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Abstract. How do we most quickly fold a paper strip (modeled as a
line) to obtain a desired mountain-valley pattern of equidistant creases
(viewed as a binary string)? Define the folding complexity of a mountain-
valley string as the minimum number of simple folds required to con-
struct it. We show that the folding complexity of a length-n uniform
string (all mountains or all valleys), and hence of a length-n pleat (al-
ternating mountain/valley), is polylogarithmic in n. We also show that
the maximum possible folding complexity of any string of length n is
O(n/ lg n), meeting a previously known lower bound.

1 Introduction

What is the best way to fold an origami model? Origamists around the world
struggle with this problem daily, searching for clever, more accurate, or faster
folding sequences and techniques. Many advanced origami models require sub-
stantial precreasing of a prescribed mountain–valley pattern (getting each crease
folded slightly in the correct direction), and then folding all the creases at once.
For example, in his instructional video for folding the MIT seal Mens et Manus
in “three easy steps” [3], Brian Chan spends about three hours precreasing, then
three hours folding those creases, and then four hours of artistic folding. The
precreasing component is particularly tedious, leading us to a natural algorith-
mic problem of optimal precreasing : what is the fastest way to precrease a given
mountain–valley pattern? Although the standard method of “fold one crease,
unfold, repeat” is usually the most accurate, it might be possible to fold the
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(a) How fast can we fold this? (b) An origami angel with many pleats,
folded by Takashi Hojyo (reproduced
with his kind permission).

Fig. 1. Pleats.

paper along some of the desired creases to bring several other desired creases
into alignment, and thereby precrease them all at once.

We focus here on a simple kind of one-dimensional precreasing, where the
piece of paper is a long rectangular strip, which can be abstracted into a line
segment, and the creases uniformly subdivide the strip. A mountain-valley pat-
tern is then simply a binary string over the alphabet {M,V } (M for mountain,
V for valley), which we call a mountain-valley string. Of particular interest in
origami is the pleat, which alternates MVMVMV · · · ; see Figure 1.

Our results. In this paper, we develop surprisingly efficient algorithms for
precreasing a mountain-valley string, especially the pleat.

First, we show how to fold a uniform mountain–valley string MMM · · · of
n mountain creases using just O(lg1+

√
2 n) simple fold operations. These oper-

ations fold only along desired creases, and the last direction that each crease
gets folded is mountain. By combining two executions of this algorithm, we ob-
tain the same bound for pleats. This folding is exponentially faster than both
the standard folding and the best known folding of O(nε) folds [7]. From a
complexity-theoretic perspective, this is the first polynomial-time algorithm for
pleat folding, because the only input is the number n.



Second, we show how to fold an arbitrary mountain–valley string of n creases
using just O(n/ lg n) folds. This algorithm is the first to beat the straightforward
n−1 upper bound by more than a constant factor, and is asymptotically optimal
[7]. We effectively exploit that every string has some redundancy in it, similar
to how Lempel-Ziv can compress any string into O(n/ lg n) block pointers.

Unfortunately, our algorithms are not about to revolutionize pleat folding
or other practical paper precreasing, because they assume ideal zero-thickness
paper. In reality, folding more than a few layers of paper leads to some inaccuracy
in the creases, called creep in origami circles, and our algorithms require folding
through Θ(n) layers. Nonetheless, our results lead the way for the development
of practical algorithms that limit the number k of layers that can be folded
through simultaneously, with speed increasing as k grows.

From an information-theory perspective, paper folding offers an intriguing
new definition of the algorithmic complexity of a binary string. The folding com-
plexity [7] of a mountain–valley string is the minimum number of folds needed to
construct it. Similar to how Kolmogorov complexity compresses a string down to
instructions for a Turing machine, folding complexity compresses a string down
to instructions for an origamist. Unlike Kolmogorov complexity, however, folding
complexity is computable, though its exact computational complexity (between
P and EXPTIME) remains open. We lack a specific (deterministic) string whose
folding complexity is asymptotically the maximum possible. (The pleat was an
early candidate, now known to be far from the worst case.) Nonetheless, our
results shed some light on the structure of this new measure.

Related work. Uehara [6] posed the problem we tackle here in August 2008. In
March 2009, Ito, Kiyomi, Imahori, and Uehara [7] formalized the problem and
made some partial progress. On the positive side, they showed how to fold any
mountain–valley string using bn/2c+ dlg(n+ 1)e folds, a bound we improve on
by a logarithmic factor; and they showed how to fold the uniform string and
hence a pleat using O(nε) folds, for any ε > 0.5 On the negative side, they
showed that almost every mountain–valley string requires Ω(n/ lg n) folds using
an information-theoretic argument. We tighten this lower bound to prove that a
lead constant factor of 1 suffices, reasonably close to our asymptotically matching
upper bound which has a lead constant factor of 4 + ε, for any ε > 0.

