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Abstract

We prove that a pushing-block puzzle called PUSHPUSH-k is PSPACE-complete for any fixed
k ≥ 1. In this puzzle, a robot moves on a finite grid. Each grid position is either empty or
occupied by a single obstacle block. While moving, the robot may push obstacle blocks in
direction of its movement, subject to certain constraints. In particular, once an obstacle block
starts moving, it continues to do so until it hits another obstacle or the grid boundary. The
problem is to decide whether the robot can navigate from a given start position to a specified
goal position on the grid.

1. Introduction

Pushing blocks. The generic pushing-block puzzle involves a rectangular grid of
squares, each either empty, occupied by one of several blocks, or occupied by a unique
robot. The robot can move horizontally or vertically to an empty square, or the robot
can push an adjacent block or blocks in the direction of movement, subject to certain
constraints. The goal of the puzzle is for the robot to reach a specified goal location,
starting from a given configuration of the board. The corresponding decision problem
is to decide whether such a puzzle is solvable by a sequence of moves and pushes.



(a) Initially. (b) PUSHPUSH-2. (c) PUSHPUSHPUSH-2.

Figure 1: Example: a single move in different pushing models.

Puzzle Classification. In this paper, we consider the following two pushing con-
straints; see [4] for a survey of other related constraints and results. The PUSH-k
constraint, for a fixed k ≥ 1, is that the robot can push at most k consecutive blocks
at once, and the PUSHPUSH constraint is that, when a block is pushed, it slides to
its maximal extent, ending against another block or the boundary of the rectangular
grid. Together, these two constraints are called PUSHPUSH-k. If the number of blocks
which the robot can push at once is not restricted, we call the resulting constraint
PUSHPUSH-∗.

The PUSHPUSHPUSH-k constraint is similar to PUSHPUSH-k, but blocks do not
necessarily stop to move when another block is hit. Instead they continue to slide until
the amount of blocks sliding simultaneously exceeds k or they hit the boundary.

Related work. Several papers address specific pushing-block puzzles. It is easy to
show that PUSHPUSH (and its variants) are in PSPACE. In particular, PUSHPUSH-
1 was introduced by O’Rourke et al. [11], motivated by a computer game1. They
proved that the natural generalization of the PUSHPUSH-1 puzzle to three dimensions
is NP-hard. The proof was extended to the two-dimensional version by Demaine,
Demaine, and O’Rourke [3]. An alternate proof, which simultaneously resolved the
less-constrained puzzle PUSH-1, was then published by the same authors [2]. At the
same time, Hoffmann [8] gave a construction showing that PUSH-∗ is NP-hard. Subse-
quently, Demaine and Hoffmann [5] proved NP-hardness of PUSH-k for any k ≥ 1. In
particular, they showed that PUSH-1 and PUSHPUSH-1 remain NP-hard even when the
solution path must not cross itself. In this last case, called PUSH-1-X and PUSHPUSH-
1-X, the puzzles are also in NP, and hence are NP-complete. Without this noncrossing
restriction, the puzzles do not obviously have polynomial-length solutions. Finally,
Demaine, Hoffmann, and Hearn [6] considered a model called PUSH-k-F where some
blocks may be marked as fixed, that is, immovable for the robot, and proved PUSH-k-F
to be PSPACE-complete for k ≥ 2. Previously, PUSH-∗-F was shown to be PSPACE-
complete by Bremner, O’Rourke, and Shermer [1].

On the other hand, Holzer and Schwoon [9] proved that the Atomix puzzle is
PSPACE-complete. Atomix is similar to PUSHPUSH-1 in that only a single block

1See http://www.pushpush.net for a history of the game and its implementations.
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can be pushed at once, and when pushed, it slides its maximal extent. One difference
is that the pushing is not made by a robot, but rather by an external agent (the player),
so any block can be pushed at any time (unless it is surrounded by other blocks).
Another difference is the goal: in Atomix, the blocks are distinguished and must be
assembled into a particular pattern.

