
Proximate Point Searching

Erik D. Demaine

MIT Laboratory for Computer Science,

200 Technology Square, Cambridge, MA 02139, USA.

John Iacono

Department of Computer and Information Science,

Polytechnic University,

5 MetroTech Center, Brooklyn, NY 11201, USA.

Stefan Langerman ∗,1

Département d’Informatique,

Université Libre de Bruxelles,

ULB CP 212, avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium.

Abstract

In the 2D point searching problem, the goal is to preprocess n points P =
{p1, . . . , pn} in the plane so that, for an online sequence of query points q1, . . . , qm,
it can quickly determined which (if any) of the elements of P are equal to each
query point qi. This problem can be solved in O(log n) time by mapping the prob-
lem to one dimension. We present a data structure that is optimized for answering
queries quickly when they are geometrically close to the previous successful query.
Specifically, our data structure executes queries in time O(log d(qi−1, qi)), where
d is some distance function between two points, and uses O(n logn) space. Our
structure works with a variety of distance functions. In contrast, it is proved that,
for some of the most intuitive distance functions d, it is impossible to obtain an
O(log d(qi−1, qi)) runtime, or any bound that is o(log n).

Key words: Point Location, Dynamic Finger Property, Distance Functions
2000 MSC: 68P05, 68U05

∗ Corresponding author.
Email addresses: edemaine@mit.edu (Erik D. Demaine), jiacono@poly.edu

(John Iacono), stefan.langerman@ulb.ac.be (Stefan Langerman).
1 Chargé de recherches du FNRS, Research done while at McGill University, and
supported by grants from MITACS, FCAR and CRM.

Preprint submitted to Elsevier Science 4 November 2003

1 Introduction

Distribution-sensitive data structures have running times that can be ex-
pressed as a function of some distributional measure of the sequence of op-
erations performed on the structure. Such structures can exploit sequences
of operations that exhibit some desirable behavior. Because real-world access
sequences are rarely uniformly random, if our structures are optimized to per-
form better on the types of distributions likely to be found in a given applica-
tion, we can obtain running times that are faster than standard (distribution-
insensitive) data structures.

Distribution-sensitive dictionaries. Distribution-sensitive structures are
well-studied for the dictionary problem: maintain a collection of key-value
pairs subject to queries for the value associated with a given key. For this
problem, two major types of distributions have been studied: proximity and
working sets.

The first type of distribution, proximity or locality of reference, is where items
are more likely to be accessed (searched) if they are close, in terms of rank, to
the previous access. The level-linked trees of Brown and Tarjan [1], splay trees
of Sleator and Tarjan [2–4], and the unified structure of Iacono [5] all achieve
O(log |r(qi) − r(qi−1)|) query time, where qi is the ith accessed element, and
r(qi) is the rank of element qi (the number of elements less than or equal to
it in the dictionary). This is called the dynamic finger property.

The second type of distribution, working sets, is where items are more likely
to be accessed if they have been accessed recently. Data structures with the
working-set property can access an element in time logarithmic in the num-
ber of distinct accesses since the last time that element was accessed. Splay
trees [2], the working-set structure [5], and the unified structure [5] are all
dictionaries with the working-set property.

The unified property [5] integrates the dynamic finger and working-set prop-
erties into one, by saying that an access is fast if it is close (in rank) to an
item that was accessed recently. Splay trees are conjectured to have this prop-
erty, but so far only the (complicated and impractical) unified structure [5] is
known to have it.

Other distribution-sensitive structures. While distribution sensitivity in
dictionaries is well-studied, there are relatively few results for other types of
data structures. One such result, by Iacono [6], is that the pairing heaps of
Fredman et al. [7] have a working-set-like property for priority queues.

