
Palindrome Re
ognition Using a

Multidimensional Tape

Therese Biedl

�

, Jonathan F. Buss

�

, Erik D. Demaine

y

,

Martin L. Demaine

z

, Mohammadtaghi Hajiaghayi

y

, Tom�a�s Vina�r

�

S
hool of Computer S
ien
e

University of Waterloo

January 10, 2003

Abstra
t: The problem of palindrome re
ognition using a Tur-

ing ma
hine with one multidimensional tape is proved to require

�(n

2

= log n) time.

Introdu
tion

A palindrome is a word that reads the same forward and ba
kward. Hennie [1℄

showed that to test whether an input word is a palindrome requires �(n

2

)

time for a palindrome of length n on a standard one-tape Turing ma
hine.

A multitape Turing ma
hine 
an test for palindromes in real time [2℄.

�

S
hool of Computer S
ien
e, University of Waterloo, Waterloo, Ontario, Canada

N2L 3G1. Supported in part by grants from the Natural S
ien
es and Engineering Re-

sear
h Coun
il (NSERC) of Canada.

y

Work performed while at the S
hool of Computer S
ien
e, University of Waterloo,

and supported in part by grants from NSERC. Current address: Department of Ele
tri
al

Engineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge,

MA 02139, USA.

z

Work performed while at the S
hool of Computer S
ien
e, University of Waterloo.

Current address: Laboratory for Computer S
ien
e, Massa
husetts Institute of Te
hnology,

Cambridge, MA 02139, USA.

1



We 
onsider the 
ase of one two-dimensional tape. We extend Hennie's


rossing-sequen
e argument to this 
ase and prove that time 
(n

2

= log n) is

ne
essary. We also present an algorithm a
hieving O(n

2

= log n) time. Both

bounds assume that the input is presented linearly along the �rst row of the

tape.

The Lower Bound

The lower bound, like the bound for one-dimensional tapes, uses the 
on-


ept of a 
rossing sequen
e. Assume that a Turing ma
hine M to a

ept

palindromes is �xed, and 
onsider the movement of the tape head when the

input is a palindrome w. To extend 
rossing sequen
es to two dimensions,

we 
onsider 
rossing a 
olumn boundary, and in
lude in the spe
i�
ation of

ea
h 
rossing the row at whi
h the head 
rossed the boundary.

Let w be an input word and let i � 1. The ith 
rossing sequen
e on word

w, whi
h we will denote C

i

(w), is a sequen
e f(q

1

; r

1

); (q

2

; r

2

); : : : ; (q

k

; r

k

)g of

states and row numbers su
h that

� At some time t

1

, the tape head moves from 
ell (i; r

1

) to 
ell (i+1; r

1

),

and the next state is q

1

.

� At some time t

2

> t

1

, the tape head moves from 
ell (i+ 1; r

2

) to 
ell

(i; r

2

), and the next state is q

2

.

� For all odd `, 3 � ` � k, at some time t

`

> t

`�1

, the tape head moves

from 
ell (i; r

i

) to 
ell (i+ 1; r

i

), and the next state is q

`

.

� For all even `, 3 � ` � k, at some time t

`

> t

`�1

, the tape head moves

from 
ell (i+ 1; r

i

) to 
ell (i; r

i

), and the next state is q

`

.

� Only at times t

1

; t

2

; : : : ; t

k

does the tape head move from 
olumn i to


olumn i+ 1 or vi
e versa.

The state and row are the only information that the ma
hine 
arries

from one 
olumn to the next. This limitation leads to the following \spli
ing

lemma" exa
tly as in the one-dimensional 
ase [1℄.

Lemma 1 (Hennie) Suppose that M a

epts both xy and uv, with jxj = i

and juj = j, and that C

i

(xy) = C

j

(uv). Then M a

epts both xv and uy.

2



In the 
ase where M a

epts the language of palindromes, the lemma

implies that two di�erent palindromes must have di�erent 
rossing sequen
es

in most 
ases. (The ex
eptions arise when spli
ing two strings 
reates a

new palindrome.) To obtain a lower bound, we 
on
entrate on a sub
lass of

palindromes and only some of the 
rossing sequen
es. For a word x 2 f0; 1g

m

,

de�ne w(x) = x0

m

rev(x). Let

L

m

= fw(x) : x 2 f0; 1g

�

; jxj = mg:

Words in L

m

have the property that if we split and re
ombine any two su
h

words at the middle part 
onsisting entirely of 0s, then the resulting word is

not a palindrome.