Our results. This paper resolves the complexity of both PUSHPUSH-k and PUSH-
PUSHPUSH-k by proving them PSPACE-complete for any k ≥ 1. The reduction
reuses certain ingredients from both the construction of Holzer and Schwoon [9] and
the NP-hardness proof for PUSHPUSH-1 by Demaine et al. [3].

The paper is organized as follows. In the next section we outline the reduction
from intersection of regular languages given by finite automata. Then in Section 3 we
describe the implementation of the gadgets and prove their main properties. Finally,
in Section 4 we give our main result and summarize the computational complexity of
some pushing-block puzzles.

2. Reduction

Our reduction is from the PSPACE-complete problem of testing for non-empty inter-
section of regular languages [7, 10]. More precisely, we are given a number n ≥ 1,
and a sequence A1, . . . , An of finite automata, with Ai = (Qi, Σ, δi, qi, Fi), for
1 ≤ i ≤ n, all using a common alphabet Σ. The goal is to determine whether there is
a word in Σ∗ that is accepted by all Ai, 1 ≤ i ≤ n.

We construct a PUSHPUSH-k instance that has a solution precisely if there is a
word that is accepted by all given automata. The basic idea is to force the player to
choose a word that is accepted by all finite automata and then to simulate the transition
functions of the automata step-by-step.

The construction is based on the observation that any (k+1)×(k+1) square group
of blocks is immobile by a PUSHPUSH-k robot, so we can view them as effectively
pinned to the plane. In fact, most of the blocks in the constructed instance are arranged
in such immobile groups; few blocks can be pushed by the robot.

An interesting property of PUSHPUSH-k—as opposed to, for example, PUSH-k—
is that an obstacle block is sometimes helpful: it can be used to control the movement
of other blocks. One can design a key-lock mechanism that requires an obstacle to
be pushed to a certain position before the robot can pass. Hence, a truly movable
obstacle block is a scarce and important resource in our instances. The robot has to
accept some workload to get such a block into the desired position. In particular, this
includes the simulation of a finite automaton.
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Figure 2: Symbols for main gadgets: (a) one-way gadget, (b) choice gadget, (c) merge
gadget, (d) cross gadget, and (e) synchronize gadget.

2.1. Gadget Symbols and Properties

We introduce some symbols and basic properties of gadgets; see Fig. 2. Each gadget
puts certain restrictions on how a single movable obstacle block can be routed through
it. None of the basic gadgets restricts the robot’s movement in any way. We delay
describing the actual gadgets until Section 3, when their development is motivated.

The main properties of these gadgets are as follows.
One-way gadget: A block can be routed through this gadget in one direction only.

One-way gadgets are implicit throughout other gadgets by arrow notation.
Choice gadget: An incoming block can be routed to either outgoing port.
Merge gadget: An incoming block from either port can be routed to outgoing port.
Cross gadget: Blocks can be routed through horizontally and vertically, but a block

cannot take a turn between horizontal and vertical.
Synchronize gadget: Only when two incoming blocks have arrived they can pass

through the central channel and be distributed to the two outgoing ports, with
exactly one block exiting along each outgoing port.

Recall that the robot is free to pass through the gadgets in any direction. Also, all
gadgets can be generalized to an arbitrary number of input and output channels.

2.2. Single Step Transition

Next we describe how to simulate a single step of a finite automaton M = (Q, Σ,

δ, q0, F ), where Q is the set of states, Σ is the input alphabet, δ : Q × Σ → Q

is the (deterministic) transition function, q0 is the initial state, and F is the set of
final (accepting) states. It is then not much harder to simulate several steps and put
together several finite automata. Fig. 3 shows in part (a) the symbolic diagram of
the transition simulation of the finite automaton, and in part (b) an example for a
particular automaton with two states and two symbols, using the transition function
δ(q0, a0) = q1; δ(q0, a1) = δ(q1, a0) = δ(q1, a1) = q0.

