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Abstract. We show how to hang a picture by wrapping rope around
n nails, making a polynomial number of twists, such that the picture
falls whenever any k out of the n nails get removed, and the picture
remains hanging when fewer than k nails get removed. This construction
makes for some fun mathematical magic performances. More generally,
we characterize the possible Boolean functions characterizing when the
picture falls in terms of which nails get removed as all monotone Boolean
functions. This construction requires an exponential number of twists in
the worst case, but exponential complexity is almost always necessary
for general functions.

1 Introduction 'I
If you hang a picture with string
looped around two nails, and

then remove one of the nails, (a) A normal (b) Solution to the
the picture still hangs around the hanging. two-nail puzzle.
other nail. Right? This conclu-

sion is correct if you hang the Fig. 1. Hanging a picture on two nails.

picture around the two nails in
the obvious way shown in Figure An intriguing puzzle, originally posed
by A. Spivak in 1997 [9], asks for a different hanging of the picture such that
removing either nail causes the picture to fall. Figure shows a solution.
This puzzle has since circulated around the puzzle community. Michael Hardy
from Harvard posed the puzzle to Marilyn vos Savant (famous for her claimed
ability to answer any riddle), and the puzzle and solution appeared in her column
[12]. Torsten Sillke [7] distributed the puzzle, in particular to Ed Pegg Jr., and
mentioned a connection to Borromean rings and Brunnian links described in
Section This connection provides a solution to a more general form of the
puzzle, which we call 1-out-of-n: hang a picture on n nails so that removing any
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one nail fells the picture. Pegg’s MathPuzzle.com [5] has facilitated a discussion
between Sillke, Neil Fitzgerald, and Chris Lusby Taylor. Fitzgerald pointed out
a connection to group theory, described in Section which provides a direct
solution to the 1-out-of-n puzzle. Taylor pointed out a more efficient solution to
the same puzzle. All of this work is detailed and carefully analyzed in Section [3]

We consider a more general form of the puzzle where we want the removal
of certain subsets of nails to fell the picture. We show that any such puzzle
has a solution: for any collection of subsets of nails, we can construct a picture
hanging that falls when any entire subset of nails gets removed, but remains
hanging when every subset still has at least one unremoved nail. This result
generalizes picture-hanging puzzles to the maximum extent possible.

Unfortunately, our construction makes an exponential number of twists
around the n nails. Indeed, we show that this is necessary, for most general
settings of the problem. Fortunately, we find polynomial constructions for the
l-out-of-n puzzle, as well as the k-out-of-n generalization where the picture
falls only after removing (any) k out of the n nails. More generally, we show
that any monotone Boolean function in the complexity class mNC! (mono-
tone logarithmic-depth bounded-fanin circuits) has a polynomial-length solution,
which can also be found by a polynomial-time algorithm.

These generalizations make for fun puzzles as well as magic performances.
Section [2| gives several puzzles accessible to the public that become increasingly
easier to solve while reading through this paper. These constructions have been
featured as a kind of mathematical magic trick during several of the first au-
thors’ talks (first his FUN 2004 plenary talk): the magician wraps large rope
around various volunteers’ outstretched arms (which act as the “nails”), spec-
tators choose which arms to remove from the construction, and the magician
simply “applies infinite gravity” (untangles and pulls on the ends of the rope)
to cause the rope to mathemagically fall to the ground. See Figure
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(a) A solution to Puzzle[I]implemented by (b) A solution to Puzzle [§] implemented
wrapping rope around children’s arms for by wrapping fire hose from the local fire
the Porter Public Lecture during the Joint department, when the first author forgot
Mathematics Meetings, January 2012. to bring his rope for a Poly4 Lecture, 2011.

Fig. 2. Picture-hanging puzzles performed as mathematical magic tricks.



Our work interrelates puzzles, magic, topology, Borromean rings, Brunnian
links, group theory, free groups, monotone Boolean function theory, circuit com-
plexity, AKS sorting networks, combinatorics, and algorithms.

A related result constructs interlocked 2D polygons that separate (fall apart)
when certain subsets of polygons are removed, again according to an arbitrary
monotone Boolean function [2]. That result is essentially a geometric analog
of the topological results presented here, although most of the challenges and
remaining open questions differ substantially.

