
Proximate Point Searching

Erik D. Demaine∗ John Iacono† Stefan Langerman‡

Abstract

In the 2D point searching problem, our goal is to pre-
process n points P = {p1, . . . , pn} in the plane so that,
for an online sequence of query points q1, . . . qm, we can
quickly determine which (if any) of the elements of P
are equal to each query point qi. This problem can be
solved in O(log n) time by mapping the problem down
to one dimension. We present a data structure that
is optimized for answering queries quickly when they
are geometrically close to the previous successful query.
Specifically, our data structure executes queries in time
O(log d(qi, qi−1)), where d is some distance metric be-
tween two points. Our structure works with a variety of
distance metrics. In contrast, we prove that, for some
of the most intuitive distance metrics d, it is impossible
to obtain an O(log d(qi, qi−1)) runtime, or any bound
that is o(log n).

1 Introduction

Distribution-sensitive data structures have running
times that can be expressed as a function of some dis-
tributional measure of the sequence of operations per-
formed on the structure. Thus such structures can
exploit sequences of operations that exhibit some de-
sirable behavior. Because real-world access sequences
are rarely uniformly random, if our structures are op-
timized to perform better on the types of distribu-
tions likely to found in a given application, we can
obtain running times that are faster than standard
(distribution-insensitive) data structures.

Distribution-sensitive dictionaries. Distribution-
sensitive structures are well-studied for the dictionary
problem: maintain a collection of key-value pairs sub-
ject to queries for the value associated with a given key.
For this problem, two major types of distributions have
been studied: proximity and working sets.
The first type of distribution, proximity or locality of

reference, is where items are more likely to be accessed

∗MIT Laboratory for Computer Science, 200 Technology

Square, Cambridge, MA 02139, USA. edemaine@mit.edu
†Department of Computer and Information Science, Polytech-

nic University, 5 MetroTech Center, Brooklyn NY 11201, USA.

jiacono@poly.edu
‡School of Computer Science, McGill University, 3480 Uni-

versity Street Suite 318, Montreal, Quebec H3A 2A7, Canada.

sl@cgm.cs.mcgill.ca. Research is supported by grants from MI-

TACS, FCAR and CRM.

(searched) if they are close, in terms of rank, to the
previous access. The level-linked trees of Brown and
Tarjan [4], splay trees of Tarjan and Sleator [13, 6, 5],
and the unified structure of Iacono [10] all achieve
O(log |r(qi) − r(qi−1)|) query time, where qi is the ith
accessed element, and r(qi) is the rank of element qi,
(the number of elements less than or equal to it in the
dictionary). This is called the dynamic finger property.
The second type of distribution, working sets, is

where items are more likely to be accessed if they have
been accessed recently. Data structures with the work-
ing set property can access an element in time logarith-
mic in the number of distinct accesses since the last
time that element was accessed. Splay trees [13], the
working-set structure [10], and the unified structure [10]
are all dictionaries with the working set property.
The unified property [10] integrates the dynamic fin-

ger and working set properties into one, by saying that
an access is fast if it is close (in rank) to an item that
was accessed recently. Splay trees are conjectured to
have this property, but so far only the (complicated and
impractical) unified structure [10] is known to have it.

Other distribution-sensitive structures. While
distribution sensitivity in dictionaries is well-studied,
there are relatively few results for other types of data
structures. One such result, by Iacono [9], is that the
pairing heaps of Fredman et al. [7] have a working-set-
like property for priority queues.
In computational geometry, the closest results are

about planar point location. The three papers [2, 3, 11]
all present roughly the same result: Given the access
probability of each region of a triangulation (assumed
to be independent), it is possible to create a data struc-
ture whose expected search time is the entropy of that
probability distribution. Such a result is analogous to
the one-dimensional structures known as optimal search
trees (Knuth [12]), which date back to 1971. In con-
trast, splay trees, and in fact any structure with the
working-set property, have the same amortized asymp-
totic runtime as optimal search trees [9], without hav-
ing to know the access probabilities. Another result, by
Goodrich, Orletsky, and Ramaiyer [8], uses splay trees
to obtain working-set properties for point location in
a triangulation. However, the running times of this
structure are relative not to the user-specified subdivi-
sion, but to one generated by the algorithm. Thus the
state of the art in distribution-sensitive point location

is equivalent to the results for one-dimensional point
location obtained thirty years ago.

Our results. In this paper, we present results for the
planar point searching problem. We are given n points
P = {p1, . . . , pn}. We are allowed to preprocess the
points, using roughly linear space, in order to support
an online sequence of point search queries q1, . . . , qm.
For each query qi, the data structure must return the
index j of a point pj such that pj = qi, or it must
indicate that no such point exists.

