PSPACE
algorithm. ¤

Corollary 6 Edge-to-edge and configuration-to-configuration are PSPACE-complete, even when the con-
straint graph is restricted to an And/Or graph.

Proof: For edge-to-edge, we use the leftmost try in edge as the input edge; then, as described above, there
is a legal initial configuration. Again, we use the leftmost satisfied out edge as the target edge.

For configuration-to-configuration, we start in some configuration with the leftmost try in edge directed
left, and with the four edges attached to the output subgraph in Figure 4 directed as indicated. Then this
same configuration, but with those four edges reversed, is reachable if and only if φ is true. This subgraph is
actually a latch: directing satisfied out left allows those edges to reverse. Then satisfied out can be directed
right again, and the entire move sequence can be reversed.

The same algorithm as above serves to show that these tasks are also in PSPACE. ¤

3.2 Planar Nondeterministic Constraint Logic

The result obtained in the previous section used particular constraint graphs, which turn out to be nonplanar.
Thus, reductions from NCL to other problems must provide a way to encode arbitrary graph connections
into their particular structure. For 2D motion-planning kinds of problems, such a reduction would typically
require some kind of crossover gadget. Crossover gadgets are a common requirement in complexity results for
these kinds of problems, and can be among the most difficult gadgets to design. For example, the crossover
gadget used in the proof that Sokoban is PSPACE-complete [2] is quite intricate. A crossover gadget is also
among those used in the Rush Hour proof [3].

In this section we show that any And/Or constraint graph can be translated into an equivalent planar
And/Or constraint graph (with respect to the three decision problems), obviating the need for crossover
gadgets in reductions from NCL.

(a) Crossover (b) Half-crossover

Figure 8: Planar crossover gadgets.

Figure 8(a) illustrates the reduction. In addition to And and Or vertices, this subgraph contains
red-red-red-red vertices; these need any two edges to be directed inward. (Next we will show how to substitute
And/Or subgraphs for these verices.)
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Lemma 7 In a crossover subgraph, each of the edges A and B may face outward if and only if the other
faces inward, and each of the edges C and D may face outward if and only if the other faces inward.

Proof: We show that edge B can face down if and only if A does, and D can face right if and only if C does.
Then by symmetry, the reverse relationships also hold.

Suppose A faces up, and assume without loss of generality that E faces left. Then so do F, G, and H.
Because H and F face left, I faces up. Because G and I face up, K faces right, so B must face up. Next,
suppose D faces right, and assume without loss of generality that I faces down. Then J and F must face
right, and therefore so must E. An identical argument shows that if E faces right, then so does C.

Suppose A faces down. Then H may face right, I may face down, and K may face left (because E and D

may not face away from each other). Symmetrically, M may face right; therefore B may face down. Next,
suppose D faces left, and assume without loss of generality that B faces up. Then J and L may face left, and
K may face right. Therefore G and I may face up. Because I and J may face up, F may face left; therefore,
E may face left. An identical argument shows that C may also face left. ¤

Next, we must show how to represent the degree-4 vertices in Figure 8(a) with equivalent And/Or

subgraphs. The necessary subgraph is shown in Figure 8(b). Note that this subgraph implicitly contains
red-blue conversions subgraphs (Figure 3); we must be careful to keep the graph planar when joining their
free red edges. We join these edges in pairs: A’s to D’s, and B’s to C’s.

Lemma 8 In a half-crossover gadget, at least two of the edges A, B, C, and D must face inward; any two
may face outward.

Proof: Suppose that three edges face outward. Without loss of generality, assume that they include A

and C. Then E and F must face left. This forces H to face left and I and J to face up; then D must face left
and K must face right. But then B must face up, contradicting the assumption.

Next we must show that any two edges may face outward. We already showed how to face A and C

outward. A and B may face outward if C and D face inward: we may face G and L down, F and K right, I
and J up, and H and E left, satisfying all vertex constraints. Also, C and D may face outward if A and B

face inward; the obvious orientations satisfy all the constraints. By symmetry, all of the other cases are also
possible. ¤

The crossover subgraph has blue free edges; what if we need to cross red edges, or a red and a blue edge?
For crossing red edges, we may attach red-blue conversion subgraphs to the crossover subgraph in two pairs,
as we did for the half-crossover. We may avoid having to cross a red edge and a blue edge, as follows: replace
one of the blue edges with a blue-red-blue edge sequence, using two red-blue conversion subgraphs, with
their free red edges joined. Then the original blue edge may be effectively crossed by crossing two red edges
instead.

