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Abstract21

Since the introduction of retroactive data structures at SODA 2004, a major unsolved problem has been22

to bound the gap between the best partially retroactive data structure (where changes can be made to the23

past, but only the present can be queried) and the best fully retroactive data structure (where the past can24

also be queried) for any problem. It was proved in 2004 that any partially retroactive data structure with25

operation time Top(n,m) can be transformed into a fully retroactive data structure with operation time26

O(
√
m · Top(n,m)), where n is the size of the data structure and m is the number of operations in the27

timeline [7]. But it has been open for 14 years whether such a gap is necessary.28

In this paper, we prove nearly matching upper and lower bounds on this gap for all n and m. We29

improve the upper bound for n �
√
m by showing a new transformation with multiplicative overhead30

n logm. We then prove a lower bound of min{n logm,
√
m}1−o(1) assuming any of the following con-31

jectures:32

Conjecture I: Circuit SAT requires 2n−o(n) time on n-input circuits of size 2o(n).33

This conjecture is far weaker than the well-believed SETH conjecture from complexity theory,34

which asserts that CNF SAT with n variables and O(n) clauses already requires 2n−o(n) time.35

Conjecture II: Online (min,+) product between an integer n × n matrix and n vectors requires36

n3−o(1) time.37

This conjecture is weaker than the APSP conjectures widely used in fine-grained complexity.38

Conjecture III (3-SUM Conjecture): Given three sets A,B,C of integers, each of size n, deciding39

whether there exist a ∈ A, b ∈ B, c ∈ C such that a+ b+ c = 0 requires n2−o(1) time.40
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33:2 Nearly Optimal Separation Between Partially And Fully Retroactive Data Structures

This 1995 conjecture [13] was the first conjecture in fine-grained complexity.41

Our lower bound construction illustrates an interesting power of fully retroactive queries: they can be42

used to quickly solve batched pair evaluation. We believe this technique can prove useful for other data43

structure lower bounds, especially dynamic ones.44

2012 ACM Subject Classification Theory of computation~Lower bounds and information complex-45

ity46

Keywords and phrases retroactive data structure, conditional lower bound47

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.3348

1 Introduction49

Retroactive Data Structures50

A data structure can be thought of as a sequence of updates being applied to an initial state. In51

traditional data structures, we can only append updates to the end of this sequence, called the timeline,52

and can only query about the final state of the data structure resulting from all the updates. Retroactive53

data structures, introduced at SODA 2004 [7], allow us to add or remove updates in the past, i.e.,54

anywhere in the timeline rather than only at the end.55

There are two main kinds of retroactive data structures: partially retroactive data structures,56

where we are only allowed to query the present, i.e., the final version resulting from the whole update57

sequence; and fully retroactive data structures, where we are also allowed to query about a past state,58

i.e., the state resulting from applying only a prefix of the update sequence given by the timeline.59

Unlike persistence [11], there is no general efficient transformation from a data structure into60

a retroactive data structure, even partially retroactive with sublinear multiplicative overhead [7].61

Nonetheless, several efficient retroactive data structures have been developed [8, 5, 15, 10, 23, 17, 24,62

9].63

Motivation: Full Retroactivity versus Partial Retroactivity64

A key problem, posed in the original paper on retroactive data structures [7], is whether the full65

retroactivity requirement makes problems much harder than their partially retroactive counterpart. The66

same paper established an O(
√
m) multiplicative overhead transformation from a partially retroactive67

data structure to a fully retroactive one, where m is the number of updates in the timeline.68

Prior to our work, there was no data structure problem whose best known fully retroactive69

version was substantially (more than a polylogarithmic factor) worse than the best known partially70

retroactive version. Priority queues used to be the only problem with a polynomial gap (between71

