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Abstract

We prove that there is a polyhedron with genus 6 whose
faces are orthogonal polygons (equivalently, rectangles)
and yet the angles between some faces are not multi-
ples of 90◦, so the polyhedron itself is not orthogonal.
On the other hand, we prove that any such polyhe-
dron must have genus at least 3. These results im-
prove the bounds of Donoso and O’Rourke [4] that there
are nonorthogonal polyhedra with orthogonal faces and
genus 7 or larger, and any such polyhedron must have
genus at least 2. We also demonstrate nonoverlapping
one-piece edge-unfoldings (nets) for the genus-7 and
genus-6 polyhedra.

1 Introduction

Donoso and O’Rourke [4] consider two questions, the
first of which was posed by Biedl, Lubiw, and Sun [3]:

Question 1. If an orthogonal polygon is
creased along orthogonal chords (parallel to
the edges) and folded into a polyhedron,
must it be an orthogonal polyhedron?

Question 2. If a polyhedron’s faces are
orthogonal polygons (equivalently, rectan-
gles), must it be an orthogonal polyhedron?

The difference between these two questions is that
Question 1 demands that the polyhedron has a net,
a nonoverlapping one-piece unfolding by cutting along
edges. This restriction reduces the class of candidate
polyhedra; see [1, 2].

The answers to these questions turn out to depend
on the allowed genus of the polyhedron. Donoso and
O’Rourke [4] proved that for the originally intended

∗School of Computer Science, University of Waterloo, Wa-

terloo, Ontario N2L 3G1, Canada, {biedl, tmchan, pnijjar,

ruehara, m2wang}@math.uwaterloo.ca
†MIT Laboratory for Computer Science, 200 Technol-

ogy Square, Cambridge, MA 02139, USA, {edemaine,
mdemaine}@mit.edu

‡Partially supported by NSERC.

case of genus-0 polyhedra, and even for genus-1 poly-
hedra, the answers are both yes. On the other hand,
they demonstrated a nonorthogonal polyhedron with
rectangular faces and genus 7, answering Question 2
with a no for genus 7 and larger. They also modified
this polyhedron to answer Question 1 with a no for
genus 7 and larger.

Our results. We extend these results in 3 ways:
1. We extend the lower bound to show that the an-

swers to both questions are yes for genus-2 poly-
hedra.

2. We show that the original genus-7 polyhedron
from [4] has a net, so it too answers Question 1
with a no.

3. We give a genus-6 polyhedron that answers both
questions with a no.

2 Net for Genus 7

Figure 1:
Genus 7
example.

We begin with the most tangible re-
sult. The original genus-7 example
from [4, Fig. 2], reproduced in Fig-
ure 1, is a skeletal octahedron with
its edges “thickened” into thin tri-
angular prisms. Figure 3 shows a
net for this polyhedron, proving that
it settles Question 1 without further
modification.

3 Example with Genus 6

Figure 2 shows our polyhedron with genus 6 that an-
swers both questions with a no. As in Figure 1, we
start with a skeletal cube whose edges are thickened
into triangular prisms. This construction leaves trian-
gular “holes” at the corners, visible from the center of
the cube. To fill these holes, we add 8 triangular prisms
meeting at two points in the center to form two degree-
4 vertices as in Figure 2. The result is a polyhedron,
shown in Figure 2 (left), with genus 11. To reduce the
genus to 6, we add a thin layer around five of the faces.



Figure 2: (Left) Base polyhedron with genus 11. (Right)
Polyhedron with genus 6 after adding a thin box layer on the
outside of all but one face.

Figure 4 shows a net for this polyhedron.

Figure 3:
Net for Figure 1.

Figure 4: Net for Figure 2.

4 Genus Must Be At Least 3

Our proof that a nonorthogonal polyhedron with or-
thogonal faces must have genus at least 3 works as
follows. First we develop a general upper bound on
the number of vertices of the “nonorthogonal part”
of a polyhedron in terms of its genus. In particular,
for genus 2, the bound is 8. Then we prove that a
nonorthogonal polyhedron with orthogonal faces must
have at least 9 vertices in its nonorthogonal part, and
hence must have genus more than 2.

4.1 Basic Definitions and Counts

Following [4], we think of an edge of a polyhedron as
colored green (good) if its dihedral angle (angle between
the two incident faces) is a multiple of 90◦, and red

(bad) otherwise. Define the graph Gr (the nonorthog-
onal part) by starting with all of the red edges, then
removing any degree-two vertices, coalescing the inci-
dent edges, and finally focusing attention to just a sin-
gle connected component. Any edges that were coa-
lesced were already collinear [4, Lem. 7], so the graph
Gr remains embedded in R3, defining angles and faces
(combinatorial faces, which do not necessarily lie in a
plane).

The following two lemmas relate Gr to the original
polyhedron. For their proofs, we need the notion of
an orthogonal path around a vertex v [4]: a path of
circular arcs on the intersection of the polyhedron with
a small sphere centered at v, such that every turn along
the path is by ±90◦. Let p′ denote the projection of a
point p onto this sphere.