Theorem 9 Theorem 5 and Corollary 6 remain valid even when the input And/Or constraint graphs are
planar.

Proof: Lemmas 7 and 8. Any crossing edge pairs may be replaced by the above constructions; a crossing
edge may be reversed if and only if a corresponding crossover edge (e.g., A or C) may be reversed. For two
of the decision problems, we must also specify configurations in the replacement graph corresponding to
source or target configurations, but this is easy: pick any legal configuration of the crossover subgraphs with
matching crossover edges. ¤

3.3 Protected OR Graphs

So far we have shown that the decision problems for planar And/Or constraint graphs are PSPACE-
complete. We can make the conditions required for PSPACE-completeness still weaker; this will make our
following puzzle reductions simpler.

We call an Or vertex protected if there are two of its edges that, due to global constraints, cannot
simultaneously be directed inward. Intuitively, graphs with only protected Ors are easier to reduce to

9



another problem domain, since the corresponding Or gadgets need not function correctly in all the cases
that a true Or must. We can simulate an Or vertex with a subgraph all of whose Or vertices are protected,
as shown in Figure 9.

Figure 9: Or vertex made with protected Or vertices.

Lemma 10 Edges A, B, and C in Figure 9 satisfy the same constraints as an OR vertex; all ORs in this
subgraph are protected.

Proof: Suppose that edges A and B are directed outward. Then D and F must be directed away from E.
Assume without loss of generality that E points left. Then so must G; this forces H right and C down, as
required. Then, by pointing B and F left, we can direct G right, H left, and C up. Symmetrically, we can
direct B and C out, and A in.

The two Or vertices shown in the subgraph are protected: edges I and D cannot both be directed
inward, due to the red edge they both touch; similarly, G and F cannot both be directed inward. The
red-blue conversion subgraphs also contain Or vertices, but these are also protected. (We connect the free
red edges from the conversion subgraphs together, preserving planarity.) ¤

Theorem 11 Theorem 9 remains valid even when all of the Or vertices in the input graph are protected.

Proof: Lemma 10. Any Or vertex may be replaced by the above construction; an Or edge may be reversed
if and only if a corresponding subgraph edge (A, B, or C) may be reversed. For two of the decision problems,
we must also specify configurations in the replacement graph corresponding to source or target configurations:
pick any legal configuration of the subgraphs with matching edges. ¤

3.4 Nondeterministic Constraint Logic on a Polyhedron

In this section we give a reduction from NCL to a particularly simple geometric form. We show that any
And/Or constraint graph can be translated into an equivalent simple planar 3-connected graph. Steinitz’s
Theorem [8, 10] says that a simple planar 3-connected graph is isomorphic to the edges of a convex polyhedron
in 3D. Therefore, any NCL problem can be thought of as an edge redirection problem on a convex polyhedron.

(a) Adding a spur to a red edge (b) Adding a spur to a blue edge

Figure 10: 3-connectivity method.

We use the constructions in Figure 10 to perform the conversion. We may replace any red edge with a
subgraph yielding an extra unconstrained blue edge, as shown in Figure 10(a): the original red edge may
be reversed in the original graph if and only if the top (equivalently bottom) red edge may be reversed in
the new graph. (This is like performing two consecutive red-blue conversions, but with an extra blue edge.)
Likewise, we may replace any blue edge with a similar subgraph, as shown in Figure 10(b).
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Theorem 12 Every And/Or constraint graph has an equivalent simple planar 3-connected And/Or graph
which can be computed in polynomial time.

Proof: First, we make the graph simple: if any two vertices are joined by more than one edge, we may
replace one with a subgraph from Figure 10. We replace any other edge in the graph with such a subgraph
as well, and join the two free blue edges.