Lemma 2 For any two distin
t words w

1

; w

2

2 L

m

and any i; j 2 fm; : : : ; 2mg,

the ith 
rossing sequen
e of w

1

and the jth 
rossing sequen
e w

2

must be dif-

ferent.

Proof: Assume to the 
ontrary that there exist i; j 2 fm; : : : ; 2mg for

whi
h the ith 
rossing sequen
e of w

1

= x

1

0

m

rev(x

1

) and the jth 
rossing

sequen
e of w

2

= x

2

0

m

rev(x

2

) are the same, but w

1

6= w

2

. By the previous

lemma, M a

epts the word x

1

0

m+i�j

rev(x

2

), whi
h is not a palindrome. 2

The number of possible 
rossing sequen
es of length less than l in a 
om-

putation using at most n

2

time is less than (sn

2

)

l

, where s is the number

of states of M . Sin
e L

m

has 2

m

members with mutually disjoint sets of


rossing sequen
es, we must have (sn

2

)

l

� 2

m

, whi
h yields l � log

(sn

2

)

2

m

=

m=(2 log n + log s). Therefore some word w 2 L

m

has m 
rossing sequen
es

of length 
(m= log n). The time used by M is at least the sum of the lengths

of its 
rossing sequen
es, whi
h is 
(n

2

= log n).

We have proved the following.

Theorem 1 A one-tape two-dimensional Turing ma
hine that a

epts the

language of palindromes requires 
(n

2

= log n) steps to a

ept some palindrome

of length n.

The proof extends immediately to k-dimensional tapes using 
rossing se-

quen
es a
ross a (k � 1)-dimensional hyperplane.

3



\0"

\1"

\2"

\3"

\4"

\5"

\7"

\6"

1 0 1 0 10 11 0 1 0 1

Figure 1: Mat
hing by rows. In this example, the outermost blo
ks mat
h,

but the next two do not.

The Upper Bound

Now we show that the lower bound is tight, by giving an algorithm for a

Turing ma
hine that a

epts palindromes in O(n

2

= log n) time.

The outline of the algorithm is as follows. Let the input alphabet be

f0; 1; : : : ; a � 1g. Break the input string into blo
ks of some length y. In-

terpret ea
h blo
k as an a-ary number N with value between 0 and a

y

� 1.

Now move down to row N , thus using the row to en
ode the value of this

blo
k. Similarly, we study the mat
hing blo
k, interpret its reverse as the

binary en
oding of a number and go to the 
orresponding row. By 
omparing

whether we marked the same row both times, we 
an dis
over whether the

two blo
ks were the reverse of ea
h other.

In this way, by 
rossing from one end of the string to the other just twi
e,

we 
an 
ompare two blo
ks of length y. Hen
e, only n=y passes will be needed

to 
ompare the whole string. By 
hoosing y suitably, we obtain the desired

running time.

The pre
ise algorithm is as follows. We assume a left endmarker; the

blank at the end of the input serves as a right endmarker.

1. Initialization:

(a) Assume that a string of length n is initially in the �rst row of the

tape.

(b) Compute log n, and write it in unary, using 0s, into the se
ond row.

(To 
ompute log n, make repeated s
ans of the input, marking

4



every se
ond unmarked symbol in the input, until all symbols are

marked. The number of s
ans is blog n
 + 1.)

(
) Compute log log n from log n, and write it in unary into the third

row.

(d) Subtra
t the third row from the se
ond row, so that the se
ond

row now 
ontains log n � log log n in unary (using 0s). Erase the

third row.

As we will see, log n � log log n is the value that we will use for

the length y of the blo
ks. Hen
e we have now 
omputed y.

2. Repeatedly 
ompare blo
ks as follows:

(a) Deal with the leftmost blo
k:

i. Fill the spa
e underneath the leftmost blo
k:

A. Start in the se
ond row (whi
h 
ontains 0

y

).