2 Puzzles

To whet the appetite of puzzle aficionados, we present a sequence of picture-
hanging puzzles ranging from simple to more interesting extensions, some of
which require rather involved constructions. We have tested our solutions with
38-inch lanyard wrapped around fingers, and found that this length suffices for
Puzzles|[T} [6} [7} and[8] but for the other puzzles you would need a longer cord
or string. In public performances with large rope wrapped around volunteers’
arms, the first author typically performs Puzzles [6] and

Puzzle 1 (1-out-of-3) Hang a picture on three nails so that removing any one nail
fells the picture.

Puzzle 2 (2-out-of-3) Hang a picture on three nails so that removing any two nails
fells the picture, but removing any one nail leaves the picture hanging.

Puzzle 3 (1+2-out-of-3) Hang a picture on three nails arranged along a horizontal
line so that removing the leftmost nail fells the picture, as does removing the rightmost
two nails, but removing one of the two rightmost nails leaves the picture hanging.
Puzzle 4 (1-out-of-4) Hang a picture on four nails so that removing any one nail
fells the picture.

Puzzle 5 (2-out-of-4) Hang a picture on four nails so that removing any two nails
fells the picture, but removing any one nail leaves the picture hanging.

Puzzle 6 (3-out-of-4) Hang a picture on four nails so that removing any three nails
fells the picture, but removing just one or two nails leaves the picture hanging.
Puzzle 7 (2+42-out-of-24+2) Hang a picture on two red nails and two blue nails so
that removing both red nails fells the picture, as does removing both blue nails, but
removing one nail of each color leaves the picture hanging.

Puzzle 8 (1+2-out-of-2+42) Hang a picture on two red nails and two blue nails so
that removing any one red nail fells the picture, as does removing both blue nails, but
removing just one blue nail leaves the picture hanging.

Puzzle 9 (1+3-out-of-3+3) Hang a picture on three red nails and three blue nails
so that removing any one red nail fells the picture, as does removing all three blue
nails, but removing just one or two blue nails leaves the picture hanging.

Puzzle 10 (1+2-out-of-34+3) Hang a picture on three red nails and three blue nails
so that removing any one red nail fells the picture, as does removing any two of the
blue nails, but removing just one blue nail leaves the picture hanging.

Puzzle 11 (1+1-out-of-2+2-+2) Hang a picture on two red nails, two green nails,
and two blue nails so that removing two nails of different colors (one red and one green,
or one red and one blue, or one green and one blue) fells the picture, but removing two
nails of the same color leaves the picture hanging.



3 Basic Theory: 1-out-of-n

We start our mathematical and algorithmic study of picture-hanging puzzles
with the simplest generalization, called 1-out-of-n, where the goal is to hang a
picture on n nails such that removing any one nail fells the picture. This gen-
eralization is what has been studied in the past. Our contribution is to give a
thorough complexity analysis of the resulting solutions, the best of which Theo-
rem [I| summarizes below. Then, in Section [3.4] we give a slight generalization to
handle colored nails, which is enough to solve many of the puzzles listed above.

3.1 Connection to Borromean and Brunnian Links

According to Torsten Sillke [7], Werner Schwirzler observed that the Borromean
rings provide a solution to the two-nail picture-hanging problem, and that gen-
eralized forms of Borromean rings provide solutions to more general picture-
hanging problems. This section describes those connections.

The classic Borromean rings are three loops that are
inseparable—in topology terms, nontrivially linked—but such
that no two of the rings are themselves linked. The Italian
Renaissance family Borromeo’s family crest draws them as
interwoven circles, as in Figure

The property of Borromean rings sounds similar to the
picture-hanging puzzle: the three loops are linked, but remov- Fic. 3
. . . 1g. o.
ing any one loop unlinks them. Indeed, by stretching one loop
to bring a point to infinity, and straightening out the loop,
we can view a loop as an infinite line—or nail—that pene-
trates the entire construction. Applying this topology-preserving transformation
to two out of the three loops, we convert any Borromean-ring construction into a
solution to the two-nail picture-hanging puzzle. Conversely, any solution to the
two-nail picture-hanging puzzle can be converted into a Borromean-ring con-
struction by viewing the nails as infinite lines piercing the loop of rope and
converting these lines to large loops.

