Palindrome Recognition Using a
Multidimensional Tape

Therese Biedl* Jonathan F. Buss? Erik D. Demaine!
Martin L. Demainei Mohammadtaghi Hajiaghayil Tom4s Vinai*
School of Computer Science
University of Waterloo

January 10, 2003

Abstract: The problem of palindrome recognition using a Tur-
ing machine with one multidimensional tape is proved to require
O(n?/logn) time.

Introduction

A palindrome is a word that reads the same forward and backward. Hennie [1]
showed that to test whether an input word is a palindrome requires O(n?)
time for a palindrome of length n on a standard one-tape Turing machine.
A multitape Turing machine can test for palindromes in real time [2].

*School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1. Supported in part by grants from the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

TWork performed while at the School of Computer Science, University of Waterloo,
and supported in part by grants from NSERC. Current address: Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA.

tWork performed while at the School of Computer Science, University of Waterloo.
Current address: Laboratory for Computer Science, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA.

We consider the case of one two-dimensional tape. We extend Hennie’s
crossing-sequence argument to this case and prove that time Q(n?/logn) is
necessary. We also present an algorithm achieving O(n?/logn) time. Both
bounds assume that the input is presented linearly along the first row of the
tape.

The Lower Bound

The lower bound, like the bound for one-dimensional tapes, uses the con-
cept of a crossing sequence. Assume that a Turing machine M to accept
palindromes is fixed, and consider the movement of the tape head when the
input is a palindrome w. To extend crossing sequences to two dimensions,
we consider crossing a column boundary, and include in the specification of
each crossing the row at which the head crossed the boundary.

Let w be an input word and let z > 1. The ith crossing sequence on word
w, which we will denote C;(w), is a sequence {(q1,71), (g2, 72), -+, (@, %)} of
states and row numbers such that

e At some time ty, the tape head moves from cell (¢,71) to cell (i +1,7),
and the next state is ¢j.

e At some time ¢t > t;, the tape head moves from cell (i + 1,73) to cell
(7,r2), and the next state is ¢o.

o For all odd 7, 3 <7 < k, at some time t;, > t,_;, the tape head moves
from cell (¢,7;) to cell (i + 1,7;), and the next state is .

o For all even /., 3 </ <k, at some time t; > t;_4, the tape head moves
from cell (i + 1,7;) to cell (z,r;), and the next state is .

o Only at times ty,%s,...,t; does the tape head move from column 7 to
column 7 + 1 or vice versa.

The state and row are the only information that the machine carries
from one column to the next. This limitation leads to the following “splicing
lemma” exactly as in the one-dimensional case [1].

Lemma 1 (Hennie) Suppose that M accepts both xy and uwv, with |z| =1
and |u| = 7, and that Ci(zy) = C;(uv). Then M accepts both xv and uy.

In the case where M accepts the language of palindromes, the lemma
implies that two different palindromes must have different crossing sequences
in most cases. (The exceptions arise when splicing two strings creates a
new palindrome.) To obtain a lower bound, we concentrate on a subclass of
palindromes and only some of the crossing sequences. For a word = € {0,1}™,
define w(x) = 0™ rev(x). Let

L, ={w(z):z€{0,1}", || =m}.

Words in L,, have the property that if we split and recombine any two such
words at the middle part consisting entirely of 0s, then the resulting word 1s
not a palindrome.

Lemma 2 For any two distinct words wy,wy € Ly, and any 1,5 € {m,...,2m},
the 1th crossing sequence of wy and the jth crossing sequence w, must be dif-
ferent.

Proof: Assume to the contrary that there exist 7,5 € {m,...,2m} for
which the ith crossing sequence of w; = #10™ rev(x;) and the jth crossing
sequence of wy = x20™ rev(xy) are the same, but w; # wy. By the previous
lemma, M accepts the word z;0™*'~7 rev(z,), which is not a palindrome. O

The number of possible crossing sequences of length less than [in a com-
putation using at most n? time is less than (sn?)!, where s is the number
of states of M. Since L,, has 2™ members with mutually disjoint sets of
crossing sequences, we must have (sn?)! > 2™ which yields [> log 2y 2™ =
m/(2logn + log s). Therefore some word w € L,, has m crossing sequences
of length Q(m/logn). The time used by M is at least the sum of the lengths
of its crossing sequences, which is Q(n?/logn).

We have proved the following.

sn2

Theorem 1 A one-tape two-dimensional Turing machine that accepts the
language of palindromes requires Q(n?/log n) steps to accept some palindrome
of length n.

The proof extends immediately to k-dimensional tapes using crossing se-
quences across a (k — 1)-dimensional hyperplane.

I]
R N B I

Figure 1: Matching by rows. In this example, the outermost blocks match,
but the next two do not.

The Upper Bound

Now we show that the lower bound is tight, by giving an algorithm for a
Turing machine that accepts palindromes in O(n?/logn) time.