B. Repeatedly 
opy the 
ontents of the 
urrent row to the

next row, adding 1 (as an a-ary number) ea
h time.

C. Stop when all as are written.

The spa
e underneath the leftmost blo
k now 
ontains all

possible strings with y 
hara
ters, sorted by their numeri
al

value.

ii. Mark the spa
e underneath the leftmost blo
k as mat
hing/non-

mat
hing:

A. Go to the �rst 
olumn of the leftmost blo
k.

B. Memorize the 
hara
ter 
 in the input in a state.

C. Go down that 
olumn (as long as it is �lled). For every

entry that mat
hes 
, repla
e the entry by ". For every

entry that doesn't mat
h 
, repla
e the entry by #.

D. Repeat this for all other 
olumns of the blo
k. (The blo
k

ends when there is a blank in the se
ond row.)

iii. Mark the appropriate row:

A. S
an all rows underneath the blo
k down to the �rst blank

row.

B. If a row 
ontains a # somewhere, repla
e all entries in the

row by #.

5



0 1 0 0 1 0 0 1 0

0 0 0 " # " # # #

0 0 1 " # # # # #

0 1 0 " " " " " "

0 1 1 =) " " # =) # # #

1 0 0 # # " # # #

1 0 1 # # # # # #

1 1 0 # " " # # #

1 1 1 # " # # # #

Figure 2: Filling the spa
e beneath a blo
k.

C. Only one row will not 
ontain a # (namely, the row that

exa
tly mat
hed the 
ontent of the blo
k initially).

(b) Deal with the rightmost blo
k:

i. Copy the unary en
oding of y from the beginning of the se
ond

row to the end of the se
ond row (lo
ated by sear
hing for the

blank in the �rst row).

ii. Fill the spa
e underneath the rightmost blo
k as before, ex-


ept write the strings in reverse (least signi�
ant bit at the

left).

iii. Mark the spa
e underneath the rightmost blo
k as mat
hing

or non-mat
hing as before.

iv. Mark the 
orre
t row underneath the rightmost blo
k as be-

fore.

(
) Go to the 
orre
t row underneath the rightmost blo
k and s
an

left. If the �rst non-blank seen is not ", then there was a mismat
h

and the word is not a palindrome, so 
rash.

(d) Cleanup:

i. Copy the unary en
oding of y to underneath the se
ond blo
k.

ii. Overwrite the marked rows with # as well.

iii. Overwrite the 
he
ked blo
ks of the input with #.

(e) Repeat the mat
hing pro
edure until the leftmost and the right-

most blo
k overlap. When this happens, use a brute-for
e ap-

proa
h to test whether the remaining word (whi
h has length less

than 2y 2 O(log n)) is a palindrome.

6



Analysis

Now we analyze the time 
omplexity. The initialization (
omputing y) uses

O(n log n) time. The �nal round (testing the last 2y 
hara
ters to be a

palindrome) takes O(y

2

) � O(log

2

n) time. Thus the dominant fa
tor of the


omputation time is the produ
t of the number of rounds and the time it

takes to pro
ess any one blo
k.

In ea
h round, the ma
hine 
he
ks 2y input symbols, hen
e the total

number of rounds is O(n=y). During ea
h round, �lling the spa
e underneath

the blo
k involves an y � z re
tangle, for z = a

y

. Ea
h 
ell in the re
tangle

is only visited a 
onstant number of times; hen
e �lling the re
tangle takes

O(yz) time. Finally, to test whether the two marked rows are the same takes

O(n) time. Thus ea
h round takes O(yz + n) time.

The time for all rounds is therefore proportional to nz + n

2

=y = nz +

n

2

= log z. Taking z = n= log n and thus y = log n � log log n gives a time

bound of O(n

2

= log n).

The above yields

Theorem 2 A one-tape two-dimensional Turing ma
hine 
an test whether

a word of length n is a palindrome in time O(n

2

= log n).

Referen
es

[1℄ F. C. Hennie, One-Tape O�-Line Turing Ma
hine Complexity, Informa-

tion and Control 8 (1965) 553{578.

[2℄ Z. Galil, Palindrome Re
ognition in Real Time by a Multitape Turing

Ma
hine, J. Computer and System S
ien
es 16 (1978) 140{157.

7