O(
√
m logm) and O(logm) time [7]). But at WADS 2015 it was shown that priority queues72

have a polylogarithmic fully retroactive solution [9], and more generally, any “time-fusable” data73

structure can be transformed from partial to full retroactivity with polylogarithmic overhead. Can this74

transformation be generalized to all data structures?75

Our Results: Conditional Lower Bounds76

We show that, perhaps surprisingly, the O(
√
m) overhead for transforming partial retroactivity into77

full retroactivity is nearly optimal for general data structure problems, conditioned on any of three78

well-believed conjectures:79

http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.33
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I Conjecture I. In the Word-RAM model of computation with O(logn) bit words, it takes 2n−o(n)
80

time to solve SIZE(2o(n)) Circuit SAT: decide whether a given n-input circuit C of size 2o(n) is81

satisfiable.82

I Remark 1. The problem SIZE(2o(n)) Circuit SAT is far harder than CNF SAT, and the conjec-83

ture above is much weaker than the well-believed Strong Exponential Time Hypothesis (SETH) [21]84

which states that for every ε > 0, there is a clause length k such that k-SAT on n variables cannot85

be solved in 2(1−ε)n time. Due to the Sparsification Lemma [21], the formulas that SETH concerns86

have linear size. It is much easier to believe that Circuit SAT for an unrestricted circuit (as opposed87

to a formula), of much larger, 2o(n) size requires enumeration of all possible inputs.88

I Conjecture II. Online (min,+) product between an integer n×n matrix and n length-n vectors
requires n3−o(1) time in the word-RAM model of computation with O(logn) bit words. That is, given
an integer matrix A ∈ Zn×n, and n vectors v1, v2, . . . , vn that are revealed one by one, we wish to
compute the (min,+)-products

A � v :=
(

n
min
k=1

(A1,k + vk),
n

min
k=1

(A2,k + vk), . . . ,
n

min
k=1

(An,k + vk)
)

between A and each of the vis. We get to access vi+1 only after we have output A�vi. The conjecture89

asserts that the whole computation requires n3−o(1) time.90

I Remark 2. The offline (and thus easier) version of the above problem is equivalent to calculating91

the (min,+)-product of two matrices of size n×n, which is known to be asymptotically equivalent to92

the famous APSP problem [12]: (min,+)-product is in O(nc) time if and only if APSP is in O(nc)93

time, for any constant c.94

The online (min,+)-product conjecture is a natural generalization of the online Boolean Matrix-95

Vector Product conjecture of Henzinger et al. [19] that asserts that given a Boolean n× n matrix,96

multiplying it with n Boolean vectors given online requires n3−o(1) time, in the Word-RAM model.97

There is no known relationship between the APSP conjecture and the Online Boolean Matrix-Vector98

Product conjecture, so one may be true even if the other fails. It is not hard to embed Boolean99

product into (min,+)-product, and hence our conjecture is a weakening of both of these conjectures100

simultaneously, making ours very believable.101

I Conjecture III (3-SUM Conjecture). There exists a constant q, so that given three size-n sets102

A, B, C of integers in [−nq, nq], deciding whether there exist a ∈ A, b ∈ B, c ∈ C such that103

a+ b+ c = 0 requires n2−o(1) time in the word-RAM model with O(logn) bit words.104

I Remark 3. The 3-SUM Conjecture was the first attempt to address fine-grained complexity, back105

in 1995 [13]. By a standard hashing trick, we can assume q ≤ 3 + δ for any δ > 0.3 [26]. It remains106

open despite several slightly subquadratic algorithms [4, 6, 18].107

We can now state our lower bounds conditioned on the conjectures above, whose proofs are in108

Section 2. As in our conjectures above, throughout the paper, we assume that we are working in109

the word-RAM model with word size w = Θ(log max{n,m}), where n denotes the size of the data110

structure problem and m denotes the length of the update sequence (timeline).111

I Theorem 1. There is a data structure problem that has an O(n1+o(1))-time partially retroactive112

data structure, but conditioned on Conjecture I, requires Ω(n2−o(1)) time for fully retroactive queries113

when m = Θ(n2).114

I Theorem 2. There is a data structure problem that has an O(logn)-time partially retroactive115

data structure, but conditioned on Conjecture II, requires Ω(n1−o(1)) time for fully retroactive queries116

when m = Θ(n2).117

SWAT 2018
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I Theorem 3. There is a data structure problem that has an O(
√
n)-time partially retroactive data118

structure, but conditioned on Conjecture III, requires Ω(n1−o(1)) time for fully retroactive queries119

when m = Θ(n).120

Our Results: Matching Upper bound121

The three theorems above show that improving the general dependence on
√
m is impossible based122

on any of these three conjectures. But we may hope to have a better data structure when m� n2. In123

fact, we show in Section 3 that this is possible, for any “reasonable” data structure, by establishing124

the following theorem:125

I Theorem 4. Suppose a data structure of size n satisfies the following conditions:126