In computational geometry, there are several similar results pertaining to the
problem of planar point location. The three papers [8–10] all present roughly

2

the same result: Given the access probability of each region of a triangulation
(assumed to be independent), it is possible to create a data structure whose
expected search time is the entropy of that probability distribution. Such a
result is analogous to the one-dimensional structures known as optimal search
trees (Knuth [11]), which date back to 1971. In contrast, splay trees, and in
fact any structure with the working-set property, have the same amortized
asymptotic runtime as optimal search trees [6], without having to know the
access probabilities. Another result, by Goodrich, Orletsky, and Ramaiyer [12],
uses splay trees to obtain working-set properties for point location in a tri-
angulation. However, the running times of this structure are relative not to
the user-specified subdivision, but to one generated by the algorithm. Thus
the state of the art in distribution-sensitive point location is equivalent to the
results for one-dimensional point location obtained thirty years ago.

Our results. In this paper, we present results for the planar point searching
problem. We are given n points P = {p1, . . . , pn}. We are allowed to preprocess
the points, using roughly linear space, in order to support an online sequence
of point search queries q1, . . . , qm. For each query qi, the data structure must
return the index j of a point pj such that pj = qi, or it must indicate that
no such point exists. Our data structure works in the real-RAM model of
computation, and lower bounds are valid in the algebraic computation tree
model. In other models such as the word-RAM model, queries can trivially be
performed in constant time using perfect hashing schemes (e.g. [14]).

We can easily solve a point-searching query in O(log n) time by reducing the
problem to one dimension and using a standard balanced search tree. Our goal
is to obtain a dynamic-finger type distribution-sensitive data structure, where
a query is fast if it is geometrically close to the previous successful query.

Recall that, in one dimension, we can obtain a query time that is logarithmic in
the difference in rank between the query point and the previous point. Unfor-
tunately, the notion of difference in rank does not have a clear generalization
to higher dimensions. In one dimension, the difference in rank between points
x and y measures the number of points in the one-dimensional region between
x and y. In two dimensions, we would like to have a similar point-counting dis-
tance function, where the distance between x and y is the number of points in
some two-dimensional region containing both x and y. Such a region-counting
distance function provides a bridge between the geometric distance between
two points and the combinatorial complexity of the point set. In Section 2,
we discuss properties of region-counting distance functions. In particular, we
introduce the fixed-triangle distance function, and show that many desirable
region-counting distance functions can be reduced to this one.

In Section 3, we present our data structure that executes queries in
O(log d(qi−1, qi)) time where d is a fixed-triangle distance function. Thus we ob-

3

tain a dynamic-finger type result in 2D. Our data structure requires O(n log n)
space and can be constructed in O(n2 log n) time. The data structure is based
on the idea of jump pointers and can be seen as a multidimensional gener-
alization of deterministic skip lists [15,16]. In our structure, each data point
stores O(log n) pointers to other points spaced at geometrically increasing
ranks away. A search can be performed by greedily choosing the best pointer
to follow. The details of selecting the specific destinations of the jump pointers
is presented in Section 4.

2 Distance Functions

In this section we describe several definitions of a 2-dimensional distance
function, with the goal of creating one that is a reasonable generalization
of the one-dimensional rank-difference function. In an attempt to do so, we
restrict ourselves to functions which involve counting the number of points
inside some two-dimensional shape that contains x and y. A static point set
P = {p1, . . . , pn} will be an implicit parameter in all of our distance functions.

We focus on one natural category of such functions, which we call region-
counting distance functions. A region-counting distance function is defined by
a triple r = (a, b, S) where a and b are points and S is a region of the plane
such that inclusion in S can be computed in O(1) time. The distance function
using the region-counting triple r, dr(x, y), is defined as follows: if r(x, y) is
the shape obtained by translating, rotating, and uniformly scaling S so that a
maps to x and b maps to y, then dr(x, y) is the number of points in P ∩r(x, y).

We place two restrictions on region-counting distance functions. The first re-
quirement, which we call monotonicity, is that if x, y, and z appear in that
order on a line, then d(x, y) ≤ d(x, z). This requirement stems from the intu-
itive idea that, as one point moves away from another, their distance should
not decrease. The second requirement, which we call sanity, is that neighbor-
hoods have polynomial size: |{y ∈ P | d(x, y) < k}| ≤ kO(1). This requirement
arises directly from our goal of a O(log d(x, y)) query time, because any al-
gebraic decision tree query algorithm cannot search among more than kO(1)

different results in O(log k) time.