Next, we make the graph planar, by Theorem 9. (This construction keeps the graph simple.)
Suppose the resulting graph is not 3-connected. Then there exist zero, one, or two vertices which, if

removed, would separate the graph into multiple pieces. Choose an edge on the exterior of two such pieces,
replace them with subgraphs from Figure 10, and join the two free blue edges. Now these pieces will not be
separated by the vertex removal.

By repeating this process, we may make the graph simple, planar, and 3-connected. ¤

4 Applications

In this section, we apply our results from the previous section to various puzzles and motion-planning
problems. One result (sliding blocks) is completely new, and provides a tight bound; one result (Rush Hour)
reproduces an existing result, with a simpler construction; the last result (Sokoban) strengthens an existing
result.

4.1 Sliding Blocks

We define the Sliding Blocks problem as follows: given a configuration of rectangles (blocks) of constant sizes
in a rectangular 2-dimensional box, can the blocks be translated and rotated, without intersection among
the objects, so as to move a particular block?

We are interested in the difficulty of this problem, for various allowed integral block sizes. We give a
reduction from configuration-to-edge for protected Or graphs showing that Sliding Blocks is PSPACE-hard
even when all the blocks are 1 × 2 rectangles (dominoes). (Somewhat simpler constructions are possible if
larger blocks are allowed.) In contrast, there is a simple polynomial-time algorithm for 1 × 1 blocks; thus,
our results are tight.

The Warehouseman’s Problem [5] is a related problem in which there are no restrictions on block size,
and the goal is to achieve a particular total configuration. Its PSPACE-hardness also follows from our result.

Figure 11: Sliding Blocks layout.

Sliding Blocks Layout. We fill the box with a regular grid of gate gadgets, within a “cell wall” construc-
tion as shown in Figure 11. The internal construction of the gates is such that none of the cell-wall blocks
may move, thus providing overall integrity to the configuration.
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(a) And (b) Protected Or

Figure 12: Sliding Blocks vertex gadgets.

AND and OR Vertices. We construct NCL And and protected Or vertex gadgets out of dominoes, in
Figures 12(a) and 12(b). Each figure provides the bulk of an inductive proof of its own correctness, in the
form of annotations. A dot indicates a square that is always occupied; the arrows indicate the possible
positions a block can be in. For example, in Figure 12(b), block D may occupy its initial position, the
position one unit to the right, or the position one unit down (but not, as we will see, the position one unit
down and one unit right). Because we allow continuous motions, all intermediate block positions are also
possible, but this is irrelevant to the vertex properties. We also note that the constructions are such that no
block is ever free to rotate.

For each vertex gadget, we show that the annotations are correct, by inductively assuming for each block
that its surrounding annotations are correct; its correctness will then follow. The few exceptions are noted
below. The annotations were generated by a computer search of all reachable configurations, but are easy
to verify by inspection.

In each diagram, we assume that the cell-wall blocks (dark gray) may not move outward; we then need
to show they may not move inward. The light gray (“trigger”) blocks are the ones whose motion serves to
satisfy the vertex constraints; the medium gray blocks are fillers. Some of them may move, but none may
move in such a way as to disrupt the vertices’ correct operation.

The short lines outside the vertex ports indicate constraints due to adjoining vertices; none of the “port”
blocks may move entirely out of its vertex. For it to do so, the adjoining vertex would have to permit a
port block to move entirely inside the vertex, but in each diagram the annotations show this is not possible.
Note that the port blocks are shared between adjoining vertices, as are the cell-wall blocks. For example, if
we were to place a protected Or above an And, its bottom port block would be the same as the And’s top
port block.

A protruding port block corresponds to an inward-directed edge; a retracted block corresponds to an
outward-directed edge. Signals propagate by moving “holes” forward. Sliding a block out of a vertex gadget
thus corresponds to directing an edge in to a graph vertex.

Lemma 13 The construction in Figure 12(a) satisfies the same constraints as an NCL And vertex, with A

and B corresponding to the And red edges, and C to the blue edge.

Proof: We need to show that block C may move down if and only if block A first moves left and block B

first moves down.
First, observe that this motion is possible. The trigger blocks may each shift one unit in an appropriate

direction, so as to free block C.
The annotations in this case serve as a complete proof of their own correctness, with one exception.