1. There is a sequence of O(n) queries to extract the whole state3 S from it.127

2. Given a state S of size n, there is a sequence of O(n) operations to update the data structure128

from empty initial state to S.129

3. It is partially retroactive with operation time Top(n,m).130

Then the corresponding problem has an amortized fully retroactive data structure with operation time131

O
(
min{

√
m,n logm} · Top(n,m)

)
.132

I Remark 4. The data structure of Theorem 4 is similar to the data structure described in [9,133

Section 2.2].134

Combining the above four theorems, we conclude that under reasonable conditions, the optimal135

gap between partial and full retroactivity is Θ(min{
√
m,n}), up to mo(1) factors, for any n and m.136

Related Work137

The field of fine-grained complexity studies the exact running time for problems in P and beyond,138

and proves many lower bounds for data structure problems conditioned on various conjectures [25,139

3, 19, 22, 1, 20, 16]. Look at the recent survey [26] for a summary of the known results in fine-140

grained complexity. We mention two of the related papers. Building on work by Patrascu [25]141

who focused on the 3-SUM conjecture, Abboud and Vassilevska W. [3] proved hardness for data142

structure problems under a variety of hypotheses: SETH, 3-SUM, APSP etc. [3] introduced SETH143

as a hardness hypothesis for data structure problems and obtained SETH-hardness for the following144

dynamic problems: maintaining under edge updates (insertions or deletions) the strongly connected145

components of a graph, the number of nodes reachable from a fixed source, a 1.3-approximation of146

the diameter of the graph, or whether there is (s, t) ∈ S×T such that s can reach t for two fixed node147

sets S and T . Henzinger et al. [19] introduces the Online Matrix-Vector Multiplication Conjecture,148

and shows that it implies tight hardness result for subgraph connectivity, Pagh’s problem, d-failure149

connectivity, decremental single-source shortest paths, and decremental transitive closure.150

2 Lower Bounds151

In this section, we first give a data structure framework, which eases the construction of our separation,152

and then we prove Theorem 1, Theorem 2, and Theorem 3.153

3 The state of a data structure is a description of all data it currently stores.



L. Chen, E. Demaine, Y. Gu, V. Vassilevska Williams, Y. Xu and Y. Yu 33:5

2.1 Data Structure Framework154

We present a data structure framework which turns out to be easy for partially retroactive data155

structures, but hard for their fully retroactive counterparts. In this framework, a data structure D156

maintains several lists, and answers a certain question on them. The formal definition is given below.157

I Framework 1 (Data Structure Problem PF ). In our data structure problem PF . We are158

required to maintain a constant number of lists consisting of items from an entry set E . Denote the159

lists as L1,L2, . . . ,Lk, and F is a function defined on these lists.160

We can view each list Li as a mapping from N to E and initially every list maps all indices to the161

idle symbol ⊥. We use L[a] to denote the a-th element of the list L, and we measure the size of a list162

L (denoted by |L|) by the number of a’s such that L[a] 6=⊥. The size of the data structure is then163

measured by sum of the sizes of all its lists.4164

There are two types of operations.165

set-element(Li, a, e): Set Li[a] = e.166

F -evaluation: Evaluate F on the current maintained lists L1,L2, . . . ,Lk.167

The key property for the problem PF is that, once we have a data structure DF for it, it supports168

partially retroactive queries with essentially no overhead.169

I Lemma 1. Suppose there is a data structure DF for the data structure problem PF with update170

time TU and query time TQ. Then there is a partially retroactive data structure Dpart
F for problem PF171

with update time TU +O(logm) and query time TQ.172

Proof. Our partially retroactive data structure Dpart
F simply simulates an instance of the regular173

structure DF which represents the current version of the data structure. Whenever there is an update174

in the history, it could be either inserting or deleting an operation set-element(Li, a, e) at time t, it175

only affects the a-th element in Li of the current version of the data structure DF .176