Knot theorists have studied two generalizations to the Borromean rings. The
first generalization, a Borromean link, is a collection of n loops that are linked
but such that no two of the loops are linked. This property seems less useful for
an n-nail picture-hanging puzzle, because it guarantees only that removing n —2
of the nails fells the picture; removing between 1 and n — 3 of the nails might fell
the picture or might not, depending on the particular Borromean link at hand.
The second generalization, a Brunnian link, is a collection of n loops that are
linked but such that the removal of any loop unlinks the rest. This property is
exactly what we need for the n-nail picture-hanging puzzle where removing any
one of the n nails fells the picture. Figure [4] shows an example of transforming a
Brunnian link into a picture-hanging puzzle.

Hermann Brunn [I] introduced Brunnian links in 1892, about 25 years after
the first mathematical study of Borromean links [T1]. Brunn gave a construction
for a Brunnian link of n loops for every n > 3. See [6] for a more accessible

Borromean
rings.



(a) Brunnian 4-link. (b)  Stretch- (c) Picture-hanging equivalent.
ing.

Fig. 4. Transforming a Brunnian 4-link into a 1-out-of-4 picture-hanging puzzle.

description of this construction. Using the reduction described above, we obtain
a solution to the l-out-of-n picture-hanging puzzle for any n > 2. The only
negative aspect of this solution is that its “size” (combinatorial complexity)
grows exponentially with n; we will see a better solution in Section [3.3

Theodore Stanford [I0] characterizes a generalized form of Brunnian links,
where the removal of arbitrary subsets of loops causes the link to trivialize
(fall apart). This problem is subtly different from picture hanging (and indeed,
for years, we thought that it had already solved our problem): like Borromean
links, it does not require the link remain nontrivial until one of the subsets gets
entirely removed. In particular, the trivial link is considered a “solution”, no
matter what subsets get specified. Conceivably, Stanford’s characterization can
be used to obtain a solution with this property, but it is not obvious how.

3.2 Connection to Free Group

This section describes a more general framework to study picture-hanging puz-
zles in general. The framework is based on group theory and comes naturally
from algebraic topology. To the best of our knowledge, this connection was first
observed by Neil Fitzgerald [B]. Although we do not justify here why the group-
theoretic representation is accurate, this is an easy exercise for those familiar
with algebraic topology.

A powerful way to abstract a weaving of the
rope around n nails uses what is called the free
group on n generators. Specifically, we define 2n
symbols: x1, z7', x2, 23", ..., Zn, x,; ' Each
x; symbol represents wrapping the rope around
the ith nail clockwise, and each x; ! symbol rep-
resents wrapping the rope around the ith nail
counterclockwise. Now a weaving of the rope Fig. 5. Algebraic notation for

can be represented by a sequence of these sym- Fi
igure
bols. For example, the solution to the two-nail &




picture-hanging puzzle shown in Figure |5 can be written xixoz 13:2_ ! because,
starting from the left, it first turns clockwise around the first (left) nail, then
turns clockwise around the second (right) nail, then turns counterclockwise
around the first nail, and finally turns counterclockwise around the second nail.

In this representation, removing the ith nail corresponds to dropping all
occurrences of x; and x;l in the sequence. Now we can see why Figure [5| disen-
tangles when we remove either nail. For example, removing the first nail leaves
just xoxs ! i.e., turning clockwise around the second nail and then immediately
undoing that turn by turning counterclockwise around the same nail. In general
x; and xi_l cancel, so all occurrences of xixi_l and xi_lzi can be dropped. (The
free group specifies that these cancellations are all the simplifications that can
be made.) Thus, the original weaving xlmgxflxg 'is nontrivially linked with the
nails because nothing simplifies; but if we remove either nail, everything cancels
and we are left with the empty sequence, which represents the trivial weaving
that is not linked with the nails (i.e., the picture falls).

In group theory, the expression xlxgxflag Lis called the commutator of
and x2, and is written [x1, z3]. The commutator is a useful tool for solving more
general picture-hanging puzzles.