The outline of the algorithm is as follows. Let the input alphabet be
{0,1,...,a — 1}. Break the input string into blocks of some length y. In-
terpret each block as an a-ary number N with value between 0 and ¥ — 1.
Now move down to row N, thus using the row to encode the value of this
block. Similarly, we study the matching block, interpret its reverse as the
binary encoding of a number and go to the corresponding row. By comparing
whether we marked the same row both times, we can discover whether the
two blocks were the reverse of each other.

In this way, by crossing from one end of the string to the other just twice,
we can compare two blocks of length y. Hence, only n/y passes will be needed
to compare the whole string. By choosing y suitably, we obtain the desired
running time.

The precise algorithm is as follows. We assume a left endmarker; the
blank at the end of the input serves as a right endmarker.

1. Initialization:

(a) Assume that a string of length n is initially in the first row of the
tape.

(b) Compute log n, and write it in unary, using 0s, into the second row.
o compute logn, make repeated scans of the input, markin
T pute logn, ke repeated f the input, king

every second unmarked symbol in the input, until all symbols are
marked. The number of scans is |logn]| + 1.)

(¢) Compute loglogn from log n, and write it in unary into the third
row.

(d) Subtract the third row from the second row, so that the second
row now contains logn — loglogn in unary (using 0s). Erase the
third row.

As we will see, logn — loglogn is the value that we will use for
the length y of the blocks. Hence we have now computed y.

2. Repeatedly compare blocks as follows:

(a) Deal with the leftmost block:
i. Fill the space underneath the leftmost block:

A. Start in the second row (which contains 0Y).

B. Repeatedly copy the contents of the current row to the
next row, adding 1 (as an a-ary number) each time.

C. Stop when all as are written.

The space underneath the leftmost block now contains all
possible strings with y characters, sorted by their numerical
value.

ii. Mark the space underneath the leftmost block as matching/non-
matching:

A. Go to the first column of the leftmost block.
B. Memorize the character ¢ in the input in a state.

C. Go down that column (as long as it is filled). For every
entry that matches ¢, replace the entry by 1. For every
entry that doesn’t match ¢, replace the entry by |.

D. Repeat this for all other columns of the block. (The block

ends when there is a blank in the second row.)
iii. Mark the appropriate row:

A. Scan all rows underneath the block down to the first blank
Tow.

B. If a row contains a | somewhere, replace all entries in the

row by #.

i e e S e B e B e B e B)
_ =0 O OO
R O, Ok, Ok OO
e — — — O
— A A —
FrdHFHFFHFFH—FHH* e

e e > O
FFhHHRFHFHoFHFHR o
FFhFHFFH o FHF IR

Figure 2: Filling the space beneath a block.

C. Ounly one row will not contain a | (namely, the row that
exactly matched the content of the block initially).

(b) Deal with the rightmost block:

1. Copy the unary encoding of y from the beginning of the second
row to the end of the second row (located by searching for the
blank in the first row).

ii. Fill the space underneath the rightmost block as before, ex-
cept write the strings in reverse (least significant bit at the
left).

iii. Mark the space underneath the rightmost block as matching
or non-matching as before.

iv. Mark the correct row underneath the rightmost block as be-
fore.

(¢) Go to the correct row underneath the rightmost block and scan

left. If the first non-blank seen is not 1, then there was a mismatch
and the word is not a palindrome, so crash.

(d) Cleanup:
1. Copy the unary encoding of y to underneath the second block.
ii. Overwrite the marked rows with # as well.
iii. Overwrite the checked blocks of the input with #.
(e) Repeat the matching procedure until the leftmost and the right-
most block overlap. When this happens, use a brute-force ap-

proach to test whether the remaining word (which has length less
than 2y € O(logn)) is a palindrome.

Analysis

Now we analyze the time complexity. The initialization (computing y) uses
O(nlogn) time. The final round (testing the last 2y characters to be a
palindrome) takes O(y?) C O(log®n) time. Thus the dominant factor of the
computation time is the product of the number of rounds and the time it
takes to process any one block.

In each round, the machine checks 2y input symbols, hence the total
number of rounds is O(n/y). During each round, filling the space underneath
the block involves an y x z rectangle, for z = @Y. Each cell in the rectangle
is only visited a constant number of times; hence filling the rectangle takes
O(yz) time. Finally, to test whether the two marked rows are the same takes
O(n) time. Thus each round takes O(yz + n) time.

The time for all rounds is therefore proportional to nz + n?/y = nz +
n?/logz. Taking z = n/logn and thus y = logn — loglogn gives a time
bound of O(n?/logn).

The above yields

Theorem 2 A one-tape two-dimensional Turing machine can test whether
a word of length n is a palindrome in time O(n?/logn).

References

[1] F. C. Hennie, One-Tape Off-Line Turing Machine Complexity, Informa-
tion and Control 8 (1965) 553-578.

[2] Z. Galil, Palindrome Recognition in Real Time by a Multitape Turing
Machine, J. Computer and System Sciences 16 (1978) 140-157.