Therefore, we can use a BST to organize all set-element operations on each location of each list177

in the chronological order. We update the corresponding BST on the a-th element of list Li when178

dealing with insertion or deletion of an operation set-element(Li, a, e) in the history. When the latest179

set-element changes in the BST (or the BST becomes empty), we update the corresponding value in180

DF . And the query operation is equivalent to the same query operation on the current data structure181

DF . The time cost is the usual time cost of BST. J182

2.2 Lower Bound from SIZE(2o(n)) Circuit SAT183

Now we are ready to prove our lower bounds. First we prove Theorem 1, which we repeat here for184

completeness:185

I Reminder: Conjecture I. In the Word-RAM model with O(logn) bit words, it takes 2n−o(n)
186

time to solve Circuit SAT on n-input circuits of size 2o(n).187

I Reminder: Theorem 1. There is a data structure problem that has an O(n1+o(1))-time par-188

tially retroactive data structure, but conditioned on Conjecture I, requires Ω(n2−o(1)) time for fully189

retroactive queries when m = Θ(n2).190

4 A list can also be viewed as a dictionary over integers. We view them as lists because, in our construction, it is much
more convenient to do so.
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33:6 Nearly Optimal Separation Between Partially And Fully Retroactive Data Structures

Proof. Let d = no(1). We use the entry set

E := Cd × {0, 1}≤d,

where Cd is the set of descriptions of all circuits of size at most d, and {0, 1}≤d is the set of binary191

strings of length at most d. These descriptions take at most O(poly(d)) = no(1) bits. Therefore, an192

item from E consists of no(1) bits. Denote this number by d′.193

Consider the data structure problem PF (SAT) with respect to two lists L1,L2 of items in E and the194

function F (SAT) defined on them as follows. F (SAT)(L1,L2) = 1 if the following holds:195

There exist a and b with L1[a] = (C1, x1) 6=⊥ and L2[b] = (C2, x2) 6=⊥ such that196

C1 = C2;197

C2 is a valid description of a circuit of size at most d with exactly |x1|+ |x2| bits of198

input;199

C2(x1, x2) = 1.200

F (SAT)(L1,L2) = 0 otherwise. We say a pair (C1, x1) and (C2, x2) is good if they satisfy the201

conditions above.202

Let ` := (|L1|+ |L2|). The size of the whole structure is n = d′`.203

Partially Retroactive Upper Bound. In order to maintain F (SAT)(L1,L2), we keep a counter nSAT204

recording the number of pairs a and b such that L1[a] and L2[b] is a good pair. Whenever we modify205

an element in lists L1 or L2, it takes O(n1+o(1)) time to update the counter nSAT.206

Now, since we have an O(n1+o(1)) update time algorithm for PF (SAT) , by Lemma 1, it extends to207

an algorithm for the partially retroactive version.208

Fully Retroactive Lower Bound. Given a circuit C of size 2o(u) with u inputs. Let ` = 2u/4 be the209

size of the lists in the data structure (assuming u is divisible by 4 for simplicity).210

Let A and B be two identical lists of entries in E with size 2u/2 = `2, such that the i-th element211

of A and B is (C,wi), where wi is the i-th length u/2 binary string in lexicographic order. Then212

we divide A and B into ` = 2u/4 groups of equal size, and denote them by A1, A2, . . . , A` and213

B1, B2, . . . , B` correspondingly, where each Ai and each Bi is a list of size `.214

The circuit C is satisfiable if and only if there exists a ∈ A and b ∈ B such that a and b is a good215

pair. Consider the following operation sequences:216

First, for each k ∈ [`], we add an operation set-element(L1, k,⊥). We denote the operation time217

by tk.218

Next for each j ∈ [`], we add an operation set-element(L2, k, Bj [k]) for each k ∈ [`]. We denote219

the time right after adding the last operation for each j (set-element(L2, `, Bj [`])) by qj .220