One requirement we do not impose is symmetry, that d(x, y) = d(y, x) for
all x, y. While symmetric distance functions are intuitively pleasing, we show
below that for every symmetric distance function, there is a better asymmet-
ric distance function (better meaning all possible distances are not larger).
However, the converse is not true. Thus, surprisingly, asymmetric distance
functions appear to be the natural choice. The distance functions also do not
need to satisfy the triangle inequality, and so are not metrics.

4

a b ba ba

Fig. 1. The distance func-
tion defined by this seem-
ingly reasonable shape is
not sane.

Fig. 2. The distance func-
tion defined by this shape
is a target distance.

Fig. 3. By the monotonic-
ity requirement, any tar-
get shape has an ice cream
cone shaped subset.

a b b
a

�
a � b

�

�

Fig. 4. The sector dis-
tance function is sane and
monotone, but is not a
target distance because
there is no circle about b

that is in the region. Any
sane and monotone dis-
tance function has a sec-
tor as a subset of its re-
gion.

Fig. 5. This figure
illustrates how the
fixed-triangle distance
dT6

(a, b) is calculated.
The dotted lines are the
6-star from a and the
solid lines indicate the
triangle T6(a, b).

Fig. 6. The un-
fixed-triangle distance
dUTk

(a, b) is defined by
this shape UTk(a, b)
which contains Tk(a, b)
for any orientation of the
plane.

With the two requirements of monotonicity and sanity in hand, we can narrow
down the allowable region-counting triples r = (a, b, S). In order to meet the
monotonicity requirement, the shape S must be star-shaped with a in the
kernel. For simplicity, we further require that S be a finite union of closed
bounded convex shapes. In particular, this rules out sets S with a fractal
or unbounded boundary. Distance functions with this property will be called
simple. We say the distance functionis axis-symmetric if the line through a
and b is a symmetry axis for S.

One particular distance function, the α-sector distance, is of particular inter-
est. Its region S is defined as a closed sector (pie wedge) of angle α, apex at
a, and with b at the center of the arc (see Figure 4). We show that this is the
minimal simple axis-symmetric region-counting distance.

Lemma 1 An axis-symmetric simple monotone region-counting distance

function defined by a triple (a, b, S) is sane if and only if there exists an α > 0
such that S contains an α-sector.

5

Proof: Let C be the circle centered at a and with radius point b. Suppose
S does not contain any α-sector. Then because S is star-shaped, there must
exist an arc of positive length γ (measured in radians) and containing b, whose
intersection with S is either empty or contains only the point b.

We construct a set of n points P = {p0, . . . , pn−1} where pi has polar coordi-
nates (iγ/2n, 1), plus one point o at the origin. Note that since all n points in
P are contained in an arc of length γ/2, the regions S moved to o and pi does
not contain any points except maybe for o and pi, and so all points in P are
at distance at most 2 from o and this distance function is not sane.

Conversely, if S does contain an α-sector, then suppose we have k points at
a distance ≤ d from some point o. Draw an α-sector for each of them. Each
sector contains at most d points. Perform the following steps repeatedly:

(1) Find the sector with the largest radius.
(2) Remove all points it contains and the corresponding sectors.

We prove that these steps are repeated at most 8π/α times. The boundary of
a sector is composed of a left side, a right side, and an arc. The largest sector
either

A. Does not intersect any larger deleted sector.
B. Intersects larger deleted sectors only on one side.
C. Intersects larger deleted sectors on both sides.