Terminology. In general, define a picture hanging on n nails to be a word (se-
quence of symbols) in the free group on n generators. We refer to the number of
symbols in the word as the length of the hanging, as it approximates the needed
length of the string or cord. The special identity word 1 represents the fallen
sta;se. Removing the ith nail corresponds to removing all occurrences of x; and

z; ~, which may or may not cause the hanging to fall.

3.3 1-out-of-n

Theorem 1. For any n > 1, there is a picture hanging on n nails of length at
most 2n? that falls upon the removal of any one nail. For each i = 1,2,...,n,
symbols x; and xi_l appear at most 2n times.

Ezponential construction. We start with a
simpler, less-efficient construction given by
Neil Fitzgerald [5]E|The idea is to generalize
the weaving xlxzxflxgl by replacing each
r; with an inductive solution to a smaller
version of the problem. In other words, we
start with the solution for n = 2: Sy =
[21, 2] = $1$2$f1$51~ Now from this so- Fig.6. Hanging a picture on
lution Sz we build a solution for n = 3 by three nails so that removing any
using the same pattern but involving copies ope nail fells the picture.

of Sy in place of one of the x;’s: S3 = [Sa,

5 This construction also turns out to be essentially the same as the solution that comes
out of the Brunnian-link construction described in Section [3.1}
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xg] = Sox3S; x3 = (z1moxy wy )x3(Tixex] X3 ) T3 = X1Tax] T, T3

zoxyzy oy 'es . Here we are using the algebraic rules (zy)~! = y~'z~! and
(x71)~! = z. Figure |§| shows the corresponding picture-hanging solution.

Naturally, this construction generalizes to all n by defining S,, = [S,—1, 2] =
Sn,lan;_llxgl. For example, Sy = [S5,24] = 53x45§1x;1 = T1T2T] Ty T3To
zyxy oy ey tegrsry wony tay Yy sy ag tay t b If we remove any of the first
three nails, the copies of S3 disappear, leaving us with mx;l which cancels. And
if we remove the fourth nail x4, we are left with S355 I which cancels.

The problem with this construction, which we start to see with the full ex-
pansion of Sy, is that the length of the sequence S,, grows exponentially with n.
More precisely, the number of symbols in S,, is 2" +2"~! — 2. To see why this
count is correct, first check that S, has length 4 = 22 + 2! — 2. Then, if we
suppose inductively that S,,_; has length 27! 427~2 — 2 we can conclude that
S, has twice that length plus 2 for the occurrences of z,, and x,,!, for a total of
202n 71 4 2n=2 ) 42 =2 4 271 442 =274 271 2 as claimed.

Polynomial construction. Fortunately, there is a more efficient construction that
solves the 1-out-of-n picture-hanging puzzle. This construction was designed by
Chris Lusby Taylor [5]. The idea is to recursively build S,, in a more balanced
way, in terms of S, /5 for the first half of the nails and ), /5 for the second half of
the nails, instead of one S,,_; and a single variable. To enable this construction,
we need to consider a more general problem involving the nails from ¢ through
Jj for various 7 and j. At the simplest level we have a single nail: E(i : i) = z;.
At the next simplest level we have two nails as before: E(i : i+ 1) = [z, 2,41] =
zixiﬂx;lx;}l. Then for an arbitrary interval ¢ : j, we build E(i : j) out of a
recursive copy of E applied to the first half of the interval and a recursive copy
of E applied to the second half of the interval:

EG:j)=[BG: [5]). B (5 +1:)].

For n = 3, this construction does not save anything, because splitting an
interval of length three in half leaves one piece of length two and one piece of
length one. But for n = 4 we gain some efficiency:

E(1:4)=[E(1:2),E(3:4)]
=E(1:2)E(3:4) BE(1:2)"' E3:4)7!
= (w122 2y ) (mamawy oy ) (wrmony Ty ) T (mamany ey )T

= xlxgxfl:Eg1x3x4w§1x21x2x1x;1xf1x4m3x21x§1.

1

This sequence has 16 symbols compared to the 22 from S(4) above.