Now, for each i ∈ [`], we replace the operation on time tk by an operation set-element(L1, k, Ai[k])221

for each k ∈ [`], and after that, we make fully retroactive query F (SAT)-evaluation at time qj for222

each j ∈ [`]. From the definition of F (SAT), it tells us whether there exists a ∈ Ai, b ∈ Bj such223

that a and b is a good pair, for each i, j ∈ [`].224

The whole procedure consists of m = Θ(`2) = O(n2) operations. Conditioning on Conjecture I,225

the whole sequence takes at least 2u(1−o(1)) = `4−o(1) = n4−o(1) time, which means a fully226

retroactive operation takes at least amortized Ω(n2−o(1)) time, and completes the proof. J227
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2.3 Lower Bounds from Online (min, +)-product228

Next we prove Theorem 2, which we recap here for completeness:229

I Reminder: Conjecture II. Online (min,+) product between an integer n × n matrix and n
length-n vectors requires n3−o(1) time in the word-RAM model with O(logn) bit words. That is,
given an integer matrix A ∈ Zn×n, and n vectors v1, v2, . . . , vn which are revealed one by one, we
wish to compute the (min,+)-product

A � v :=
(

n
min
k=1

(A1,k + vk),
n

min
k=1

(A2,k + vk), . . . ,
n

min
k=1

(An,k + vk)
)

between A and each of the vis. We get to access vi+1 only after we have output A�vi. The conjecture230

asserts that the whole computation requires n3−o(1) time.231

I Reminder: Theorem 2. There is a data structure problem that has an O(logn)-time partially232

retroactive data structure, but conditioned on Conjecture II, requires Ω(n1−o(1)) time for fully233

retroactive queries when m = Θ(n2).234

Proof. Let c be a constant such that all entries from A and all vi’s lie in [0, nc].235

Now, consider the data structure problem PF (min,+) with respect to two lists L1,L2 and the
function F (min,+) defined on them as

F (min,+)(L1,L2) := min
a:L1[a] 6=⊥,L2[a] 6=⊥

(L1[a] + L2[a]) .

The entry set E here is the integers in [0, nc].236

Partially Retroactive Upper Bound. Clearly, the operations in PF (min,+) can be supported in237

O(polylog(n)) time: we use a priority queue to maintain the sums L1[a] + L2[a] for all the valid238

a’s, and update the priority queue correspondingly after each set-element operations. Therefore, by239

Lemma 1, we know the update/query operations in the partially retroactive version of PF (min,+) can240

be supported in O(polylog(n) + logm) time.241

Fully Retroactive Lower Bound. Let a1, a2, . . . , an be the n rows of A, and v be a vector. Com-
puting the (min,+) product of A and v is equivalent to compute

(ai � v) :=
n

min
k=1

(ai,k + vk)

for each i ∈ [n].242

We are going to show that a fully retroactive algorithm for PF (min,+) can be utilized to compute243

(ai � vj) for each i, j ∈ [n] in an online fashion.244

Consider the following operation sequences. First we add set-element(L1, k, 0) for each k ∈ [n];245

then for each j ∈ [n], we add set-element(L2, k, aj,k) for each k ∈ [n]. We use tj to denote the time246

right after adding the operation set-element(L2, n, aj,n), i.e., the time we have just set L2 to represent247

vector aj .248

Then for each i ∈ [n], we delete the first n operations in the history (that is, we clear all249

the set-element operations on L1); and then we add set-element(L1, k, v
i
k) for each k ∈ [n] at the250

beginning of the operation sequence (that is, we set L1 to represent the vector vi); next we make251

a fully retroactive query F (min,+)-evaluation at the time tj for each j ∈ [n]. It is easy to see that252

querying at time tj gives us the value of (aj � vi). So, after performing the above procedure for vi,253

we have calculated the (min,+) product between A and vi.254

The size of data structure is Θ(n), and there are m = Θ(n2) operations in total. Hence,255

conditioned on Conjecture II, any fully retroactive data structure running on the above algorithm256

takes at least amortized n1−o(1) time for either update or query operation. J257
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2.4 Lower Bounds from 3-SUM258