We can easily solve a point-searching query in
O(log n) time by reducing the problem to one dimen-
sion and using a standard balanced search tree. Our
goal is to obtain a dynamic-finger type distribution-
sensitive data structure, where a query is fast if it is
geometrically close to the previous successful query.

Recall that, in one dimension, we can obtain a query
time that is logarithmic in the difference in rank be-
tween the query point and the previous point. Unfor-
tunately, the notion of difference in rank does not have
a clear generalization to higher dimensions. In one di-
mension, the difference in rank between points x and y
measures the number of points in the one-dimensional
region between x and y. In two dimensions, we would
like to have a similar point-counting metric, where the
distance between x and y is the number of points in
some two-dimensional region containing both x and y.
Such a region-counting metric provides a bridge be-
tween the geometric distance between two points and
the combinatorial complexity of the point set. In Sec-
tion 2, we discuss properties of region-counting met-
rics. In particular, we introduce one metric, the fixed-
triangle metric, and show how many desirable region-
counting metrics can be reduced to this metric.

In Section 3, we present our data structure that
executes queries in O(log d(qi−1, qi)) time where d is
a discrete triangle metric. Thus we have obtained a
dynamic-finger type result in 2D. Our data structure re-
quires O(n log n) space and can be constructed in poly-
nomial time. The data structure is based on the idea
of jump pointers, where each data point stores O(log n)
pointers to other points spaced at geometrically increas-
ing ranks away. A search can be performed by greedily
choosing the best pointer to follow.

2 Distance Metrics

In this section we describe several methods for com-
puting a 2-dimensional distance metric, with the goal
of creating one that is a reasonable generalization of
the one-dimensional rank-difference metric. In an at-
tempt to do so, we restrict ourselves to metrics which
involve counting the number of points inside some two-
dimensional shape that contains x and y. A static point
set P = {p1, . . . , pn} will be an implicit parameter in

all of our metrics.

We focus on one natural category of such met-
rics, which we call region-counting metrics. A region-
counting metric r is a triple (a, b, S) where a and b are
points and S is a region of the plane such that inclu-
sion in S can be computed in O(1) time. The distance
using the region-counting metric r, dr(x, y), is defined
as follows: if S′ is the shape obtained by translating,
rotating, and uniformly scaling S so that a maps to x
and b maps to y, then dr(x, y) is the number of points
in P ∩ S′.

We place two restrictions on region-counting metrics.
The first requirement, which we call monotonicity, is
that if x, y, and z appear in that order on a line,
then d(x, y) ≤ d(x, z). This requirement stems from
the intuitive idea that, as one point moves away from
another, their distance should not decrease. The sec-
ond requirement, which we call sanity, is that neighbor-
hoods have polynomial size: |{y | d(x, y) < k}| ≤ kO(1).
This requirement arises directly from our goal of a
O(log d(x, y)) query time, because any algebraic deci-
sion tree query algorithm cannot search among more
than kO(1) different results in O(log k) time.

One requirement we do not impose is symmetry, that
d(x, y) = d(y, x) for all x, y. While symmetric distance
metrics are intuitively pleasing, it can be shown that
for every symmetric metric, there is a better asymmet-
ric metric (better meaning all possible distances are not
larger). However, the converse is not true. Thus, sur-
prisingly, asymmetric distance metrics appear to be the
natural choice.

With the two requirements of monotonicity and san-
ity in hand, we can narrow down the allowable region-
counting metrics r = (a, b, S). In order to meet the
monotonicity requirement, the shape S must be star-
shaped with a in the kernel. In addition, because of
the sanity requirement, we claim that the shape S must
contain points other than b that are not strictly inside
the circle centered at a with radius point b. This claim
follows by contradiction, by placing an arbitrarily large
number of points on a circle centered at x, with no
points other than x inside the circle. Thus d(x, y) is
at most 2 for the many points y on the circle, contra-
dicting sanity. A similar argument shows that S must
include b.

Our data structure applies to a class of region-
counting metrics which we call target metrics. A target
metric r = (a, b, S) must satisfy three properties: a and
b are in S, S is star-shaped with a in the kernel, and
S contains a disk of some radius z > 0 centered at b.
The last requirement is slightly stronger than what is
necessary for sanity.