In Case A, we remove all points within an angle α around o. This can only be
done 2π/α times. In Case B, the point p that defines the sector being deleted
has a larger sector s that was removed earlier, say to its right. Since p didn’t
get deleted when we removed s, p is not in s and so the whole left half of the
sector of p doesn’t overlap with any previously deleted sectors. So we remove
all points within an angle α/2 around o, which can only be done 4π/α times.
In Case C, the sector we remove is surrounded by two large sectors (of angle
α) on both sides, thus in step 2, we remove all points in a small gap between
cones of angle α. This can only be done 2π/α times. Thus, k ≤ 8dπ/α. 2

Our data structure applies to a class of region-counting distance functions
which we call target distances. The triple r = (a, b, S) defining a target distance
must satisfy three properties: a and b are in S, S is star-shaped with a in the
kernel, and S contains a disk of some radius z > 0 centered at b. The last
requirement is slightly stronger than what is necessary for sanity.

Our data structure works directly with a special distance function, which we
call a fixed-triangle distance, that is not a region-counting distance function in
the strict sense defined above, but has the property that for any target distance

6

function d there is a fixed-triangle distance function d′ such that d(x, y) ≥
d′(x, y) for all x and y. Thus, because our structure supports any fixed-triangle
distance, it can be modified to support any target distance function.

Given any constant k ≥ 3, the fixed-triangle distance function dTk
(x, y) is

computed as follows. Define the k-star of x to be the shape formed by k equally
angularly spaced rays radiating from x, with one ray pointing horizontally to
the right. Let Tk(x, y) be the smallest isosceles triangle containing y, having
one vertex at x, and whose two identical sides are line segments from the
k-star of x. (In the ambiguous case that y lies on the k-star, we arbitrarily
choose Tk(x, y) to be the clockwise-most such triangle.) We now define the
fixed-triangle distance dTk

(x, y) to be the number of points in S that are in
the triangle Tk(x, y).

We also define the unfixed-triangle region-counting distance. Given points a
and b, let ∆1 and ∆2 be the two isosceles triangles with vertices a and b and
angle 2π/k at a, where ∆1 is to the left of the ray ab and ∆2 to its right. Let
D1 and D2 be the disks circumscribed to ∆1 and ∆2 and let C be the cone
of angle 4π/k with apex at a and symmetry axis ab and containing b. The
unfixed-triangle distance is defined as UTk = (a, b, (D1 ∪D2) ∩ C).

Lemma 2 For any k ≥ 4, and any two points x and y, dTk
(x, y) ≤ dUTk

(x, y).

Proof: Consider the fixed triangle Tk(x, y) with vertices x, p1 and p2 and
assume p1 is to the left of the ray xy and p2 to its right. Because the angle
at p1 is π/2 − π/k, p1 is on the boundary of D1 and so the triangle xyp1 is
contained in D1. Likewise, the triangle xyp2 is contained in D2. Furthermore,
Tk(x, y) is contained in C which completes the proof. 2

Interestingly, any target region with target radius at least d2(a, b) tan (2π/k)
(where d2 is the Euclidean distance) contains the unfixed-triangle region UTk.
So we have:

Corollary 1 Given any target distance function dr, r = (a, b, S), there is a

fixed-triangle distance function dTk
such that dr(x, y) ≥ dTk

(x, y) for any x
and y.

3 The Structure

The data structure is parameterized by the data points p1, . . . , pn and the
parameter k in the fixed-triangle distance function that is to be used. We
define the discrete direction Θ(x, y) of a ray from x to y to be b∠(x, y)k/2πc,
where ∠(x, y) is the absolute angle of the ray from x to y, that is, the angle

7

of the ray from the horizontal (1, 0) direction (in radians).

We will actually define k separate data structures S0, . . . , Sk−1, and the struc-
ture to be used for a particular query will be SΘ(qi−1,qi). Thus, each struc-
ture Si handles travel in a direction with absolute angle between 2πi/k and
2π(i+ 1)/k. Structure Si views the point set as scaled non-uniformly so that
the actual angle between absolute angles 2πi/k and 2π(i+ 1)/k becomes π/3
(60 degrees) (i.e., the scaling, by a factor 2 sin (π/k), takes place along the line
that bisects the angle between discrete angle i and discrete angle i+1). Thus,
if Θ(x, y) = i, then dT6

(x, y) in the Si structure equals dTk
(x, y) in the original

point set. With this observation, we can produce one structure using the dT6

distance function for the scaled point set for each of the Si, i = 0, . . . , k − 1.
This will simulate the dTk

distance function of the original point set. The dT6

distance function is appealing because the isosceles triangles become equilat-
eral.

