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Abstrat

We present an algorithm for a magi trik. Given a polygon with holes P , our

algorithm determines a folding of a retangular sheet of paper suh that a single straight

ut suÆes to ut out P . This paper is a simpli�ation and improvement of a paper

�rst published in Fun with Algorithms [10℄.

1 Introdution

The great Harry Houdini was one of the �rst to perform the following magi trik: fold

a sheet of paper so that a single straight ut produes a ut-out of a rabbit, a dog, or

whatever else one likes. Whereas Houdini only published a method for a �ve-pointed star [13℄

(a method probably known to Betsy Ross [12℄), Martin Gardner [11℄ posed the question

of utting out more omplex shapes. Demaine and Demaine [5℄ stated this question more

formally: given a polygon with holes P (possibly with more than one onneted omponent)

and a retangle R large enough to ontain P , �nd a \at folding" of R suh that the ross-

setion of the folding with a perpendiular plane is the boundary of P . More intuitively,

a single straight ut of the at folding produes something that unfolds to P . A at

folding [4, 14℄ is a mathematial notion, abstrating folded paper to a nonstrethable, non-

self-penetrating, zero-thikness, pieewise-linear surfae in IR

3

.

Demaine et al. [6, 7℄ have proposed a solution to this ut-out problem, based on propa-

gating paths of folds out to the boundary of the retangle R. Here we give a more \loal"

solution, based on disk paking. Our strategy is to pak disks on R so that disk enters

indue a mixed triangulation/quadrangulation respeting the boundary of polygon P . We

fold eah triangle or quadrilateral interior (exterior) to P upwards (respetively, down-

wards) from the plane of the paper, taking are that neighboring polygons agree on rease

orientations. A ut through the plane of the paper now separates interior from exterior.

Disk paking has previously been used to ompute triangulations [1℄ and quadrangula-

tions [3℄ with speial properties. Disk paking, or more preisely disk plaement, has also

been applied to origami design, most notably by Lang [15℄. In fat, the result in this paper
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Figure 1: (a) A disk paking respeting the boundary of the polygon. Verties of 4-gaps

are oirular. (b) Indued triangles and quadrilaterals.

is in some sense a fusion of a quadrangulation algorithm from Bern and Eppstein [3℄ with

an origami design algorithm from Lang [15℄.

2 Disk Paking

Let P be a polygon with holes, stritly ontained in a retangle R. We think of P as

boundary along with interior. Let PR denote the planar straight line graph that is the

union of the boundary of P and the boundary of R. In this setion, we sketh how to pak

disks suh that eah edge of PR is a union of radii of disks, and suh that the disks indue

a partition of R into triangles and quadrilaterals. Our solution is losely related to some

mesh generation algorithms [1, 3℄.

The disk paking starts with interior-disjoint disks. We all a onneted portion of R

minus the disks a gap. We all a gap bounded by three ars a 3-gap and one bounded by

four ars a 4-gap. We begin by entering a disk at eah vertex, inluding the orners of R.

At vertex v, we plae a disk of radius one-half the distane from v to the nearest edge of

PR not inident to v. We introdue a subdivision vertex (a degree-2 vertex with a straight

angle) at eah intersetion of a disk boundary and an edge of PR.

Now onsider the edges of (the modi�ed) PR that are not overed by disks. Call suh

an edge rowded if its diameter disk intersets the diameter disk of another edge of PR.

We mark eah rowded edge, and then split eah rowded edge by adding its midpoint. We

ontinue marking and splitting in any order until no edges of PR are rowded. We then

add the diameter disk of eah PR edge so that eah edge is a union of diameters of disks as

required. Stritly speaking, only the edges of P need be overed by disks, but we inlude

the boundary of R for the sake of neatness.

Next we add disks until all gaps between disks are either 3-gaps or 4-gaps. This an be

done by omputing the Voronoi diagram of the disks plaed so far, and repeatedly plaing

a maximal-radius disk at a Voronoi vertex and then updating the Voronoi diagram. Bern

et al. [1℄ give an O(n log

2

n) algorithm and Eppstein [9℄ an O(n log n) algorithm, where n

denotes the number of disks.
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Figure 1(a) gives an example disk paking, not preisely the same as the one that would

be omputed by the algorithm just skethed. By adding edges between the enters of tangent

disks, the disk paking indues a deomposition of R into triangles and quadrilaterals as

shown in Figure 1(b).