Block D appears as though it might be able to slide upward, because block E may slide left, yet D has no
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upward arrow. However, for E to slide left, F must first slide down, but this requires that D be first be slid
down. So when E slides left, D is not in a position to fill the space it vacates.

Given the annotations’ correctness, it is easy to see that it is not possible for C to move down unless A
moves left and B moves down. ¤

Lemma 14 The construction in Figure 12(b) satisfies the same constraints as an NCL protected Or vertex,
with A and B corresponding to the protected edges.

Proof: We need to show that block C may move down if and only if block A first moves right, or block B

first moves down.
First, observe that these motions are possible. If A moves right, D may move right, releasing the blocks

above it. If B moves down, the entire central column may also move down.
The annotations again provide the bulk of the proof of their own correctness. In this case there are three

exceptions. Block E looks as if it might be able to move down, because D may move down and F may move
right. However, D may only move down if B moves down, and F may only move right if A moves right.
Because this is a protected Or, we are guaranteed that this cannot happen: the vertex will be used only in
graphs such that at most one of A and B can slide out at a time. Likewise, G could move right if D were
moved right while H were moved down, but again those possibilities are mutually exclusive. Finally, D could
move both down and right one unit, but again this would require A and B to both slide out.

Given the annotations’ correctness, it is easy to see that it is not possible for C to move down unless A
moves right or B moves down. ¤

Graphs. Having shown how to make And and protected Or gates out of sliding-blocks configurations, we
must now show how to connect them together into arbitrary planar graphs. First, note that the box wall
constrains the facing port blocks of the vertices adjacent to it to be retracted (see Figure 11). This does not
present a problem, however, as we will show. The unused ports of both the And and protected Or vertices
are unconstrained; they may be slid in or out with no effect on the vertices. Figures 13(a) and 13(b) show
how to make (2× 2)-vertex and (2× 3)-vertex “filler” blocks out of Ands. (We use conventional “and” and
“or” icons to denote the vertex gadgets.) Because none of the Ands need ever activate, all the exterior ports
of these blocks are unconstrained. (The unused ports are drawn as semicircles.)

(a) 2× 2 filler (b) 2×3 filler (c) 5× 5 straight (d) 5× 5 turn (e) 5× 5 protected Or

Figure 13: Sliding Blocks wiring.

We may use these filler blocks to build (5 × 5)-vertex blocks corresponding to “straight” and “turn”
wiring elements (Figures 13(c) and 13(d)). Because the filler blocks may supply the missing inputs to the
Ands, the “output” of one of these blocks may activate (slide in) if and only if the “input” is active (slid
out). Also, we may “wrap” the And and protected Or vertices in 5× 5 “shells”, as shown for protected Or

in Figure 13(e). (Note that “left turn” is the same as “right turn”; switching the roles of input and output
results in the same constraints.)

We use these 5×5 blocks to fill the layout; we may line the edges of the layout with unconstrained ports.
The straight and turn blocks provide the necessary flexibility to construct any planar graph, by letting us
extend the vertex edges around the layout as needed.
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Theorem 15 Sliding Blocks is PSPACE-hard, even for 1× 2 blocks.

Proof: Reduction from configuration-to-edge for planar protected Or graphs, by the construction described.
A port block of a particular vertex gadget may move if and only if the corresponding NCL graph edge may
be reversed. ¤

Corollary 16 The Warehouseman’s Problem is PSPACE-hard, even for 1× 2 blocks.

Proof: As above, but using configuration-to-configuration instead of configuration-to-edge. The NCL graph
initial and desired configurations correspond to two block configurations; the second is reachable from the
first if and only if the NCL problem has a solution. ¤

If we restrict the block motions to unit translations, then these problems are also in PSPACE, as in
Theorem 5.

4.2 Rush Hour

In the puzzle Rush Hour, one is given a sliding-block configuration with the additional restriction that each
block is constrained to move only horizontally or vertically on a grid. The goal is to move a particular block
to a particular location at the edge of the grid. In the commercial version of the puzzle, the grid is 6 × 6,
the blocks are all 1× 2 or 1× 3 (“cars” and “trucks”), and each block constraint direction is the same as its
lengthwise orientation.