The data structure for the dT6
distance function consists of the n points,

each of which is augmented with a list of O(log n) pointers to other points.
These pointers, which need not be distinct, are organized according to two
parameters: depth and direction. We denote by pi(r, θ) the set of O(1) pointers
at depths r and direction θ associated with point pi. The direction θ is in the
range 0 . . . 5 and the depth r is in the range 0 . . . dlog3/2 ne. Both r and θ are
discrete values.

The data structure also stores the description of a triangle, τ(pi, r, θ), with
each set of pointers pi(r, θ). In general, the triangle at direction θ and distance
r from x, denoted τ(x, r, θ), is the largest isosceles triangle with a vertex at x,
whose equal sides lie along rays emanating from x at absolute angles 2πθ/k
and 2π(θ + 1)/k, and that contains at most (3/2)r points in S.

A crucial property of the data structure is that, for any point x ∈ τ(pi, r, θ),
there is a data point pj pointed to by pi(r, θ) and a θ′ such that x ∈ τ(pj, r −
1, θ′). Intuitively, the point pj serves as a stepping stone on the way from pi to
x by which the depth r decreases. We also require that τ(pi, 0, θ) = {pi}. The
pointers in pi(r, θ) point to 7 carefully selected points described in the next
section.

Given a pointer to the previous successful query point in the structure, pi, and
the coordinates of the current query point, x, the search proceeds as follows:

(1) Initialize θ, the direction of search, to Θ(pi, x).
(2) Initialize r, the depth of search, to 0.
(3) While x is not in τ(pi, r, θ), increment r.
(4) Initialize j, the index of the currently visited point, to i.
(5) While r > 0:

8

(a) Search for a point pj′ in pj(r, θ) and a discrete angle θ′ (between 0 and 5)
such that x is in τ(pj′ , r− 1, θ′), by trying all such points pj′ and discrete
angles θ′.

(b) Set j to j′.
(c) Set θ to θ′.
(d) Decrement r.

(6) If x = pj , return j; otherwise, the query is unsuccessful.

The time bound and correctness of the algorithm can be argued as follows.
The while loop of Step 3 terminates with r set to precisely dlog3/2 dTk

(pi, x)e.
Thus, because the search of Step 5(a) examines O(1) possibilities and hence
takes O(1) time, the total running time is O(log dTk

(pi, x)). Now all we must
show is that the return value is correct. The invariant throughout the while
loop of Step 5 is that d(pj, x) ≤ (3/2)r. The crucial property for the data
structure described above guarantees that there is a jump pointer that reduces
the distance (measured by the fixed-triangle distance function) to the query
point by a factor (2/3). This results in pj converging to the point in P with
the same coordinates as x, if such a point exists.

4 Point Selection

In this section we describe how the 7 points in pi(r, θ) are chosen. Recall that
τ(pi, r, θ) is an equilateral triangle emanating from pi at direction θ with at
most (3/2)r points. We define ρ(τ) = τ ∩P to be the set of points in P inside a
triangle τ . The goal of this section is to find at most 7 points from ρ(τ(pi, r, θ))
to be in pi(r, θ) such that ∪p∈pi(r,θ),φ∈{0...5}τ(p, r − 1, φ) ⊇ ρ(τ(pi, r, θ)).

