Paper by Erik D. Demaine

Erik D. Demaine and Joseph S. B. Mitchell, “Reaching Folded States of a Rectangular Piece of Paper”, in Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG 2001), Waterloo, Ontario, Canada, August 13–15, 2001, pages 73–75.

We prove that any folded state of a rectangular piece of paper (a continuous isometric non-self-intersecting mapping of the paper into space) can be reached by a continuous folding process, starting from the unfolded state, while at all times being a valid folding. In our model, the paper cannot properly cross itself, but can touch itself, as in a flat folding.

This paper is also available from the electronic proceedings as

Photos of Victoria Hart folding a crane by our algorithm

The paper is 3 pages.

The paper is available in PostScript (118k) and gzipped PostScript (45k).
See information on file formats.
[Google Scholar search]

Related papers:
PaperReachability_CCCG2004 (Continuous Foldability of Polygonal Paper)

Related webpages:
Folding and Unfolding

See also other papers by Erik Demaine.
These pages are generated automagically from a BibTeX file.
Last updated March 9, 2018 by Erik Demaine.