About n different mountain–valley strings of length n can be folded using the
absolute minimum number of folds, dlg(n + 1)e. These strings are called paper
folding sequences and have been studied much earlier [8, 4, 1].

Model. We follow the folding and unfolding model of [7], which in turn is based
on the simple-fold model of Arkin et al. [2] (see also [5, p. 225]).

The paper strip is a one-dimensional line with creases at every integer posi-
tion. We are allowed to fold only at those positions, possibly many times, and
the direction of a crease (in {M,V }) at the end of the algorithm is the one that

5 A somewhat more careful analysis shows that the same algorithm uses 2O(
√

lg n lg lg n)

folds.
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Fig. 2. Folding a mountain or a valley.

was folded last. The goal is to achieve a particular string of Ms and V s at the
end. Folding has the effect of superimposing the layers of paper on the right
and left of the crease; see Figure 2. The paper has zero thickness, and thus an
arbitrary number of layers can be folded simultaneously. Naturally, when many
layers are folded, every other layer is reversed, and the direction of the crease
for these layers is flipped. Finally we can, at any step, unfold the paper at zero
cost, in the reverse order in which it was folded, and this does not change the
directions of the creases. The complexity of the algorithm is the number of folds.
(We do not count unfold operations, though doing so would increase the cost by
only a constant factor.)

Several variants of this model arise from varying the allowed folding and
unfolding operations. Clearly, a fold can be made simultaneously on several layers
of the folded strip, allowing a form of parallelism. (Without this, we need n folds
for any pattern.) We distinguish between two models for the folding operation.

All-layers fold model: We simultaneously fold all layers of paper under the
crease point.

Some-layers fold model: We simultaneously fold the k successive layers im-
mediately beneath the crease point, for any desired number k.

For upper bounds, we concentrate on the more-restrictive all-layers fold model,
while for lower bounds, we use the more-flexible some-layers fold model. We also
introduce the following three alternatives for the allowed unfolding operations.

All-unfold model: Once we decide to unfold, the paper is unfolded completely.
Reverse-unfold model: We can rewind any number of the last folds as far as

we want.
General-unfold model: For a folded state s, we can obtain another folded

state t by one general unfolding operation, provided s can be obtained from
t by consecutive some-layers simple foldings.

The general-unfold model is the most realistic, but our algorithms require only
the power of the reverse-unfold model, so we focus entirely on that model.

A folding algorithm is end-free if it can be applied to an infinite paper strip,
viewed as a line instead of a line segment, with n equally spaced creases along



it, without creasing anywhere else. We discuss end-free algorithms only, which
is crucial for allowing us to apply an algorithm recursively (effectively ignoring
any surrounding creases).

2 Folding Pleats

Every mountain-valley pattern with n creases requires at least dlg(n+ 1)e folds,
just to get all the creases folded in some direction [7]. The purpose of this section
is to show that the pleat pattern, while seemingly difficult to fold, has a fairly
close upper bound. But first we need to show that the lower bound can be met
for any n (not just of the form 2k − 1):

Lemma 1. A string of n equally spaced creases (unspecified as mountain or
valley) can be folded (and not unfolded) using at most 1 + dlg(n + 1)e simple
folds in the end-free all-layers fold model.

Proof. If the number of segments between creases, n+ 1, is 2k for an integer k,
then the folding is the obvious one: fold at the middle crease, k times. Otherwise,
n + 1 = 2k + r for some integers k and 0 ≤ r < 2k. Valley-folding at the rth
crease would place the initial r segments on top of the remaining 2k segments, at
which point we could apply the power-of-2 algorithm. But to make the folding
end-free, we first mountain-fold at the br/2cth crease, so that these two creases
form a zig-zag and the power-of-2 algorithm creases only where desired.

Theorem 1. The folding complexity of a uniform string and of a pleat of length
n in the all-layers fold, reverse-unfold model is O(lgc n), where c = 1 +

√
2.

Proof. Given an algorithm for folding a uniform sequence of n mountains, we
can apply it twice to obtain the pleat sequence. We therefore concentrate on
finding an algorithm for folding the uniform sequence.

Let T (n) be a monotone upper bound on the number of required folds. Let
w := 2k − 1 for some value k. We suppose that w <

√
n. The exact value of w

will be determined later.
The algorithm is decomposed into three steps.