Next, we prove Theorem 3, which we recap here for completeness:259

I Reminder: Conjecture III (3-SUM Conjecture). There is a constant q such that, given three260

size-n sets A, B, C of integers in [−nq, nq], deciding whether there exist a ∈ A, b ∈ B, c ∈ C such261

that a+ b+ c = 0 requires n2−o(1) time in the word-RAM model with O(logn) bit words.262

I Reminder: Theorem 3. There is a data structure problem that has an O(
√
n)-time partially263

retroactive data structure, but conditioned on Conjecture III, requires Ω(n1−o(1)) time for fully264

retroactive queries when m = Θ(n).265

Proof. Consider the data structure problem PF (3SUM) with respect to three lists L1,L2,L3 and the
function F (3SUM) defined on them as follows

F (3SUM)(L1,L2,L3) :=


1 |L2|2 ≤ |L1|, |L3|2 ≤ |L1|, and there exist a, b, c such that

L1[a] 6=⊥, L2[b] 6=⊥, L3[c] 6=⊥ and L1[a] + L2[b] + L3[c] = 0;

0 otherwise.

Let n :=
3∑

i=1
|Li| be size of the whole structure, and ni := |Li|.266

Partially Retroactive Upper Bound. We use L̃2 (resp. L̃3) to denote the sublists consisting of the267

first (at most)
√
n1 elements of L2 (resp. L3). Then by maintaining a BST for each list, an operation268

on L2 (resp. L3) can be easily reduced to at most one operation on L̃2 (resp. L̃3). Since whenever269

L̃2 6= L2 or L̃3 6= L3, F (L1,L2,L3) is defined to be zero, we can pretend to work with L̃2 and L̃3.270

We build a hash tableH storing all the elements in L1, and every value of the form −a− b for271

a ∈ L̃2, b ∈ L̃3. Using this table, we can count and maintain the number of the triples (a, b, c) such272

that L1[a] + L̃2[b] + L̃3[c] = 0. We denote this number by ntriple.273

Whenever we modify the list L1, we make the corresponding change onH. This may also cause274

O(1) additional operations on L̃2 and L̃3, as n1 can be larger or smaller. And when we modify the275

list L̃2 or L̃3, this causes updating at most max(|L̃2|, |L̃3| = O(
√
n) values inH.276

Since we have an O(
√
n) update time algorithm for PF (3SUM) , by Lemma 1, it extends to an277

algorithm for the partially retroactive version.278

Fully Retroactive Lower Bound. Let A, B, C be three integer lists of size n. For convenience we279

assume that n is a square number. We divide B and C into
√
n groups of equal size, and denote them280

by B1, B2, . . . , B√n and C1, C2, . . . , C√n correspondingly. Then each Bi and each Ci is a list of281

size
√
n.282

Consider the following operation sequence.283

First, for each i ∈ [n], we add an operation set-element(L1, i, A[i]), that is, we set the list L1 to284

represent the set A; then for each k ∈ [
√
n], we add an operation set-element(L2, k, 0), whose285

operation time is denoted by tk.286

Next for each j ∈ [
√
n], we add an operation set-element(L3, k, Cj [k]) for each k ∈ [

√
n]. We287

denote the time right after adding the operation set-element(L3,
√
n,Cj [

√
n]) as time qj .288

Now, for each i ∈
[√
n
]
, we replace the operation on time tk by an operation set-element(L2, k, Bi[k]).289

After that, we make a fully retroactive query F 3SUM-evaluation at time qj for each j ∈
[√
n
]
.290

From the definition of F 3SUM, the queries tell us whether there exists a ∈ A, b ∈ Bi, c ∈ Cj such291

that a+ b+ c = 0 for each i, j ∈
[√
n
]
, and thus solve the 3SUM problem.292

The data structure above has size Θ(n), and the whole procedure consists ofm = Θ(n) operations.293

Therefore, conditioned on Conjecture III, either update or query for a fully retroactive data structure294

for problem PF (3SUM) takes amortized Ω(n1−o(1)) time. J295
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3 Upper Bounds296