We define the three triangles τ1(pi, r, θ) . . . τ3(pi, r, θ) as follows: The triangle
τ1(pi, r, θ) is τ(pi, r− 1, θ). The triangles τ2(pi, r, θ) and τ3(pi, r, θ) are the two
equilateral triangles containing (3/2)r−1 points (or less if there are not enough
points), contained in τ(pi, r, θ), and rooted at the two vertices of τ(pi, r, θ)
other than pi. Each of these three triangles contains two thirds of the points
in τ(pi, r, θ) and so they must also contain the centerpoint of the points in
τ(pi, r, θ). (The centerpoint of a set is a point such that any halfplane con-
taining it contains at least one third of the set. Such a point always exists; see
e.g. [17, pp. 63–66].) Thus the three triangles have a common intersection and
they cover τ(pi, r, θ).

The triangles τ1(pi, r, θ) . . . τ3(pi, r, θ) have the following two properties:

Property 1 The union of τ1(pi, r, θ) . . . τ3(pi, r, θ) is τ(pi, r, θ).

Property 2 Each of τ1(pi, r, θ) . . . τ3(pi, r, θ) contains at most (3/2)
r−1 points.

9

Given a triangle τ we define e(τ) to be a set of at most three points containing
one of the closest points to each edge of τ .

We can now define the points in pi(r, θ) to be the point pi and the up to six
points in e(τ2(pi, r, θ)) and e(τ3(pi, r, θ)).

Lemma 3 ∪φ∈{0...5}ρ(τ(pi, r − 1, φ)) ⊇ ρ(τ1(pi, r, θ))

By setting φ = θ and noting that τ(pi, r − 1, θ) = τ1(pi, r, θ) completes the
proof.

Lemma 4 For any equilateral triangle τ ′ in which one edge is horizontal,

containing at most (3/2)r−1 points, ∪p∈e(τ ′),φ∈{0...5}τ(p, r − 1, φ) ⊇ ρ(τ ′).

Proof: We first define a new triangle τ by shrinking the triangle τ ′ by moving
its edges inward while preserving their angles until all three edges have at least
one point of e(τ) on them. We may now work with τ instead of τ ′ since by
construction there are no points in the region τ ′ − τ .

If there are only one or two points in e(τ), then the lemma trivially holds since
one of those points must be a vertex of τ ′. Thus we consider the case where
|e(τ)| = 3. We label these three points a, b and c in counter-clockwise order
and visualize them as being on the bottom, right, and left side of equilateral
triangle. The proof breaks into several cases. Figure 7 illustrates the notation
we use to enumerate these cases. Each of the three points is categorized as l,
m or r, depending on which third of the side of the triangle it lies in. Note
that if a point lies on the boundary between two categories, it can be classified
either way and the proof will remain valid.

l m r

l

m

r l

m

r

c

a

b

2 3

6 8

9

7

1 4 5

Fig. 7. Notation.

θ = 0
θ = 1

θ = 2

θ = 3
θ = 4

θ = 5

Fig. 8. Discrete angles in dT6
.

We provide a proof for four representative configurations of the points, all
other configurations can be solved though symmetry or relabeling a, b and c.
The exact mapping of all of the possible configurations to cases in the proof

10

a b c case a b c case a b c case

l l l 1 m l l 4 r l l 2

l l m 4 m l m 4 r l m 2

l l r 2 m l r 4 r l r 2

l m l 4 m m l 4 r m l 4

l m m 4 m m m 3 r m m 4

l m r 2 m m r 4 r m r 4

l r l 2 m r l 2 r r l 2

l r m 4 m r m 4 r r m 4

l r r 2 m r r 4 r r r 1

Table 1
All possible configurations and their mapping to cases in the proof of Lemma 4.

is given in Table 1.

Case 1. In this case all three points are in the l regions, or all three points
are in the r regions. We consider the case where a, b and c are in l regions.
Figure 9 shows that a is in region l. The three shaded areas emanating from
a represent the smallest size of the triangles in τ(a, r − 1, θ) for three values
of θ. We know that these three triangles extend at least all the way the the
edge of τ since τ only has (3/2)r−1 points. No assumptions can be made about
extending the small triangles beyond the border of τ since we can not make
any assumptions about the distribution of points outside of τ . The proof holds
if and only if τ may be covered with the small triangles that emanate from
a, b, and c and stop when they encounter the edge of τ . From the diagram,
it can be concluded that no matter what the position of a is in the l region,
∪φ∈{0...5}τ(a, r − 1, φ) covers regions 3, 4, 5, and 8. We will state this as a
covers 3, 4, 5, and 8. The same reasoning, when applied to b and c in the l
region yields the fact that b covers 6, 7, 8, and 9 and c covers 1, 2, 3, and 6.
Thus a, b and c cover all numbered regions.