Flake and Baum [3] showed that the generalized problem is PSPACE-complete, by showing how to build
a kind of reversible computer from Rush Hour gadgets that work like our And and Or vertices, as well as
a crossover gadget. Tromp [9] strengthened their result by showing that Rush Hour is PSPACE-complete
even if the blocks are all 1× 2.

Here we give a simpler construction showing that Rush Hour is PSPACE-complete, again using the
traditional 1× 2 and 1× 3 blocks which must slide lengthwise. We only need an And and a protected Or,
which turns out to be easier to build than Or; because of our generic crossover construction (Section 3.2),
we don’t need a crossover gadget. (We also don’t need the miscellaneous wiring gadgets used in [3].)

(a) Layout (b) And (c) Protected Or

Figure 14: Rush Hour layout and vertex gadgets.

Rush Hour Layout. We tile the grid with our vertex gadgets, as shown in Figure 14(a). One block (T)
is the target, which must be moved to the bottom left corner; it is released when a particular port block
slides into a vertex.

Dark gray blocks represent the “cell walls”, which unlike in our sliding-blocks construction are not shared.
They are arranged so that they may not move at all. Light gray blocks are “trigger” blocks, whose motion
serves to satisfy the vertex constraints. Medium gray blocks are fillers; some of them may move, but they
don’t disrupt the vertices’ operation.
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As in the sliding-blocks construction, edges are directed inward by sliding blocks out of the vertex gadgets;
edges are directed outward by sliding blocks in. The layout ensures that no port block may ever slide out
into an adjacent vertex; this helps keep the cell walls fixed.

Lemma 17 The construction in Figure 14(b) satisfies the same constraints as an NCL And vertex, with A

and B corresponding to the And red edges, and C to the blue edge.

Proof: We need to show that C may move down if and only if A first moves left and B first moves down.
Moving A left and B down allows D and E to slide down, freeing F, which releases C. The filler blocks on

the right ensure that F may only move left; thus, the inputs are required to move to release the output. ¤

Lemma 18 The construction in Figure 14(c) satisfies the same constraints as an NCL protected Or vertex,
with A and B corresponding to the protected edges.

Proof: We need to show that C may move down if either A first moves left or B first moves right.
If either A or B slides out, this allows D to slide out of the way of C, as required. Note that we are using

the protected Or property: if A were to move right, E down, D right, C down, and B left, we could not then
slide A left, even though the Or property should allow this; E would keep A blocked. But in a protected
Or, we are guaranteed that A and B will not simultaneously be slid out. ¤

Graphs. We may use the same constructions here we used for sliding-blocks layouts: 5× 5 blocks of Rush
Hour vertex gadgets serve to build all the wiring necessary to construct arbitrary planar graphs (Figure 13).

In the special case of arranging for the target block to reach its destination, this will not quite suffice;
however, we may direct the relevant signal to the bottom left of the grid, and then remove the bottom two
rows of vertices from the bottommost 5 × 5 blocks; these can have no effect on the graph. The resulting
configuration, shown in Figure 14(a), allows the target block to be released properly.

Theorem 19 Rush Hour is PSPACE-complete.

Proof: Reduction from configuration-to-edge for planar protected Or graphs, by the construction described.
The output port block of a particular vertex may move if and only if the corresponding NCL graph edge
may be reversed. We direct this signal to the lower left of the grid, where it may release the target block.

Rush Hour is in PSPACE: a simple nondeterministic algorithm traverses the state space, as in Theorem 5.
¤

Generalized Problem Bounds. We may consider the more general Constrained Sliding Block problem,
where blocks need not be 1×2 or 1×3, and may have a constraint direction independent of their dimension.
In this context, the existing Rush Hour results do not yet provide a tight bound; the complexity of the
problem for 1× 1 blocks has not been addressed. We note that deciding whether a block may move at all is
in P, so a straightforward application of our technique will not work; however, the complexity of moving a
given block to a given position is not obvious.