3 Moleules

A moleule is a (typially at) folding of a polygon that an be used as a building blok

in larger origamis. We shall fold the triangles in the deomposition of R with rabbit ear

moleules. In the rabbit ear moleule, a mountain fold meets eah of the triangle's verties;

these folds lie along the angle bisetors of the triangle so that the boundary of the triangle

is oplanar in the folded \star�sh". A valley fold meets eah of the triangle's sides at

the points of tangeny of the disks; these all fold to a vertial spine, perpendiular to the

original plane of the paper. The meeting point of the six folds, whih beomes the tip of

the spine in the folded on�guration, is the in-enter of the original triangle.

Figure 2: A rabbit ear moleule folds into a three-armed \star�sh".

At this point, we regard the orientations of the valley folds as hangeable: in the larger

origami some of them may be reversed from their initial assignment. For example, to form a

at origami from a single rabbit ear, one ould reverse one of the valleys into a mountain in

order to satisfy Maekawa's theorem.

1

The arms of the star�sh all point the same diretion

away from the spine in the at origami, and the boundary of the original triangle is ollinear.

We shall fold the quadrilaterals as shown in Figure 3. This folding is an improvement,

suggested by Robert Lang, of our original method of folding quadrilaterals [10℄. In this

gusset moleule [15℄, mountain folds extend some distane along the angle bisetors to a

gusset , a quadrilateral inside the original quadrilateral, shown shaded in Figure 3. The

gusset is triangulated with one of its two diagonals, a valley fold, and eah of the halves

of the overall quadrilateral is folded in a sort of rabbit ear moleule. This folding of the

quadrilaterals enjoys the same property as the folding of the triangles: the valley folds from

points of tangeny all meet at a entral spine, perpendiular to the plane of the paper.

Again we regard the orientations of these folds as hangeable. In the larger origami, we

may reverse one of the valleys in order to form a at folding with all arms pointing in the

same diretion. Notie that suh a reversal also sends a rease (a mountain-valley two-edge

path, shown dotted in Figure 3) aross the entral gusset.

1

Maekawa's theorem for at origami [4, 14℄ states that at any vertex interior to the paper the number of

mountains minus the number of valleys must be plus or minus two.

3



Figure 3: We fold a quadrilateral into a four-armed star�sh with a entral valley.
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Figure 4: (a) The two unonstrained verties of the gusset may be hosen to lie on an inset

quadrilateral. (b) The inset quadrilateral is folded with two rabbit-ear moleules.

Two of the verties of the gusset, shown by dots in Figure 3, are �xed by the requirement

that valley folds extend perpendiularly from the points of tangeny. We refer to these

verties as the perpendiular points. The other two verties of the gusset are not ompletely

onstrained. They must, however, lie on the angle bisetors of the quadrilateral in order for

the boundary of the quadrilateral to fold to a ommon plane.

A nie way [15℄ to loate the the unonstrained verties|p and r in Figure 4(a)|is

to plae them at the verties of an inset quadrilateral , a quadrilateral inside the overall

quadrilateral, with sides parallel and equidistant to the sides of the original quadrilateral.

In Figure 4(a) the original quadrilateral is abd and the inset quadrilateral is pqrs. When

the gusset moleule is folded, the inset quadrilateral will form a small star�sh whose entral

valley exatly reahes \sea level", that is, pqrs and pr fold to the same plane. In fat, the

gusset folding restrited to pqrs is just two rabbit-ear moleules, as shown in Figure 4(b).

Hene, the perpendiular points must lie at the in-enters of triangles pqr and prs, and this

requirement determines the size of pqrs.

We now argue that all quadrilaterals indued by 4-gaps|all the quadrilaterals that we

use|an be folded with the gusset moleule. What we must show is that the triangles
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pqr and prs with in-enters at the perpendiular points do indeed lie within abd, in other

words, that the requirements of the gusset moleule are not in onit with eah other.

First assume that the perpendiular points are distint, and onsider the line L through

the perpendiular points. Line L is the line of equal power distane

2

from the disks entered

at a and , and hene passes between these disks. The bisetor of the angle between L and

the valley fold perpendiular to b �xes the r. Sine L passes above the disk at , r lies

above  along the angle bisetor at . Thus pqrs does indeed lie within abd. In the extreme

ase that the disks at a and  touh eah other, pqrs equals abd and the gusset moleule

redues to two rabbit-ear moleules.

What if the perpendiular points oinide? For this extreme ase, we use a speial

property [1℄ of 4-gaps: the points of tangeny of four disks, tangent in a yle, are oirular.