Case 2. In this case, two of the three points a, b and c are in the l and r
regions incident to one of the three vertices of the large triangle. For example,
b could be in region r and c could be in region l. We also assume that c is
closer to their common vertex than b; other cases are handled symmetrically.
In Figure 11, we have shaded areas that must be covered by b. In Figure 12,
we have shaded the area that must be covered by c. The union of these shaded
areas covers τ .

Case 3. In this case, all three points are in the m region. In Figure 10, the
point a is in the left half of the m region. In this case a covers 1, 2, 3, 4, and 5.
The same will happen due to symmetry if a in the right half of the m region.

11

a

2 3

6 8

9

7

1 4 5

Fig. 9. Point a is in the l region.

a

2 3

6 8

9

7

1 4 5

Fig. 10. Point a is in the m region.

0.5
0.50.5

0.5

b

c

Fig. 11. Case 2, region covered by b.

0.5

0.5

b

c

0.5

Fig. 12. Case 2, region covered by c.

Using the same logic when b and c are also in the m region, b covers 4, 5, 7,
8, and 9 and c covers 1, 2, 6, 7, and 9. Thus all regions are covered and their
union is τ .

Case 4. In this case, one of the points is in the m region and one of the other
points is in an l or r region closest to the first point. For example, a could be
in the m region and b in the l region. Then according to Figure 10, a covers
1, 2, 3, 4, and 5, while according to Figure 9, suitably rotated, b covers 6, 7,
8, and 9. Thus all regions are covered and their union is τ .

This concludes the proof of the lemma. 2

We now may prove the main result of this section, that the 7 selected points
have the properties needed to continue the search:

Theorem 2 When pi(r, θ) = {pi} ∪ e(τ2(pi, r, θ)) ∪ e(τ3(pi, r, θ)),
∪p∈pi(r,θ),φ∈{0...5}ρ(τ(p, r − 1, φ)) ⊇ ρ(τ(pi, r, θ)) and |pi(r, θ)| ≤ 7.

12

Proof: The size constraint is easily met since the function e yields a set of at
most 3 points. From Property 2:

ρ(τ1(pi, r, θ)) ∪ ρ(τ2(pi, r, θ)) ∪ ρ(τ3(pi, r, θ)) = ρ(τ(pi, r, θ))

From Lemma 3:

∪p∈{pi},φ∈{0...5}ρ(τ(p, r − 1, φ)) ⊇ ρ(τ1(pi, r, θ))

From Lemma 4:

∪p∈e(τ2(pi,r,θ)),θ∈{0...5}τ(p, r − 1, θ) ⊇ ρ(τ2(pi, r, θ))

∪p∈e(τ3(pi,r,θ)),θ∈{0...5}τ(p, r − 1, θ) ⊇ ρ(τ3(pi, r, θ))

Combining all of the above assertions proves the theorem. 2

5 Conclusion

This paper presents a first step towards the development of geometric data
structures with properties similar to the dynamic finger property of dictio-
nary data structures. One major obstacle encountered is that most intuitive
distance functions are not sane, that is, would not allow fast data structures
in the algebraic decision tree model of computation. For example, the edge
crossing distance in the Delaunay triangulation of the point set would seem
desirable, but sets of points can be constructed where some point is at a
distance k from 2k other points, and hence any query algorithm will require
Ω(k) = Ω(log n) time on average.