On the left of the construction, we suppose that there is a block in exactly one of
the state channels q ∈ Q, representing the current state of the finite automaton. On the
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Figure 3: Transition simulation of an automaton.

top of the construction, we suppose that there is a block in exactly one of the symbol
channels a ∈ Σ, representing the next input symbol.

The idea is that the transition function δ : Q × Σ → Q can be viewed as a ma-
trix, where each row corresponds to a state, and each column corresponds to an input
symbol. The construction contains a corresponding |Q| × |Σ| matrix of synchronize
gadgets. The current state q ∈ Q of the automaton determines a particular row in this
matrix, and the next input symbol a ∈ Σ determines a particular column, and we want
the machine to go to the identified cell (q, a) of the matrix. Using choice gadgets, we
let the state block choose which column it would like to visit, and we let the symbol
block choose which row it would like to visit. For the blocks to make any progress
beyond the matrix of synchronize gadgets, they must go to a common cell, which is
precisely the desired cell (q, a).

As output, the simulation produces the same symbol a at the bottom of the con-
struction (for later use in another finite automaton) and a new state at the right of the
construction, determined by the transition function δ. Specifically, if a block enters the
δ gadget on wire (q, a) ∈ Q × Σ, the simulation produces the successor state δ(q, a).
In Fig. 3(a), it is hidden that the implementation of the multiwire synchronize gadget
uses a number of one-way and cross gadgets, as shown in Fig. 3(b).

2.3. Simulation of Several Finite Automata

Now we piece together several instances of Fig. 3 in order to simulate the intersection
non-emptiness problem for several finite automata. Fig. 4 gives a schematic view of
the construction; each box labeled “Automaton” corresponds to an instance of Fig. 3.
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Figure 4: Non-empty intersection simulation for several finite automata.
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First, the input state channel of each finite automaton contains an initial free block,
thus specifying the initial state of the automaton under consideration. Moreover, each
input state channel corresponding to a final (accepting) state has an alternate exit route
labeled Fi. These exits enable the robot to route a block toward the lock gadget, which
is located in the lower-left corner of the figure and is labeled by the word “Key.” This
lock corresponds to the automaton termination and accepting the guessed word.

Second, the output state channels loop back to the input state channels of each
finite automaton, permeating this information. Third, the symbol channels are strung
through all the finite automata, and finally loop back again, with a nondeterministic
choice at the very top; this is where the input word is generated, symbol-by-symbol.

Finally, there are gadgets responsible for the robot’s start and finish. Initially, the
robot is located at the place marked with the large S. The sequence of locks prevent
the robot from immediately accessing its goal position that is labeled with a large X.
Because the symbol channels are all strung together, in fact every automaton must
terminate and accept at the same time. Thus, one block per automaton can reach
the “finish,” unlocking the corresponding lock, precisely if there is a common word
accepted by all of the finite automata.

3. Gadgets

This section details the PUSHPUSH gadgets used in the reduction of the previous sec-
tion. We begin with some basic observations and conventions, following [3].

First, observe that any (k + 1) × (k + 1) group of blocks is immobile by a
PUSHPUSH-k robot, so we can view them as effectively pinned to the plane. Such
groups of blocks are shaded dark in our figures. We use such immobile groups to
build channels: a channel is a 1×x or x× 1 group of empty cells surrounded on both
sides by two (k + 1) × x or x × (k + 1) groups of pinned blocks.

In all but the synchronize gadget, our constructions use these width-1 channels
connected at orthogonal junctions of degree between two and four. We can view such
a construction as an orthogonal graph, where the edges represent channels and the
vertices represent orthogonal junctions. We use circles to denote movable blocks in
the channels or at the channel junctions.