Step 1. We apply Lemma 1 to fold the strip into bn/wc layers of width w, at a
cost of lg(n/w) + O(1) folds. Then we recurse on these layers, at a cost T (w).
After unfolding, we get sequences of w mountains separated by w + 2 other
creases (because half of the layers were reversed). The rest of the algorithm will
work only with these creases; there are a final n mod w creases which we will
deal with at the end of the algorithm simply by recursing. The overall cost of
this step (both preprocessing and postprocessing) is at most

lg
n

w
+O(1) + 2T (w) = 2T (w) +O(lg n). (1)
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Fig. 3. Folding pleats.

Step 2. We apply Lemma 1 to a scaled version of the creases in order to align
the mountain sequences (possible because the gap between the sequences, w+2,
is odd). See Figure 3(a), where the lemma’s folding is depicted as a zig-zag for
simplicity. This folding costs lg n

2w + O(1) folds. The crease sequences within
the layers are composed of three subsequences, the middle one being the aligned
mountains, of length w, and the two others being sequences of length b(w +
2)/2c = dw/2e = 2k−1. We call the two others side sequences.

We recurse again on the side sequences, folding mountains on the right,
and valleys on the left. (Here we use the end-free property.) This folding costs
2T (dw/2e) folds, and has the effect of extending the lengths of the mountain se-
quences. Thus, after these recursive calls, we have mountain sequences of length
d3w/2e separated by sequences of length 2k−1 + 1.

Next, we unfold everything and iterate these operations of aligning mountain
sequences and recursing on both side sequences. This is possible because the
distance between the mountain sequences remains odd. The width remains 2w,
so folding still costs lg n

2w +O(1), but the length of the side sequences decreases
by a factor of 2 at every iteration. We iterate until the side sequences have
length 1. At that point, we have mountain sequences of length 2w− 3 separated
by triples of “junk” creases. Overall, the cost of this step is:

lgw ·
(

lg
n

2w
+O(1)

)
+ 2

∑
i

T
(⌊w

2i

⌋)
≤ lgw ·

(
lg

n

2w
+ 2T (w)

)
+O(lg n). (2)

Step 3. At the end of the previous step, we are left with sequences of 2w − 3
mountains separated by three junk creases. We can again apply Lemma 1 to
align the junk triples, (possible because the gap between the triples, 2w − 3, is



odd). This folding costs lg n
2w + O(1) folds. Considering the aligned triples, we

now fold a mountain on the left and right creases of the triples; see Figure 3(b).
(More precisely, we fold a mountain on the left, then unfold once, then fold
a mountain on the right, then unfold everything.) This procedure costs two
folds, and creates mountains on the left and right creases of the layers that
are not reversed. Hence, for half the triples, there is now only one junk crease
left. We iterate the above steps on the remaining triples only, reducing by a
factor of 2 the number of remaining triples at every step. This procedure remains
possible because the remaining triples are separated by an odd number of creases,
and the middle crease lies within one of the original triples. The overall cost is∑

i

(
lg n

2iw +O(1)
)
.

When finished, we are left with all the middle creases of the original triples.
By a simple scaling, this is a subproblem of size n/w that can be solved re-
cursively. We therefore incur a final, additional cost of T (n/w). Overall, the
complexity of Step 3 is bounded by

T
( n
w

)
+
∑

i

(
lg

n

2iw
+O(1)

)
≤ T

( n
w

)
+ lg2 n

w
+O(lg n). (3)

Analysis. Summing the complexities of the three previous steps, we get

T (n) ≤ (2 lgw + 2)T (w) + lg
n

w

(
lgw + lg

n

w

)
+ T

( n
w

)
+O(lg n) (4)

= (2 lgw + 2)T (w) +O(lg2 n) + T
( n
w

)
. (5)

We suppose that T (n) < lgc n for some constant c > 1. We find a value for
w such that the first term is also O(lg2 n):

(2 lgw + 2)T (w) < lg2 n (6)
2 lgc+1 w + 2 lgc w < lg2 n (7)

w < 2b·lg
2

c+1 n (8)

for some constant b > 1. The recurrence relation for T (n) now becomes:

T (n) ≤ T
(

n

2b·lg
2

c+1 n

)
+O(lg2 n). (9)

This solves to:
T (n) = O(lg

3c+1
c+1 n). (10)

(The proof is omitted in this version of the paper.)
But we made the hypothesis that T (n) = O(lgc n), yielding

3c+ 1
c+ 1

= c (11)

c = 1 +
√

2. (12)

ut



3 Folding Arbitrary Sequences

Ito, Kiyomi, Imahori, and Uehara [7] proved that the folding complexity of a
random sequence is Ω(n/ lg n) with high probability. We now refine this result.