Many questions remain open. Besides the distance functions supported by
our structure, one that would seem very natural is the sector distance (see
Figure 4), and it would be interesting to see whether our data structure can
be adapted to such a distance function. Generalizations to higher dimensions
should also be investigated. We hope that our techniques can be extended to
the more general problems of finding the closest neighbor of a query point, or
performing point location in a set of regions. A first solution to the proximate
point location problem using distance functions similar to the ones described
in this article has been proposed recently [18]. Our data structure naturally
bears some ressemblance with other multidimensional generalizations of skip
lists such as the randomized neighborhood graphs [19]. It would be interesting
to explore these connections to see if the qualities of the two structures could
be combined.

13

Acknowledgements

The authors thank the anonymous referees for many useful comments and
suggestions.

References

[1] M. R. Brown, R. E. Tarjan, Design and analysis of a data structure for
representing sorted lists, SIAM J. Comput. 9 (1980) 594–614.

[2] D. D. Sleator, R. E. Tarjan, Self-adjusting binary trees, JACM 32 (1985) 652–
686.

[3] R. Cole, B. Mishra, J. Schmidt, A. Siegel, On the dynamic finger conjecture
for splay trees. Part I: Splay sorting logn-block sequences, SIAM Journal on
Computing 30 (1) (2000) 1–43.

[4] R. Cole, On the dynamic finger conjecture for splay trees. Part II: The proof,
SIAM Journal on Computing 30 (1) (2000) 44–85.

[5] J. Iacono, Alternatives to splay trees with O(logn) worst-case access times, in:
Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, 2001, pp. 516–522.

[6] J. Iacono, New upper bounds for pairing heaps, in: Proc. 7th Scandinavian
Workshop on Algorithm Theory (LNCS 1851), 2000, pp. 32–45.

[7] M. L. Fredman, R. Sedgewick, D. D. Sleator, R. E. Tarjan, The pairing heap:
A new form of self-adjusting heap, Algorithmica 1 (1986) 111–129.

[8] S. Arya, T. Malamatos, D. M. Mount, Entropy-preserving cuttings and space-
efficient planar point location, in: Proc. 12th ACM-SIAM Sympos. Discrete
Algorithms, 2001, pp. 256–261.

[9] S. Arya, T. Malamatos, D. M. Mount, A simple entropy-based algorithm for
planar point location, in: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms,
2001, pp. 262–268.

[10] J. Iacono, Optimal planar point location, in: Proc. 12th ACM-SIAM Sympos.
Discrete Algorithms, 2001, pp. 240–241.

[11] D. E. Knuth, Optimum binary search trees, Acta Inf. 1 (1971) 14–25.

[12] M. T. Goodrich, M. Orletsky, K. Ramaiyer, Methods for achieving fast query
times in point location data structures, in: Proc. 8th ACM-SIAM Sympos.
Discrete Algorithms, 1997, pp. 757–766.

[13] S. Arya, S. Cheng, D. Mount, H. Ramesh, Efficient expected-case algorithms
for planar point location, in: Proc. 7th Scandinavian Workshop on Algorithm
Theory (LNCS 1851), 2000, pp. 353–366.

14

[14] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

[15] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, in: F. Dehne,
J.-R. Sack, N. Santoro (Eds.), Proceedings of the Workshop on Algorithms
and Data Structures, Vol. 382 of Lecture Notes in Computer Science, Ottawa,
Ontario, Canada, 1989, pp. 437–449.

[16] J. I. Munro, T. Papadakis, R. Sedgewick, Deterministic skip lists, in: Proc. 3rd
ACM-SIAM Sympos. Discrete Algorithms, Orlando, Florida, 1992, pp. 367–375.

[17] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Vol. 10 of EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, Heidelberg,
West Germany, 1987.

[18] J. Iacono, S. Langerman, Proximate point location, in: Proceedings of the 2003
ACM Symposium on Computational Geometry (SoCG 2003), 2003, pp. 220–
226.

[19] S. Arya, D. M. Mount, Approximate nearest neighbor queries in fixed
dimensions, in: Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp.
271–280.

15