Figure 1(a) shows the irle for one 4-gap. This property implies that the angle bisetors

of the quadrilateral all meet at a ommon point o, namely the enter of the irle through

the tangenies. So in the extreme ase that the perpendiular points oinide, pqrs shrinks

to point o, and the valleys from the points of tangeny and the mountains along the angle

bisetors all meet at one at-foldable point.

4 Joining Moleules

We now show how to assign �nal orientations to reases, so that neighboring moleules �t

together and eah vertex satis�es Maekawa's theorem. This �lls in (a speial ase of) a

missing step in Lang's algorithm [15℄.

We are aiming for a �nal folding of R that resembles a book of aps, something like

the rightmost piture in Figure 6. More preisely, the folding will look like two books of

triangular aps, one above and one below the original plane of the paper. The moleules

(triangles and quadrilaterals) inside P will form the top book, whereas those outside P

will form the bottom book. The boundary of P itself will not be folded, and the polygons

rossing the boundary, eah ontaining a triangle from two di�erent original moleules, will

thus belong to both books.

Angle bisetor edges inside P will be mountains and those outside P will be valleys.

Other edges of the rease pattern reeive default orientations, subjet to reversal in a �nal

mathing step. The default orientation of a tangeny edge (an edge to a point of tangeny)

or a side edge (an edge along the side of a triangle or quadrilateral) is valley inside P and

mountain outside P . Side edges lying along the boundary of P are not folded at all.

At this point, eah vertex of the rease pattern has an equal number of mountains and

valleys. The verties interior to R inside P need one more mountain, whereas those outside

P need one more valley, in order that moleules fold to their assigned half-spaes, above or

below the original plane of the paper. (Verties on the boundary of P an have an exess of

either mountains or valleys.) Let G be the planar graph obtained from the deomposition

by removing all angle bisetor edges and all edges along the boundary of P . We would like

to �nd a set of edges M|a mathing|suh that eah vertex of G lying in the interior of

R is inident to exatly one edge of M . By reversing the orientations of the edges of M ,

2

The power distane [1℄ from a point to a irle is the square of the usual distane minus the radius of the

irle squared. For points outside the irle it is the same as the tangential distane to the irle squared.
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Figure 5: (a) Cutting out a tree T

C

(shaded) spanning interior orners leaves a tree of

moleules T

M

. Roots are at the upper left. (b) The mathing onsists of side edges from

orners to parents in T

C

and tangeny edges from moleule enters to parents in T

M

.

Assignments shown assume all moleules are inside P .

we ensure that eah vertex satis�es Maekawa's theorem. All verties, even the ones along

P , whih lost two edges eah from the original deomposition of R, also satisfy Kawasaki's

theorem.

3

We now show how to solve the mathing problem using dual spanning trees. Let T

C

be

a tree of side edges suh that: T

C

inludes no edges along the boundary of R or P ; T

C

spans

all interior orners of moleules; and T

C

spans exatly one orner along the boundary of R,

whih we onsider to be its root. If we were to ut the paper along T

C

, we would obtain a

tree of moleules T

M

, as shown in Figure 5(a). We root T

M

at one of the moleules inident

to the root of T

C

. The mathing M ontains two types of edges: eah tangeny edge from

the enter of a moleule to the side of its parent in T

M

(along with one suh edge inside the

root moleule), and eah side edge from a orner to its parent (a tangeny point) in tree

T

C

. See Figure 5(b).

To piture the e�et of this hoie of M on the eventual at folding, imagine that we

have atually ut along the edges of T

C

. Imagine building up the at folding moleule by

moleule in a preorder traversal of T

M

. The root moleule of T

M

folds to a book of aps

with ollinear edges lying along the original plane of the paper. Eah hild moleule adds

a \pamphlet" of three or four aps between two aps of the book we have onstruted so

far. The over and bak over of the pamphlet are glued to their adjaent pages, so that a

quadrilateral thikens two old aps and adds two new aps.

We ontinue gluing pamphlets between aps of the growing book as we go down the tree.

Whenever we ross the boundary of P , we glue the next pamphlet above or below|rather

than between aps of|its parent moleule, so that the boundary of P is not itself folded.

When we are done joining all the moleules we indeed have two books of aps, one above

and one below the original plane of the paper.