Our data structure works directly with a special met-
ric, which we call a fixed-triangle metric, that is not a
region-counting metric in the strict sense defined above,

but has the property that for any target metric d there
is a fixed-triangle metric d′ such that d(x, y) ≥ d′(x, y)
for all x and y. Thus, because our structure supports
any fixed-triangle metric, it can be modified to support
any target metric.
Given any constant k ≥ 3, the fixed-triangle metric

dt(k)(x, y) is computed as follows. Define the k-star of
x to be the shape formed by k equally angularly spaced
rays radiating from x, with one ray pointing straight up.
Let Tk(x, y) be the smallest isosceles triangle containing
y, having one vertex at x, and whose two identical sides
are line segments from the k-star of x. We now define
the fixed-triangle metric dt(k)(x, y) to be the number of
points in S that are in the triangle Tk(x, y).

Theorem 1 Given any target metric dr, r = (a, b, S),
there is a fixed-triangle metric dt(k) such that d(x, y) ≥
dt(k)(x, y) for any x and y.

Proof: For any points x, y, consider the circle cen-
tered at x and with radius point y. The target metric
guarantees the existence of a disk centered at y that
is contained in S. The circle and the disk intersect at
an arc. Let θ be the angular length of this arc, mea-
sured in radians. This angle is invariant under uniform
scaling as well as translation and rotation, and hence
constant over all x and y. Let k be dπ/θe, and con-
sider the fixed-triangle metric dt(k). Because S must
be star-shaped, its region must include not only the
disk around y, but also the ice-cream-cone shaped re-
gion formed by touching the two tangents from x to the
disk (see Figure 5). In particular, this ice-cream-cone
shape contains the isosceles triangle Tk(x, y). 2

3 The Structure

The data structure is parameterized by the data points
p1, . . . , pn and the parameter k in the fixed-triangle
metric that is to be used. We define the discrete direc-
tion Θ(x, y) of a ray from x to y to be b 6 (x, y)k/2πc,
where 6 (x, y) is the absolute angle of the ray from x to
y, that is, the angle of the ray from the upward-vertical
direction (in radians).
We will actually define k separate data structures

S0, . . . , Sk−1, and the structure to be used for a partic-
ular query will be SΘ(qi−1,qi). Thus, each structure Si

handles travel in a direction with absolute angle angle
between 2πi/k and 2π(i+1)/k. Structure Si views the
point set as scaled non-uniformly so that the actual
angle between absolute angles 2πi/k and 2π(i + 1)/k
becomes π/3 (60 degrees). (The scaling takes place
along the line that bisects the angle between discrete
angle i and discrete angle i + 1.) Thus, if Θ(x, y) = i,
then dt(6)(x, y) in the Si structure equals dt(k)(x, y) in
the original point set. With this observation, we can
produce one structure for the dt(6) metric, and thus k

(= O(1)) versions of this structure can be used to sim-
ulate the dt(k) metric. The dt(6) metric is appealing
because the isosceles triangles become equilateral.
The data structure for the dt(6) metric consists of

the n points, each of which is augmented with a list
of O(log n) pointers to other points. These pointers,
which need not be distinct, are organized according to
two parameters: depth and direction. We denote by
pi(r, θ) the set of O(1) pointers at depths r and direc-
tion θ. The direction θ is in the range 0 . . . 5 and the
depth r is in the range 0 . . . dlog ne.
The data structure also stores the description of a

triangle, τ(pi, r, θ), with each set of pointers pi(r, θ). In
general, the triangle at direction θ and distance r from
x, denoted τ(x, r, θ), is the smallest isosceles triangle
with a vertex at x, whose equal sides lie along rays
emanating from x at absolute angles 2πθ/k and 2π(θ+
1)/k, and that contains at least 2r points in S.
A crucial property of the data structure is that, for

any point x ∈ τ(pi, r, θ), there is a data point pj pointed
to by pi(r, θ) and a θ′ such that x ∈ τ(pj , r− 1, θ′). In-
tuitively, the point pj serves as a stepping stone on
the way from pi to x by which the depth r decreases.
We also require that τ(pi, 0, θ) = {pi}. The pointers
in pi(r, θ) point to 22 carefully selected points. A de-
scription of how these pointers are selected to meet the
above criterion is omitted because of space constraints.
Given a pointer to the previous successful query point

in the structure, pi, and the coordinates of the current
query point, x, the search proceeds as follows:

1. Initialize θ, the direction of search, to Θ(pi, x).
2. Initialize r, the depth of search, to 0.
3. While x is not in τ(pi, r, θ), increment r.
4. Initialize j, the index of the currently visited point, to

i.
5. While r > 0:

(a) Search for a point pk in pj(r, θ) and a discrete
angle θ′ (between 0 and 5) such that x is in
τ(pj , r − 1, θ

′), by trying all such points pk and
discrete angles θ′.