While this savings may not seem significant, the savings becomes substan-
tially more impressive as n grows. If n is a power of two, then E(1 : n) has
length n?, because it consists of two copies of E(1 : n/2) and two copies of
E(n/2+1:n) and because 4(n/2)? = n?. Furthermore, in this case, symbols z;
and z; appear exactly n times in E(1 : n) because by induction they appear
exactly n/2 times in exactly one of E(1:n/2) and E(n/2+1:n).



If n is not a power of two, we at least have that E(1 : n) has length at most
(2n)? = 4n?, because E(1 : n) only increases if we round up to the next power of
two. The integer sequence formed by the length of E(1:n) withn =1,2,3,...
is in fact in Neil Sloane’s Encyclopedia [8]. Ellul, Krawetz, Shallit, and Wang
[3] proved that, if n is b larger than the previous power of two, 2%, then the
length of E(1 : n) is precisely (2%)? + b(2¢%2 — 2). This formula is always
at most 2n?. Furthermore, symbols z; and z; ! appear at most 2n times in
E(1 : n) because each recursion doubles the number of appearances, and there
are precisely [logy n] < logyn + 1 recursions, so the number of appearances is
at most 21°%27+1 = 2n_ This completes the proof of Theorem

3.4 Disjoint Subsets of Nails

One way to state the most general form of a picture-hanging puzzle is the fol-
lowing: given arbitrary subsets S1, S, ..., Sk of {1,2,...,n}, hang a picture on
n nails such that removing all the nails in S; fells the picture, for any i between
1 and k, but removing a set of nails that does not include an entire .S; leaves the
picture hanging. For example, the 1-out-of-n puzzle is the special case of S; = {i}
for i = 1,2,...,n. All of the puzzles posed in Section [2] can be represented as
particular instances of this general puzzle.

As a warmup to this general form of the puzzle, we first observe that the
theory we have developed so far easily solves the special case in which the subsets
51,53, ...,S) are pairwise disjoint. This corresponds to the pegs being divided
into different color classes, or “supernails”, and the picture falling precisely when
an entire color class has been removed. Many puzzles in Section [2] are like this.

Theorem 2. For any partition of {1,2,...,n} into disjoint subsets
S51,89,...,Sk, there is a picture hanging on n nails of length at most
2kn that falls when removing all nails in S;, for any i between 1 and k, but does
not fall when keeping at least one nail from each S;.

4 General Theory

This section develops a general theory for solving the most general form of the
picture-hanging puzzle. Section [3.4]above described one statement of this general
form, using subsets, but this turns out to be an inefficient way to represent even
relatively simple problems. For example, the k-out-of-n puzzle has (2) subsets
of nails that fell the picture, which is exponential for k between en and (1 —¢)n.
We therefore turn to a more general representation, called “monotone Boolean
functions”. Although our general solution remains exponential in the worst case,
we show in Section [£:4 how this representation allows us to achieve a polynomial
solution for k-out-of-n in particular.

4.1 Connection to Monotone Boolean Functions

For a given picture hanging p on n nails, define the fall function f,(r1,re, ..., ),
where each r; is a Boolean value (true/1 or false/0), to be a Boolean value



specifying whether the hanging p falls after removing all x;’s corresponding to
true r;’s. For example, a solution p to the 1-out-of-n puzzle has the fall function
“is any r; set to true?”, because setting any r; to true (i.e., removing any z;)
causes the construction p to fall. In logic, we would write f,(r1,72,...,70) =
r1Vra V.-V, where V represents OR (logical disjunction).

The most general form of picture-hanging puzzle on n nails is the following:
given a desired fall function f(ry,r2,...,7,), find a picture hanging p with that
fall function, i.e., with f, = f. Not all such puzzles can be solved, however.
Every fall function must satisfy a simple property called monotonicity: if r1 < rf,
ro <rh,...,and r, <), then f(ri,ra,...,1m) < f(ry,7h,...,r]). Here we view
the truth values as 0 (false) and 1 (true), so that false < true. This condition
just says that, if the hanging falls when removing certain nails given by the r;’s,
and we remove even additional nails as given by the 7}’s, then the hanging still
falls. A picture hanging cannot “unfall” from removing nails, so monotonicity is
a necessary condition on fall functions. For example, it is impossible for a picture
hanging to fall from removing any one nail but not from removing more nails.