Theorem 2 ([7]). The folding complexity of a random sequence of length n in
the some-layers fold, reverse-unfold model is at least

n

3 + lg n

with high probability.

Proof. We use a counting argument. Suppose that we make k folds (and k un-
folds). We note that, if a sequence of length n is obtained by less than k folds,
we can also obtain the sequence using k folds exactly.

At each fold, there are two choices for the direction of folding (mountain or
valley). There are at most n choices for the set of positions of the folding by
considering the bottom-most layer of a valley folding or the top-most layer of a
mountain folding. Thus we have (2n)k possibilities here.

At each unfolding operation, we may rewind some folding operations. We
will rewind k folding operations in total. Moreover, for any step, the number of
rewind operations so far cannot exceed the number of folding operations. Thus,
there are at most C(k) choices for the unfolding operations, where C(k) is the
kth Catalan number. Note that for large k, C(k) < 4k.

Overall, the number of possible sequence of length n obtained by in at most
k folds is bounded by (2n)kC(k). If we let k = n/(3 + lg n), then, for sufficiently
large values of n, (2n)kC(k) < (2n)k4k = (8n)k = 2n.

Therefore, the number of possible sequences of length n by at most k folding
(and unfolding) operations is less than the number of all sequences of length n.

ut

s

Fig. 4. Partitioning the sequences in odd-length chunks. Note that every pair of chunks
is separated by an odd number of creases.

We give an upper bound that matches this lower bound up to a constant
factor. Given an arbitrary sequence of length n, and an odd number s ≥ 3, we
divide the sequence into chunks of size s, each pair of successive chunks being
separated by one crease. Note that, because s is odd, every pair of chunks is
separated by an odd number of creases (see Figure 4). This will allow us to align
any subset of chunks by folding them on top of each other.



Suppose there are at most k distinct patterns among such chunks, that is,
the subsequence of creases in any chunk belongs to a set of at most k distinct
sequences. We denote by f(n, k, s) the worst-case complexity of folding such a
sequence in the some-layers fold, reverse-unfold model.

a

b

c

d a

b

c

d

M
V

M V
M

V

Fig. 5. Two ways to match chunks.

Lemma 2.
f(n, k, s) ≤ 4n/s+ ks lg n.

Proof. Consider one kind of chunk, and suppose it appears t times. We can fold
a zig-zag to match all the t chunks, so that we can fold them together. Note that
this is always possible, because the distance between any two chunks is odd.
Also note that folding the zig-zag involves some-layers folding operations. The
number of required folds for the zig-zag is exactly t− 1.

When the chunks are folded, we have to fix the creases that may have been
destroyed by the zig-zag. The zig-zag can be folded in at least two different ways
(see Figure 5). By choosing one of them, we can ensure that at most one half of
the zig-zag creases destroy previously folded creases. Hence the zig-zag costs at
most t − 1 + t/2 ≤ 3t/2 folds: t − 1 folds to create it, then t/2 folds to fix the
creases that have been destroyed.

The folding of the chunks themselves costs s folds. But because they are
mapped in alternating directions, only half of them are correctly folded. To fix
this, we can recurse on the remaining half. The overall cost is therefore at most

(3t/2 + s) + (3t/4 + s) + (3t/8 + s) + · · ·+ (1 + s) < 3t+ s lg(3t/2).

Now suppose that there are ti occurrences of the chunk of type i. Note that∑
i ti = n/s. Thus repeating the steps above for each of the k kinds of chunks,

we can fold all the chunks in
k∑

i=1

(
3ti + s lg

3ti
2

)
≤ 3n/s+ ks lg n

folds. Finally, we have to take care of the remaining creases separating the
chunks. There are n/s of them. Folding them separately, we obtain

f(n, k, s) ≤ 4n/s+ ks lg n.

ut



This directly yields a Θ(n/ lg n) upper bound for folding arbitrary sequences.

Theorem 3. The folding complexity of a binary sequence of length n in the
some-layers fold, reverse-unfold model is at most

(4 + ε)
n

lg n
+ o

(
n

lg n

)
,

for any ε > 0.

Proof. Pick s = (1− ε) lg n, and k = 2s = n1−ε in the formula of Lemma 2, with
ε := ε/(4 + ε). This yields:

4n
(1− ε) lg n

+ (1− ε)n1−ε lg2 n = (4 + ε)
n

lg n
+ o

(
n

lg n

)
.

ut
Note that the upper and lower bounds are within a factor 4 of each other.

It remains open whether the same upper bound is possible in the all-layers fold
model.

Acknowledgments

This work was initiated at the WAFOL’09 workshop in Brussels. We thank all
the other participants, as well as Guy Louchard, for useful discussions.

References
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