(b) Set j to k.
(c) Set θ to θ′.
(d) Decrement r.

6. If x = pj , return j; otherwise, the query is unsuccessful.

The time bound and correctness of the algorithm can
be argued as follows. The while loop of Step 3 termi-
nates with r set to precisely dlog dt(k)(pi, x)e. Thus,
because the search of Step 5(a) examines O(1) possibil-
ities and hence takes O(1) time, the total running time
is O(log dt(k)(pi, x)). Now all we must show is it that
the return value is correct. The invariant throughout
the while loop of Step 5 is that d(pj , x) ≤ 2r. The
crucial property for the data structure described above
guarantees that there is a jump pointer that will halve
the distance (measured by the fixed-triangle metric) to
the query point. This results in pj converging to the

a b ba ba

Figure 1: This seemingly reason-

able metric is not sane.

Figure 2: This metric is a target

metric.

Figure 3: This metric is a target

metric.

a b ba
b

a

Figure 4: This pie-wedge metric

is sane and monotone, but is not

a target metric because there is no

circle about b that is in the metric.

It can be shown that any sane and

monotone metric has a pie-wedge

metric as a subset.

Figure 5: This ice cream cone

shape is a target metric, and it can

be shown that any target metric

has an ice cream cone shaped sub-

set.

Figure 6: This figure illustrates

how the triangle metric dt(6)(x, y)
is calculated. The dotted lines are

the 6-star from x and the solid lines

indicate the triangle T6(a, b).

item in P with the same coordinates as x.

4 Conclusion

This paper presents a first step towards the develop-
ment of geometric data structures with properties sim-
ilar to the dynamic finger property of dictionary data
structures. One major obstacle encountered is that
most intuitive distance measures are not sane, that is,
would not allow fast data structures in the algebraic
decision tree model of computation. For example, the
edge distance in the Delaunay triangulation of the point
set would seem desirable, but sets of points can be con-
structed where some point is at a distance k from 2k

other points, and hence any query algorithm will re-
quire Ω(k) = Ω(log n) time on average.
Many questions remain open. Besides the distance

measures supported by our structure, one that would
seem very natural is the pie-wedge metric (see Fig-
ure 4), and it would be interesting to see whether our
data structure could be adapted to such a distance met-
ric. Generalizations to higher dimensions should also
be investigated. We hope that our techniques can be
extended to the more general problems of finding the
closest neighbor of a query point, or performing point
location in a set of regions.

References

[1] S. Arya, S. Cheng, D. Mount, and H. Ramesh. Efficient
expected-case algorithms for planar point location. In
Scandanavian Workshop on Algorithm Theory. (LNCS
1851), pp. 353–366, 2000.

[2] S. Arya, T. Malamatos, and D. M. Mount. Entropy-
preserving cuttings and space-efficient planar point lo-
cation. In Symposium on Discrete Algorithms, pp. 256–
261, 2001.

[3] S. Arya, T. Malamatos, and D. M. Mount. A simple
emtropy-based algorithm for planar point location. In
Symposium on Discrete Algorithms, pp. 262–268, 2001.

[4] M. R. Brown and R. E. Tarjan. Design and analysis of
a data structure for representing sorted lists. SIAM J.
Comput., 9:594–614, 1980.

[5] R. Cole. On the dynamic finger conjecture for splay
trees. part ii: The proof. Technical Report Computer
Science TR1995-701, New York Univerity, 1995.

[6] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On
the dynamic finger conjecture for splay trees. Part I:
Splay sorting log n-block sequences. Technical Report
TR1995-700, New York Univerity, 1995.

[7] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E.
Tarjan. The pairing heap: A new form of self-adjusting
heap. Algorithmica, 1:111–129, 1986.

[8] M. T. Goodrich, M. Orletsky, and K. Ramaiyer. Meth-
ods for achieving fast query times in point location data
structures. In Proc. 8th ACM-SIAM Sympos. Discrete
Algorithms, pp. 757–766, 1997.

[9] J. Iacono. New upper bounds for pairing heaps. In
Scandanavian Workshop on Algorithm Theory (LNCS
1851), pp. 32–45, 2000.

[10] J. Iacono. Alternatives to splay trees with O(log n)
worst-case access times. In Symposium on Discrete Al-
gorithms, pp. 516–522, 2001.

[11] J.Iacono. Optimal planar point location. In Symposium
on Discrete Algorithms, pp. 240–241, 2001.

[12] D. E. Knuth. Optimum binary search trees. Acta Inf.,
1:14–25, 1971.

[13] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
trees. JACM, 32:652–686, 1985.