Lemma 1 The face angles of Gr are multiples of 90◦.

Proof: Consider a face angle at v made by two edges
v, v0 and v, v1 in Gr. By the definition of Gr, there
is an orthogonal path around v from v′0 to v′1. By [4,
Lem. 4], the great arc length between v′0 and v′1 is a
multiple of 90◦, and this arc length is precisely the face
angle. 2

Lemma 2 Let e0, e1, e2 be consecutive edges around a

common vertex in Gr. Then the dihedral angle between

the plane e0, e1 and the plane e1, e2 is not a multiple

of 90◦.

Proof: Let v be the common endpoint of the ei’s, and
let wi be the other endpoint of ei. As in the previous
lemma, there is an orthogonal path around v from w′0
to w′1. By [4, Lem. 5], the great arc between w′0 and w′1
meets this orthogonal path at w′0 and w′1 with two 90◦-
multiple angles. Similarly, there is an orthogonal path
from w′1 to w′2, and the great arc between w′1 and w′2
meets this orthogonal path at two 90◦-multiple angles.
Thus, the two great arcs meet at w′1 with a 90◦-multiple
angle precisely if the two orthogonal paths meet at w′1
with a 90◦-multiple angle. The former angle is the di-
hedral angle between planes e0, e1 and e1, e2, and the
latter angle is the dihedral angle at e1 in the original
polyhedron. Because e1 is red, the angles must not be
90◦ multiples. 2

Let V , E, and F denote the number of vertices,
edges, and faces in Gr. Let D 6=5 denote the number
of vertices with degree not equal to 5. Because no ver-
tex of Gr can have degree one or three [4, Lem. 6, 8],
and we have eliminated all degree-2 vertices,

D 6=5 = D=4 + D≥6, (1)



where D=4 is the number of vertices of degree 4 and
D≥6 is the number of vertices of degree at least 6.

4.2 Special Angles

To get a better handle on D=4, we introduce the notions
of “flat” and “special” angles. Call a face angle flat if
it is 180◦.

Lemma 3 Any degree-4 vertex v in Gr is incident to

two faces each of which have a flat angle at v.

(a)

(b)
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Figure 5: Possi-
ble faces around a
degree-4 vertex.

Proof: Consider a degree-4 ver-
tex v in Gr whose incident edges
are e0, e1, e2, e3. By [4, Lem. 9],
these edges form an orthogonal
‘+’ in R3. We claim that e0 and
e2 bound a common face, forming
a flat angle at v, and symmetri-
cally e1 and e3 bound a common
face [Figure 5(a)]. The only other
possible type of face incident to
v is one that bounds ei and ei+1

for some i (modulo 4). In fact,
we must have all such faces [Fig-
ure 5(b)], or else there would be an edge incident to
only one face, contradicting the definition of a polyhe-
dron. But then the dihedral angles between these faces,
as in Lemma 2, would each be 180◦, making the edges
green, not red. Thus the claim holds. 2

Call an angle special if it is both flat and incident to
a degree-4 vertex as in the lemma. Thus, the number
s of special angles is given by

s = 2D=4. (2)

Lemma 4 Every face of Gr has at least 4 nonflat an-

gles, and hence at least 4 nonspecial angles.

Proof: By Lemma 1, every face angle is a multiple of
90◦. Such a closed polygonal chain in 3D must have at
least 4 bends: there is no triangle whose angles are all
±90◦. 2

See also [4, Lem. 14].

Because every face of degree more than 4 has a fifth
angle which is either special or nonspecial, this lemma
implies that

F≥5 ≤ F≥1s + F≥5¬s, (3)

where F≥5 is the number of faces with degree at least 5,
F≥1s is the number of faces with at least 1 special an-
gle, and F≥5¬s is the number of faces with at least 5
nonspecial angles.

4.3 Upper Bound on Vertices

We start with two relationships:

Lemma 5 In Gr, 2E − 2D=4 ≥ 4F + F≥5¬s.

Proof: The total number of angles is 2E, and each
degree-4 vertex contributes two special angles. So 2E−
2D=4 is the number of nonspecial angles. On the other
hand, there are at least 4 nonspecial angles per face
(Lemma 4), and at least one more per face with 5 or
more nonspecial angles. 2

Lemma 6 In Gr, 2E ≥ 5V −D=4 + D≥6.

Proof: The sum of the vertex degrees is 2E. As men-
tioned earlier, each vertex has degree at least 4. Thus,
we can lower bound the sum of the vertex degrees by
counting each vertex as if it had degree 5 (5V ), then
decrementing the sum for each vertex of degree 4 (D=4),
then incrementing the sum for each vertex of degree at
least 6 (D≥6). 2

We are now ready to prove the bound:

Lemma 7 In Gr, V ≤ 8(g − 1)−max{D 6=5, F≥5/2}.

Proof: By Euler’s Theorem,

F ≥ 2− 2g − V + E. (4)

Substituting this bound on F into Lemma 5, we obtain

2E − 2D=4 ≥ 8− 8g − 4V + 4E + F≥5¬s.