Now imagine taping the ut edges bak together in a postorder traversal of T

C

. Before

taping, the ut leading to a leaf of T

C

, say inside P , de�nes the bottom edge of two adjaent

\armpits", as shown in Figure 6. (An armpit onsists of one layer from eah of two adjaent

3

Kawasaki's theorem for at origami [4, 14℄ states that at any vertex interior to the paper the sum of

alternate angles must be 180

Æ

.
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Figure 6: Taping together a ut leading to a leaf of T

C

amounts to joining two \armpits"

in the book of aps.

aps.) Taping together the �rst and last layer of the intervening ap forms a mountain fold,

agreeing with the orientation we gave to side edges in the mathing. Taping together the

remaining two sides of the ut forms a valley fold, agreeing with the default orientation of

side edges inside P . Taping a ut leading to a leaf of T

C

loses two armpits and redues the

number of aps in the book by two. We an ontinue taping uts all the way up T

C

. Sine

eah taping joins armpits adjaent at the time of the taping, there an be no \rossed"

pair of tapings, or put another way, no plae where the paper is fored to penetrate itself.

Altogether the taping ompletes a rease pattern on paper R that an be folded at so that

P lies above, and its omplement R n P lies below, the original plane of the paper.

5 Fattening the Polygon

At this point, we have a degenerate solution to the ut-out problem. A ut through the

original plane of the paper separates P from its omplement. Unfortunately, it also uts

P into its onstituent moleules. A ut very slightly below the original plane of the paper

leaves P intat, while adding a small \rim" to P .

We an remove the degeneray by fattening the boundary of P into a narrow \ribbon" as

shown in Figure 7. The boundaries of the ribbon are slightly inside and outside the original

P ; verties of P are moved in or out along angle bisetors. (We atually saw this ribbon

onstrution already: a gusset moleule is two adjaent rabbit ear moleules surrounded by

a ribbon!) The width of the ribbon must be smaller than the minimum feature size of the

polygon, the minimum distane between a vertex of P and an edge not inident to that

vertex.

We modify the disk paking step so that it paks partial disks (setors) around the

boundary of ribbon, suh that interior and exterior setors math up. Creases between

orresponding subdivision points ross the ribbon at right angles, whereas reases between

orresponding verties ross at angle bisetors, so that eah vertex still satis�es Kawasaki's

theorem. Notie that interior and exterior setors entered on orresponding verties have

slightly di�erent radii.
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Figure 7: Fattening the polygon into a ribbon lets P survive the ut intat.

6 Disussion

We have given an algorithm for the ut-out problem. More preisely, we have given an

algorithm for omputing a rease pattern with a at folding that solves the ut-out problem.

We have not desribed how to atually transform the rease pattern into the at folding.

Is our algorithm usable? The answer is a quali�ed yes. Figure 8 gives a rease pattern

for a �sh ut-out that is not too hard to fold. In this rease pattern, we have taken a number

of shortuts to make the algorithm more pratial. First, we have used only three-sided and

speial four-sided gaps, ones in whih perpendiulars from the enter vertex o happen to

meet the sides at the points of tangeny. Seond, we have not paked the disks all the way

to the boundary of the paper, only far enough that radiating folds do not meet within the

page. Third, we have not fattened the polygon, and hene the ut should be plaed slightly

below original plane of the paper, so that the interior remains onneted.

The number of reases used by our algorithm is not really exessive, linear in the number

of disks in the initial disk paking. The number of disks, in turn, depends upon a fairly

natural omplexity measure of the polygon. De�ne the loal feature size LFS (p) at a point

p on an edge e of P to be the distane to the losest edge that is not adjaent to e [16℄.

The loal feature size is small at narrow neks of the polygon. It is not hard to see that the

number of disks around the boundary of P is O(

R

�P

1=jLFS (p)j), where the integral is over

the boundary of P . The number of additional disks needed to �ll out the square is linear

in the disks around the boundary of P , beause eah new disk redues the number of sides

of the gap into whih it is plaed.

The algorithm of this paper an be generalized to the problem in whih the input is

a planar straight-line graph G, and a single ut must ut along all the edges of G. An

interesting open question asks whether there is a polynomial-size solution (polynomial in

the number of original verties of P or G) for the ut-out problem. A solution using disk

paking may shed some light on two other omputational geometry problems: simultaneous

inside-outside nonobtuse triangulation [2℄ and onforming Delaunay triangulation [8℄.
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Figure 8: An example for the reader to try. This \mounted marlin" design inorporates

some pratial shortuts. For example, paking the exterior with disks is unneessary,

beause radiating folds do not ollide.
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