4.3 Sokoban

In the pushing-blocks puzzle Sokoban, one is given a configuration of 1×1 blocks, and a set of target positions.
One of the blocks is distinguished as the pusher. A move consists of moving the pusher a single unit either
vertically or horizontally; if a block occupies the pusher’s destination, then that block is pushed into the
adjoining space, providing it is empty. Otherwise, the move is prohibited. Some blocks are barriers, which
may not be pushed. The goal is to make a sequence of moves such that there is a (non-pusher) block in each
target position.

Culberson [2] proved Sokoban is PSPACE-complete, by showing how to construct a Sokoban position
corresponding to a space-bounded Turing machine. Using NCL, we give an alternate proof. Our result
applies even if there are no barriers allowed in the Sokoban position, thus strengthening Culberson’s result.
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Unrecoverable Configurations. The idea of an unrecoverable configuration is central to Culberson’s
proof, and it will be central to our proof as well. We construct our Sokoban instance so that if the puzzle is
solvable, then the original configuration may be restored from any solved state by reversing all the pushes.
Then any push which may not be reversed leads to an unrecoverable configuration. For example, in the
partial configuration in Figure 15(a), if block A is pushed left, it will be irretrievably stuck next to block D;
there is no way to position the pusher so as to move it again. We may speak of such a move as being
prohibited, or impossible, in the sense that no solution to the puzzle can include such a move, even though
it is technically legal.

(a) And (b) Or (c) Utility gadgets

Figure 15: Sokoban gadgets.

AND and OR Vertices. We construct NCL And and Or vertex gadgets out of partial Sokoban positions,
in Figure 15. The dark gray blocks in the figures, though unmovable, are not barriers; they are simply blocks
that because of their configuration it is not possible to move. The light gray (“trigger”) blocks are the ones
whose motion serves to satisfy the vertex constraints. In each vertex, blocks A and B represent outward-
directed edges; block C represents an inward-directed edge. A and C switch state by moving left one unit;
B switches state by moving up one unit. We assume that the pusher may freely move to any empty space
surrounding a vertex. We also assume that block D in Figure 15(a) may not reversibly move left more than
one unit. Later, we show how to arrange both of these conditions.

Lemma 20 The construction in Figure 15(a) satisfies the same constraints as an NCL And vertex, with A

and B corresponding to the And red edges, and C to the blue edge.

Proof: We need to show that C may move left if and only if A first moves left, and B first moves up. For
this to happen, D must first move left, and E must first move up; otherwise pushing A or B would lead to
an unrecoverable configuration. Having first pushed D and E out of the way, we may then push A left, B
up, and C left. However, if we push C left without first pushing A left and B up, then we will be left in an
unrecoverable configuration; there will be no way to get the pusher into the empty space left of C to push it
right again. (Here we use the fact that D can only move left one unit.) ¤

Lemma 21 The construction in Figure 15(b) satisfies the same constraints as an NCL Or vertex.

Proof: We need to show that C may move left if and only if A first moves left, or B first moves up.
As before, D or E must first move out of the way to allow A or B to move. Then, if A moves left, C may

be pushed left; the gap opened up by moving A lets the pusher get back in to restore C later. Similarly for B.
However, if we push C left without first pushing A left or B up, then, as in Lemma 20, we will be left in

an unrecoverable configuration. ¤

Graphs. We have shown how to make And and Or vertices, but we must still show how to connect them
up into arbitrary planar graphs. The remaining gadgets we shall need are illustrated in Figure 15(c).

The basic idea is to connect the vertices together with alternating sequences of blocks placed against a
double-thick wall, as in the left of Figure 15(c). Observe that for block A to move right, first D must move
right, then C, then B, then finally A, otherwise two blocks will wind up stuck together. Then, to move block
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D left again, the reverse sequence must occur. Such movement sequences serve to propagate activation from
one vertex to the next.

We may switch the “parity” of such strings, by interposing an appropriate group of six blocks: E must
move right for D to, then D must move back left for E to. We may turn corners: for F to move right, G must
first move down. Finally, we may “flip” a string over, to match a required orientation at the next vertex,
or to allow a turn in a desired direction: for H to move right, I must move right at least two spaces; this
requires that J first move right.