Monotone Boolean functions are well-studied in combinatorics (through
Dedekind’s Problem), computational complexity, and computational learning
theory, among other fields. It is well-known that they are exactly the functions
formed by combining the variables r1, 79, ..., 7, with the operators AND (A) and
OR (V). (In particular, NOT is forbidden.) We can leverage this existing theory
about monotone Boolean functions in the context of picture hanging.

4.2 Arbitrary Monotone Boolean Functions

In particular, we establish that monotone Boolean functions are exactly the fall
functions of picture hangings. We have already argued that every fall function
is monotone; the interesting part here is that every monotone Boolean function
can be represented as the fall function of a picture hanging. Our construction is
exponential in the worst case, but efficient in many interesting cases.

Theorem 3. Every monotone Boolean function f onn variables is the fall func-
tion f, of a picture hanging p on n nails. If the function f can be computed by
a depth-d circuit of two-input AND and OR gates, then we can construct p to
have length ¢ for a constant c. We can compute such p in time linear in the
length of p. In particular, for functions f representable by a depth-O(logn) cir-
cuit of two-input AND and OR gates (the complexity class mNC!), there is a
polynomial-length picture hanging.

Our approach to proving this theorem is to simulate AND and OR gates in
a way that allows us to combine them into larger and larger circuits. The most
intuitive version of the construction is when the function f is represented as a
monotone Boolean formula (as opposed to circuit), which can be parsed into a
tree with the 7;’s at the leaves and the value of f at the root. As base cases,
we can represent the formula r; by the picture hanging z; (or x; 1)7 which falls
precisely when the ith nail gets removed. We show next that, given picture



hangings p and ¢ representing two monotone Boolean functions f and g, we can
construct picture hangings AND(p, ¢) and OR(p, ¢) representing f A g and f V g,
respectively. While most intuitively applied up a tree representing a formula, the
same construction applies to a directed acyclic graph representing a circuit.

Our AND and OR constructions build on two known lemmas from monotone
function theory. We start with AND:

Lemma 4. [A. I. Mal'tsev] [4, Lemma 3] For any two words p,q in the free
group on Ti,To,...,T,, the equation p2x1p2x1_1 = (qxgqm51)2 is equivalent to
the conjunction (p =1) A (¢ = 1).

Using commutator notation, the equation becomes [p, z1] = [q, z2]?. Because
the free group is a group, we can right-multiply the equation by [q,72]72 to
obtain the equivalent equation [p, z1] - [¢, 22] 72 = 1.

Lemma [4] states that this equation holds if and only if p = 1 and ¢ = 1.
Recall that 1 is the fallen state of picture hangings. Thus, the left-hand side

1 1

AND(p, q) = [p,x1] - [q, 2] > = prap~ a7 waquy g wagry gt (1)
falls if and only if both p and ¢ fall. This construction is our desired AND.

We now turn to the OR construction:

Lemma 5. [G. A. Gurevich] [4, Lemma 4] For any two words p,q in
the free group on x1,%o,...,%Tn, the conjunction of the four equations
(pripry®)(qrbqry®) = (qubqry ) (pripry®), for all s,t = £1, is equivalent to
the disjunction p =1V q=1.

Using commutator notation, the equations become [[p, z3], [¢, z4]] = 1 for all
s,t = 1. Lemma [5| states that these equations all hold if and only if z = 1
or y = 1. To obtain the conjunction of the four equations, we apply the AND
construction above:

OR(p, q) = AND (AND<[[;D, 1], [q, 2], [[p, 21], [q, 25 '] )

awo([[p 7] [ a]], [, [q,x;n)). @)

Thus OR(p, q) falls if and only if either p or ¢ falls. This construction is our
desired OR. The OR formula expands to 144 p and ¢ terms, and 474 x1 and x5
terms, for a total of 618 terms.