In this section, we prove Theorem 4:297

I Reminder: Theorem 4. Suppose a data structure of size n satisfies the following conditions:298

1. There is a sequence of O(n) queries to extract the whole state S from it.299

2. Given a state S of size n, there is a sequence of O(n) operations to update the data structure300

from empty initial state to S.301

3. It is partially retroactive with operation time Top(n,m).302

Then the corresponding problem has an amortized fully retroactive data structure with operation time303

O
(
min{

√
m,n logm} · Top(n,m)

)
.304

Proof. We use a weight-balanced binary tree (WBT) T to maintain the whole operation sequence
[14]. The subtree of each node u corresponds to an interval of operations Su in the whole operation
sequence. We can build a partially retroactive data structure Du on Su as augmented information in
node u. One property of WBT is that when we insert or delete its nodes, the amortized total number
of element changes to all Su is only O(logm). More formally, if Su is the set of operations before a
node insertion or deletion, and S′u is the set of operations after the insertion or deletion, then WBT
ensures ∑

u

|Su \ S′u|+ |S′u \ Su|

is amortized O(logm). For each element change in Su, we can update Du using the partially305

retroactive data structure in O(Top(n,m) · logm) amortized time per insert/delete of an operation.306

For each fully retroactive query, we first extract the corresponding prefix of the operation se-307

quence from the WBT. By properties of WBT, in O(logm) time, we can get k = O(logm) nodes,308

u1, u2, . . . , uk, such that the concatenation of these Sui
’s is exactly the prefix we are asking. Next309

we maintain a data structure state S initialized as the empty state. We go through each ui in order:310

first append O(n) operations at the beginning of Du to set the initial state inside Du to be S , and then311

make O(n) queries on Du, to extract its final state, and set S to be that state. By a simple induction,312

we can see that after we finished processing node ui, the final state of Dui
corresponds to the state313

resulting from the concatenation of Su1 , Su2 , . . . , Sui . Therefore, we can then query Duk
to get the314

answer we want. Finally, we delete all the operations we added in those Du, so they can be used for315

the future queries. To summarize, we invoke partially retroactive update/query O(n · logm) times,316

and hence the whole query takes O(n · logm · Top(n,m)) time.317

Demaine et al. [7] showed a reduction with O(
√
m) overhead. Roughly, their transformation318

maintains
√
m equally distributed checkpoints, and for each checkpoint, they maintain a partially319

retroactive data structure for the prefix up to that checkpoint. For update, they need to update all the320 √
m partially retroactive data structures; for query of a prefix, they first find the closest checkpoint,321

adding or deleting operations to this checkpoint in order for it to match the prefix, and then do the322

query. For both update and query, there are O(
√
m) calls to the partially retroactive data structure,323

hence the O(
√
m) overhead.324

Combining these two transformations gives an O(min{
√
m,n · logm}) overhead. There is a325

subtle issue here as this requires us to know n and m beforehand. We can avoid that by using the326

standard technique that maintains two structures D1 and D2 simultaneously, one with
√
m overhead327

and one with n · logm overhead. We simulate D1 and D2 in an interleaving fashion, and answer the328

query as soon as one of them gives its answer. J329

SWAT 2018



33:10 Nearly Optimal Separation Between Partially And Fully Retroactive Data Structures

4 Discussion330

Many lower bounds for algorithm problems are based on plausible conjectures from fine-grained331

complexity theory. Besides the three canonical ones (SETH, APSP, 3-SUM) mentioned above, some332

interesting hardness candidates include Boolean Matrix Multiplication [27], Online Matrix Vector333

Multiplication [19], and the Triangle Collection problem [2]. Their relationship and applications are334

discussed in detail in [26].335

Our lower bound constructions reveal that fully retroactive queries facilitate batched pair evalu-336

ation. We believe this technique can prove useful for other data structure lower bounds, especially337

dynamic ones. Some examples include the total update time for partially-dynamic algorithms,338

worst-case update time, query/update time tradeoffs [19], and space/time tradeoffs [16].339
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