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A polyomino is a “simply connected” set of unit
squares introduced by Solomon W. Golomb in 1954.
Since then, a set of polyominoes has been playing an
important role in puzzle society (see, e.g., [3, 1]). In
Figure 82 in [1], it is shown that a set of 12 pentomi-
noes exactly covers a cube that is the square root of 10
units on the side. In 1962, Golomn also proposed an
interesting notion called “rep-tiles”: a polygon is a rep-
tile of order k if it can be divided into k replicas con-
gruent to one another and similar to the original (see [2,
Chap 19]).

These notions lead us to the following natural ques-
tion: is there any polyomino that can be folded to a cube
and divided into k polyominoes such that each of them
can be folded to a (smaller) cube for some k? That is, a
polyomino is a rep-cube of order k if itself is a net of a
cube, and it can be divided into k polyominoes such that
each of them can be folded to a cube. If each of these
k polyominoes has the same size, we call the original
polyomino regular rep-cube of order k. In this paper,
we give an affirmative answer. We first give some reg-
ular rep-cubes of order k for some specific k. Based
on this idea, we give a constructive proof for a series of
regular rep-cubes of order 36gk′2 for any positive inte-
ger k′ and an integer g in {2, 4, 5, 8, 10, 50}. That is,
there are infinitely many k that allow regular rep-cube
of order k. We also give some non-regular rep-cubes
and its variants.

We first show some specific solutions.

Theorem 1 There exists a regular rep-cube of order k
for k = 2, 4, 5, 8, 9, 36, 50, 64

Proof. For each of k = 2, 4, 5, 8, 9, we give a regular
rep-cube in Figure 1. It is not difficult to see that they
satisfy the condition of rep-cubes.

For k = 36, we use six copies of the pattern given in
Figure 2. Using this pattern, we can combine them into
any one of eleven nets of a cube.
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For k = 64, we use one copy of the left pattern in
Figure 2 for the bottom of a big cube, four copies of
the center pattern in Figure 2, and one copy of the right
pattern in Figure 2 for the top of the big cube. The con-
sistency can be easily observed.

For k = 50, we make a program for finding packings
of nets of unit cubes on twisted grids on bigger cubes by
exhaustive search. We found a packing on a (7, 1) twist,
i.e., a dissection of the surface of a
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cube into 50 nets of unit cubes as shown in Figure 2.
Based on the solution for k = 36 in Theorem 1, we

obtain the following theorem:

Theorem 2 There exists a regular rep-cube of order
36gk′2 for any positive integer k′ and an integer g in
{2, 4, 5, 8, 10, 50}. That is, there exists an infinite num-
ber of regular rep-cubes.

Proof.(Outline) In each pattern in the proof of Theorem
1, we first split each unit square into k′2 small squares.
Then we replace each of them by the pattern for k = 36
in Figure 2, and obtain the theorem.

One may think that non-regular rep-cubes are more
difficult than regular ones. So far, we have found some:

Theorem 3 There exists a non-regular rep-cube of or-
der k for k = 2, 10.

Proof. For k = 2, the rep-cube is given in Fig-
ure 3(left): this itself folds to a cube of size
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5, and it can be cut into two pieces such that
one folds into a cube of size 2 × 2 × 2, and the other
folds into a unit cube. We note that these areas satisfy
6 × (

√
5)2 = 6 × 12 + 6 × 22 = 30.

For k = 10, the rep-cube is given in Figure 3(right):
this pattern contains 150 unit squares. It is easy to see
that nice nets of unit cube use 54 unit squares in total.
The remaining 96 squares form a net of cube of size
4 × 4 × 4. Moreover, this pattern also folds to a cube
of size 5 × 5 × 5. These areas satisfy 150 = 6 × 52 =
6 × (32) + 6 × (42) = 6(32 + 42).

In this paper, we introduce a new notion of “rep-
cube,” and show several examples. So far, we have no
systematic ways to investigate them. However, from the
trivial constraint for the areas, we can consider many
variants as shown in the last example for k = 10: Is
there a rep-cube of order 6 from a 3 × 3 × 3 cube into
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Figure 1: Rep-cubes of order k = 2, 4, 5, 8, 9, respectively.

k = 36 k = 64 k = 50

Figure 2: Patterns for rep-cubes of order k = 36, k = 64, and k = 50

k = 2 k = 10

Figure 3: Patterns for non-regular rep-cubes of order k = 2, 10.

Figure 4: One doubly covered
square to three doubly covered
squares.

one 2× 2× 2 cube and five 1× 1× 1 cubes, and so on.
Especially, one interesting open question is that is there
are rep-cube of order 2 from one 5×5×5 cube into one
4 × 4 × 4 cube and 3 × 3 × 3 cube. We note that this
size comes from the Pythagoras triangle 32 + 42 = 52.
We have already known that there are infinitely many
Pythagoras triangles. For each of them, can we con-
struct a rep-cube of order 2?

Is there any integer k such that we have no regular
rep-cube of order k? It seems to be unlikely that there
is a regular rep-cube of order 3. How can we prove
that? In this paper, we also introduce “regular” rep-
cubes. One natural additional condition may be making
every small development congruent; for example, each
example for k = 2, 4, 9 satisfies this condition. What
happens if we employ this additional condition?

One of other extensions is different dimension and
shape. For example, we have the following theorem:

Theorem 4 Let A, a1, . . . , ak be any positive real num-
bers such that

∑
i ai = A. (1) There is a net of a

doubly-covered square with area A that can be cut into
k polygons with areas a1, . . . , ak, each of which can be
folded into a double-covered square (see Figure 4 for
k = 3). (2) There is a net of a regular tetrahedron
with area A that can be cut into k polygons with areas
a1, . . . , ak, each of which can be folded into a regular
tetrahedron.
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