Analysis. Now we argue that a circuit of depth d results in a picture hanging
of length at most ¢? for a constant c¢. The output of the circuit is the output of
some gate, either AND or OR, which has two inputs. Each input can be viewed
as the output of a subcircuit of the overall circuit, with smaller depth d — 1. The
two subcircuits may overlap (or even be identical), but we treat them as separate
by duplicating any shared gates. By induction on depth, these subcircuits can
be converted into picture hangings p and ¢ of length at most ¢?~!. We combine



these picture hangings via AND(p, ¢q) or OR(p, q), according to the output gate
type, to obtain our desired picture hanging. The resulting length is at most the
maximum length of p and ¢, which is at most ¢!, times the number of terms
in Equations and defining AND and OR. Thus, setting ¢ = 618 suffices.

In the base case, the depth-0 circuit has no gates and simply takes the value
of a variable 7;, and we use the picture hanging x;, which has length 1 = ¢°.

This argument gives a 618¢ upper bound on the size of the constructed picture
hanging. In fact, only 144 of the 618 terms in are recursive (p or g), so the
upper bound is 144¢ plus lower-order terms. Thus we obtain Theorem

4.3 Worst-Case Optimality

Theorem 6. Almost all monotone Boolean functions require length-
2(2%/(nlogn)) picture hangings.

This theorem follows from a counting argument, specifically, contrasting the
large number of monotone Boolean functions with the relatively small number
of picture hangings of a given length.

First we demonstrate a large number of monotone Boolean functions (a stan-
dard argument). The vectors (r1,72,...,7,) with exactly n/2 1’s (and n/2 0’s)
can all have their function values set independently. There are (7:}2) such vectors.

Thus there are at least 2(”72) monotone Boolean functions on n variables.
Next we observe that the number of picture hangings of length ¢ is at most
(2n)*, because there are at most 2n choices for each symbol in the word. (The
correct number of choices is 2n — 1, except for the first, to avoid cancelation.)
The number of picture hangings of length at most £ is Zle(Zn)i < 2(2n).

To represent all monotone Boolean functions, we must have 2(2n)¢ > 2(:72).

Taking log, of both sides, we must have 14+¢(1+log, n) > (7:;2) Asymptotically,

(n72) ~ 2" /-2 Thus we must have ¢ ~ 2", /— l(2>g2 —. A standard “almost

every” argument completes the proof of Theorem [f]

4.4 k-out-of-n

Theorem 7. For anyn > k > 1, there is a picture hanging on n nails, of length
n¢ for a constant c', that falls upon the removal of any k of the nails.

We simply argue that the monotone Boolean function “are at least k of the
r;’s true?” is in the complexity class mNC!', that is, can be represented by a
logarithmic-depth binary circuit. The idea is to sort the r; values, again view-
ing Boolean values as 0 (false) and 1 (true), using a logarithmic-depth sorting
network. The result of this sorting is a sequence of j 0’s followed by a sequence
of n — j 1’s. Our goal is to determine whether n — j > k. To do so, we would
simply look at the (n — k + 1)st item in the sorted order: if it is 1, then there at
least k 1’s, and otherwise, there are fewer.



5 Spectating Is Hard

Imagine we turn the tables and, instead of considering the magician’s challenge in
hanging a picture on n nails with certain properties, we consider the spectator’s
challenge of choosing which nails to remove. A natural objective, if the spectator
is shy and wants to get off stage as quickly as possible, is to remove as few nails
as possible in order to make the picture fall. Unfortunately for the spectator, for
a given picture hanging, this problem is NP-complete and hard to approximate:

Theorem 8. For a given picture hanging on n nails, it is NP-complete to de-
cide whether there are k nails whose removal fells the picture, and it is hard to
approximate the minimum number of nails within some ¢logn factor.

We can similarly argue that it is NP-hard for the attention-hoarding spec-
tator who aims to mazimize the number of nails to remove before felling the
picture hanging. By the same reduction, this problem becomes finding a set of
elements that hit every set in the collection S, which is the Hitting Set problem.
Reversing the roles of elements and sets, we have the identical Set Cover problem.
Inapproximability no longer follows because the objectives are reversed.

6 Open Problems

Several interesting open questions remain about optimality of our constructions.
Does the 1-out-of-n picture hanging puzzle require a solution of length £2(n?)?
What is the complexity of finding the shortest picture hanging for a given mono-
tone Boolean function? For the spectator, is there an O(logn)-approximation
algorithm for removing the fewest nails to fell the picture hanging?
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