For the remainder of this section, we restrict our attention to PUSHPUSH-1. It is
easy to extend the gadgets to the general PUSHPUSH-k constraint, in all cases except
the lock gadget, by thickening the channel insulation. Note that even for k > 1 there is
only one symbol block plus one state block for each automaton to be pushed around.
In fact, the construction is done in such a way that the robot can never use its ability
to push several blocks simultaneously.
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3.1. One-way, Choice, Merge, and Cross Gadgets

We start with the gadgets depicted in Fig. 2 save the synchronize gadget. For each
gadget, Fig. 5 shows the orthogonal-graph view on the top and an actual PUSHPUSH-1
puzzle on the bottom. These gadgets have the following obvious properties, which we
state without proof. Except for the catalyst/synchronize gadget and the lock gadget,
we assume that only one movable block resides in a particular gadget at any time. This
property is fulfilled in our construction.

LEMMA 1 In the one-way, choice, merge, corner, and cross gadget, the robot is free
to travel in any direction. For blocks, the following properties hold, assuming that at
most one block occupies the gadget at once: (1) In the one-way gadget, the robot may
move a block from x to y, but not from y to x. (2) In the choice gadget, the robot may
move a block only from x to y, or from x to z. (3) In the merge gadget, the robot may
move a block only from x to z, or from y to z. (4) In the cross gadget, the robot may
move a block only from x to z or y to z′, or vice versa.

3.2. Synchronize Gadget

We next detail the synchronize gadget, which is built out of two catalyst chambers
wired in sequence as illustrated in Fig. 6(a). The difference between catalyst chamber
and synchronize gadget is that a catalyst chamber has no “central channel”, so the two
blocks are not required to leave the gadget simultaneously. The second catalyst gadget
acts as an “after-burner”, ensuring that both blocks leave the first gadget. The catalyst
gadget is illustrated in Fig. 6(b,d–f).
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Figure 5: Implementations of (a) one-way, (b) choice, (c) merge, and (d) cross gadgets.
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LEMMA 2 In the catalyst gadget, (1) if the robot moves one block into the gadget
alone from either x or y, it cannot move the block to either z or w; (2) if the robot
moves two blocks into the gadget, there is a sequence of moves such that both blocks
can leave the gadget through different output channels; and (3) if the robot moves
two blocks into the gadget, the blocks cannot both be pushed through the same output
channel z or w. The robot is free to travel in any direction.

Proof : Property 1 follows because, once a block is moved into the gadget alone, it can
only be pushed around cyclically inside the gadget, but never enter one of the output
channels. Property 2 is shown in Fig. 6(d–g). Finally, for Property 3, the blocks can
basically only be pushed around in the shaded cycle C in Fig. 6(b). As soon as the
first block is pushed out from C, it either leaves the gadget via an output channel,
leaves the gadget via an input channel, or it gets stuck in a corner forever. In the latter
two cases, we are done. In the former case, which can only occur if both blocks are
placed immediately adjacent on C, we are left with one block on C. Either this block
is immediately pushed out, or it will be stuck in C as in Property 1. This concludes the
proof, because there are no two neighboring positions on the cycle from which blocks
can be pushed out to the same channel. 2
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Figure 6: (a) Synchronize gadget, constructed in terms of (b) catalyst gadget, (c) a
catalyst gadget for PUSHPUSHPUSH-3, and (d)–(g) the traversal sequence of (b).
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No changes are required for the catalyst gadget to work with the PUSHPUSH-k
constraint for k > 1. However, for PUSHPUSHPUSH-k with k > 1, the operations
shown in Fig. 6(e–f) do not lead to (f) but back to (e) instead, since the 2 ≤ k blocks
continue to move down. Therefore the gadget has to be “blown up” so that a sequence
analogous to Fig. 6 ends up with a sequence of k + 1 blocks stacked up in the middle.
For an arbitrary k ≥ 1 the catalyst gadget for PUSHPUSHPUSH-k has an interior
cycle C of height 2(k + 1) and width 3, and the sizes of the staircase steps on its
boundary decrease gradually from k to 1 when going from x toward w or z toward y,
respectively. Moreover, the gadget initially contains k−1 movable blocks, stacked up
in a corner of C. Fig. 6(c) shows the instance for PUSHPUSHPUSH-3.