We satisfy the requirement that block D in Figure 15(a) may not reversibly move left more than one unit
by protecting the corresponding edge of every And with a turn; observe that in Figure 15(c), block F may
not reversibly move right more than one unit. The flip gadget solves our one remaining problem: how to
position the pusher freely wherever it is needed. Observe that it is always possible for the pusher to cross a
string through a flip gadget. (After moving J right, we may actually move I three spaces right.) If we simply
place at least one flip along each wire, then the pusher can get to any side of any vertex.

Theorem 22 Sokoban is PSPACE-complete, even if no barriers are allowed.

Proof: Reduction from configuration-to-configuration for planar And/Or graphs. Given a planar And/Or

graph, we build a Sokoban puzzle as described above, corresponding to the initial graph configuration. We
place a target at every position that would be occupied by a block in the Sokoban configuration corresponding
to the target graph configuration. Since NCL is inherently reversible, and our construction emulates NCL,
then the solution configuration must also be reversible, as required for the unrecoverable configuration
constraints.

Sokoban is in PSPACE: a simple nondeterministic algorithm traverses the state space, as in Theorem 5.
¤

5 Conclusion

We proved that one of the simplest possible forms of motion planning, sliding 1×2 blocks (dominoes) around
in a box, is PSPACE-hard. This result is a major strengthening of previous results. The problem has no
artificial constraints, such as the movement restrictions of Rush Hour; it has object size constraints which
are tightly bounded, unlike the unbounded object sizes in the Warehouseman’s Problem. Also compared
to the Warehouseman’s Problem, the task is simply to move a block at all, rather than to reach a total
configuration.

Along the way, we presented a model of computation of interest in its own right, and which can be used to
prove several motion-planning problems to be PSPACE-hard. Our hope is to apply this approach to several
other motion-planning problems whose complexity remain open, for example:

1. 1×1 Rush Hour. While 1×1 sliding blocks can be solved in polynomial time, if we enforce horizontal
or vertical motion constraints as in Rush Hour, does the problem become PSPACE-complete? Deciding
whether a block may move at all is in P, so a straightforward application of our technique will not
work, but what is the complexity of moving a given block to a given position?

2. Lunar Lockout. In this commercial puzzle, robots are placed on a grid, and each move slides a robot
in one direction until it hits another robot; robots are not allowed to fly off to infinity. The goal is to
bring a particular robot to a specified position. Is this problem PSPACE-complete?

3. Retrograde Chess. Given two configurations of chess pieces in a generalized n × n board, is it
possible to play from one configuration to the other if the players cooperate? This problem is known
to be NP-hard [1]; is it PSPACE-complete?

Acknowledgments

We thank John Tromp, Shafira Goldwasser, and Albert Meyer for several useful comments and sugges-
tions. We also thank Timothy Chow for introducing us to the Retrograde Chess problem mentioned in the
conclusion, and for pointing out the reference [1].

17



References

[1] Hans Bodlaender. Re: Is retrograde chess NP-hard? Usenet posting to rec.games.abstract, March
16 2001.

[2] Joseph Culberson. Sokoban is PSPACE-complete. In Proceedings of the International Conference on
Fun with Algorithms, pages 65–76, Elba, Italy, June 1998.

[3] GaryWilliam Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or “Why you should generously
tip parking lot attendants”. Theoretical Computer Science, 270(1–2):895–911, January 2002.

[4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, 1979.

[5] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion planning for multiple
independent objects: PSPACE-hardness of the ‘Warehouseman’s Problem’. International Journal of
Robotics Research, 3(4):76–88, 1984.

[6] Edward Hordern. Sliding Piece Puzzles. Oxford University Press, 1986.

[7] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal
of Computer and System Sciences, 4(2):177–192, 1970.

[8] Ernst Steinitz and Hans Rademacher. Vorlesungen über die Theorie der Polyeder. Springer-Verlag,
Berlin, 1934. Reprinted 1976.

[9] John Tromp. On size 2 Rush Hour logic. Manuscript, December 2000. http://turing.wins.uva.nl/
~peter/teaching/tromprh.ps.

[10] Günter M. Ziegler. Lectures on Polytopes, lecture 4, pages 103–126. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

18