Combining the E terms, negating, and rewriting, we
obtain

2E ≤ −2D=4 + 8(g − 1) + 4V − F≥5¬s.

Combining this equation with Lemma 6, we have

5V −D=4 + D≥6 ≤ −2D=4 + 8(g − 1) + 4V − F≥5¬s,

which simplifies to

V ≤ −D≥6 −D=4 + 8(g − 1)− F≥5¬s.

By Equation 1 and dropping the F≥5¬s term, we obtain
the first bound:

V ≤ −D 6=5 + 8(g − 1).

On the other hand, by Equation 2, and because by
definition F≥1s ≤ s, we can obtain

V ≤ −D≥6 − F≥1s/2 + 8(g − 1)− F≥5¬s.

By Equation 3, and dropping the D≥6 term and half of
the F≥5¬s term, we obtain the second bound:

V ≤ −F≥5/2 + 8(g − 1). 2

For genus 2, Lemma 7 becomes

max{D 6=5, F≥5/2} ≤ 8− V. (5)



4.4 Too Many Vertices for Genus 2

We now use this bound to prove the final result:

Theorem 8 There are no nonorthogonal polyhedra

with orthogonal faces and genus at most 2.
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Proof: Because every vertex in Gr

has degree at least 4, V ≥ 5. By
Equation 5, D 6=5 ≤ 3. Thus, there
must be a degree-5 vertex, call it v.
Let v0, v1, v2, v3, v4 denote the neigh-
bors of v in clockwise order. Let fi

denote the face bounded by vi−1, v, vi.
(Indices are modulo 5.)

Because v, v0, v1, v2, v3, v4 are 6 distinct vertices, V ≥
6. Substituting this bound into Equation 5, we ob-
tain that F≥5 ≤ 4. Thus, out of the 5 distinct faces
f0, f1, f2, f3, f4, at least one fi has degree 4. (There
are no faces with degree less than 4 by Lemma 4.) By
Lemma 1, the angles of this quadrilateral face fi must
be multiples of 90◦, and any such face must be planar
and hence a rectangle.
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v1w1
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Let wi be the fourth vertex of fi, so
that vi−1, v, vi, wi are the vertices of
the face. We claim that wi is different
from each of v0, v1, v2, v3, v4:
1. wi must be different from vi−1

and vi because together they
make up a face.

2. wi must be different from vi+1, because the angle
vi, v, vi+1 is a multiple of 90◦ by Lemma 1, but the
angle vi, v, wi between a side and a diagonal of the
rectangle fi must be strictly between 0 and 90◦.

3. Symmetrically, wi must be different from vi−2.
4. Finally, wi must be different from vi+2. Other-

wise, angles vi, v, vi+1 and vi+1, v, vi+2 = wi are
both multiples of 90◦ by Lemma 1. Thus, the edge
v, vi+1 is orthogonal to rectangle fi, and hence or-
thogonal to both v, vi and v, vi−1. But then the
dihedral angle at edge v, vi as in Lemma 2 is a
multiple of 90◦, contradicting that edge v, vi be-
longs to Gr.
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Thus, v, v0, v1, v2, v3, v4, wi are
seven distinct vertices, so V ≥ 7.
Applying Equation 5, we find that
F≥5 ≤ 2. Thus, out of the 5 distinct
faces f0, f1, f2, f3, f4, at least two
consecutive faces fi and fi+1 have
degree 4. Again we define wi and
wi+1 to be the fourth vertices of fi

and fi+1, respectively.
Applying the same reasoning as above to each of

wi and wi+1, wi and wi+1 must be distinct from
v, v0, v1, v2, v3, v4. Furthermore, we claim that wi and
wi+1 must be distinct from each other. Otherwise, rect-
angles fi and fi+1 would share three vertices, and hence

be identical, implying that vi−1 and vi+2 are identical,
contradicting that they are distinct neighbors of v.
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Now we have 8 distinct ver-
tices, v, v0, v1, v2, v3, v4, wi, wi+1,
so V ≥ 8. Applying Equation 5,
we obtain that F≥5 = 0. Thus, all
of the faces in Gr must have de-
gree 4, in particular all of the fi’s.
Define wi to be the fourth vertex
of each fi. Applying the previous
arguments, w0, w1, w2, w3, w4 are
distinct from v0, v1, v2, v3, v4, and each wi is distinct
from wi−1 and wi+1. (Although wi might equal wi+2

or wi+3.) Furthermore, we cannot have all the odd-
index wi’s equal, and all the even-index wi’s equal,
because the number of wi’s is odd. Thus, the set
{w0, w1, w2, w3, w4} must have at least 3 distinct mem-
bers.

So there must be at least 9 distinct vertices in the set
{v, v0, v1, v2, v3, v4, w0, w1, w2, w3, w4}. But Equation 5
tells us that V ≤ 8, a contradiction. 2

5 Conclusion

The main open problem is to settle whether there are
nonorthogonal polyhedra with orthogonal faces and
genus between 3 and 5.
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