3.3. Lock Gadget

Finally, we describe the lock gadget. It prevents the robot from reaching its final
destination unless it has enough blocks to unlock the gadget. A single lock gadget
is shown in Fig. 7. By cascading several of these gadgets in sequence, we obtain a
generalized lock gadget with several key input channels, each requiring a key.

The lock is quite different compared to the gadgets we have seen so far in that
it restricts the robot’s movement. There are a number of movable blocks which may
change position whenever the robot traverses a lock. That is, a lock has an associated
state. We distinguish between three different states: a lock as shown in Fig. 7(a) is
closed, if a key block has been pushed in from y (see Fig. 7(b)), the lock is open, and
all other possible states are referred to as broken. The possible traversals of a lock
gadget and the resulting changes in state are summarized by the following lemma.

LEMMA 3 The robot may pass through a lock gadget from x to z if and only if the
lock is open. The robot may pass through a lock gadget from x to y if and only if the
lock is closed. After any of these traversals the lock is broken. The robot may change
the state of a lock from locked to open by pushing in a block from y. Except for the
traversals described above, there is no way for the robot to pass through the gadget
between any two distinct ports ({x, y, z}) in any state.

Proof : First consider a locked gadget: obviously, it cannot be traversed from either
y or z. In fact, Block 0 is the only block that can be pushed at all. If it is pushed
down, no further block movement is possible in the gadget. If Block 0 is pushed right,
Block 1 can only be pushed up afterward such that it gets stuck in the corner and
blocks the connection to y or z forever. Hence, there is only one way to proceed:
pushing Block 0 left and thereby blocking port x forever (including the way back).
Moreover, the only way to get out of the gadget is to proceed as in Fig. 7(c), except
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(d) Lock for PUSHPUSH-2.

Figure 7: Lock gadget.

that there is no Block 8 such that Block 4 moves all the way until it hits Block 5,
thereby forever blocking port z as well.

Now consider an open lock: again, the gadget cannot be traversed from either y or
z. As above, the only way to traverse the lock from x is shown in Fig. 7(c). Afterward,
both x and y are blocked forever. 2

For PUSHPUSH-k with k > 2 a slight modification of the lock gadget is required
on top of the usual thickening: Block 4 has to be replaced by a sequence of k blocks.
Basically, we copy the column to the right of Block 4 and insert another block to the
right of Block 4 (k times). In the proof of Lemma 3 there is a minor difference as
well, since for k > 2 the robot might first push Block 0 to the right without immedi-
ately blocking the whole gadget. To avoid introducing additional states, we just place
Block 0 and Block 1 next to each other from the very beginning. Fig. 7(d) shows the
resulting gadget for PUSHPUSH-2. Finally observe that the lock gadget immediately
extends to PUSHPUSHPUSH-k.

4. Conclusions

By the hardness construction and the obvious membership in PSPACE, we have
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THEOREM 1 PUSHPUSH-k and PUSHPUSHPUSH-k are PSPACE-complete for any
k ≥ 1.

Finally, we summarize some of the computational complexity results on pushing-
block puzzles in Table 1. The main open problem that remains is to resolve the com-
plexity of PUSH-k and PUSH-∗ between NP and PSPACE.

Parameter
Problem -1 -k -∗
PUSH NP-hard NP-hard NP-hard
PUSHPUSH PSPACE-compl. PSPACE-compl. NP-hard
PUSH-X NP-compl. NP-compl. NP-compl.
PUSH-F NP-hard PSPACE-compl. PSPACE-compl.

Table 1: Computational complexity of some block sliding puzzles.
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