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—— Abstract

We study the space reachable by rolling a 3D convex polyhedron on a 2D periodic tessellation in

the xy-plane, where at every step a face of the polyhedron must coincide exactly with a tile of the
tessellation it rests upon, and the polyhedron rotates around one of the incident edges of that face
until the neighboring face hits the xy plane. If the whole plane can be reached by a sequence of such
rolls, we call the polyhedron a plane roller for the given tessellation. We further classify polyhedra
that reach a constant fraction of the plane, an infinite area but vanishing fraction of the plane, or a
bounded area as hollow-plane rollers, band rollers, and bounded rollers respectively. We present a
polynomial-time algorithm to determine the set of tiles in a given periodic tessellation reachable by
a given polyhedron from a given starting position, which in particular determines the roller type
of the polyhedron and tessellation. Using this algorithm, we compute the reachability for every
regular-faced convex polyhedron on every regular-tiled (< 4)-uniform tessellation.
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1 Introduction

Dice rolling puzzles feature a cube rolling around on the square grid. The goal is often to
match a given face with a given tile. Such puzzles were popularized by Martin Gardner
[11, 12, 13], and are featured in a variety of computer games, such as Korodice (Gameboy,
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Figure 1 Screenshot from an interactive 3D rolling visualization program on the subject of this
paper [3].

1990), Super Mario 64 (Nintendo 64, 1996), Devil Dice (Playstation, 1998), Legacy of
Kain: Soul Reaver (Playstation, 1999), Legend of Zelda Oracle of Ages (Gameboy Color,
2001), Bombastic (Playstation 2, 2002), Legend of Zelda Spirit Tracks (Nintendo DS, 2009),
Rubek (Windows, 2016), Roll The Box (Mobile, 2021), and The Last Cube (Windows,
2022); see Figure 2. Cube rolling puzzles have been occasionally generalized to rolling
other polyhedra on other grids. For example, computer game HyperRogue (Windows, 2015)
involves hexagonal and heptagonal tiles in a hyperbolic space, and in its 2021 update, rolling
tetrahedron, octahedron, or icosahedron dice on a triangular lattice; see Figure 2e. With
various constraints, rolling puzzles can be NP-complete [6, 18], and when rolling multiple
shapes, they can be PSPACE-complete [5, 16].

1] @] 5557000

TIHED] - O0|| {STAGEQG

|+

(b) Zelda Oracle of
Ages (2001)

(a) Korodice (1990)

(c) Dewil Dice (1998) d bek (201 (e) HyperRogue (2015) Dice Reserve update
[screenshot: thebobble] (d) Rubek (2016) (2021)

Figure 2 Cube and dice-rolling puzzles in video games.

Previous work has explored rolling a polyhedron to reach any position and orientation in
the plane [8, 4]. Akiyama [1] defined a frame-stamper as a regular polyhedron that covers the
whole plane with a tiling by rolling the polyhedron in arbitrary directions, and a tile-maker as
a polyhedron whose unfoldings all tile the plane. A more relaxed definition in [2] determines
all tessellation polyhedra — regular-faced convex polyhedra that have at least one unfolding
that tiles the plane.
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1.1 Rolling Rollers

We formalize the concept of rolling any convex 3D polyhedron P on any tessellation T,
which we imagine as lying in the (horizontal) zy-plane; refer to Figure 3. Recall that a

plane tessellation is a partition of the plane into a collection T' of polygons called tiles [15].

We restrict our attention to edge-to-edge tilings where two touching tiles share either a
whole polygon edge or a vertex. When a tile of T is congruent to a face of P, we call them
compatible.

(a) Pyramid with (b) The snub squares tiling (c) Pyramid sitting on a

ites u?:ﬁ Icﬁad(em;)f made of regular triangles and compatible (congruent) tile
g polygons. squares. on the tiling.

Figure 3 A polyhedron and a tessellation with compatible faces are required for rolling.

To start, we place the polyhedron P on the tessellation so that one of its faces rests on
(i-e., coincides exactly with) a compatible tile. In a rolling step, we rotate the polyhedron
about one of the edges of its resting face, until another face rests on the tessellation. For the
roll to be valid, we insist that, at the end of the motion, the adjacent face of P across the
rolling edge rests on another (adjacent) compatible tile. See Figure 4 for an example.

Figure 4 Valid and invalid rolls, marked by green checks and red Xs respectively.

Valid sequences of rolls form paths in the rolling graph of possible configurations; see
Section 2.2 for a formal definition. If the rolling graph contains a connected component that
includes every tile of T, then we call the polyhedron a plane roller (denoted by the I8 icon)
for that tessellation and starting position, as it can eventually roll to cover the entire plane.
Other possibilities are @8 hollow-plane rollers, which cover a constant fraction of the plane
while leaving holes; & band rollers, which cover an infinite area that is a vanishing fraction
of the plane; and ® bounded rollers, which are confined to a finite area.
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1.2 Our Results

In this paper, we develop a polynomial-time algorithm to identify whether a polyhedron is a
plane roller, hollow-plane roller, band roller, or bounded roller for a given plane tessellation and
starting location, provided the tessellation is periodic meaning that its tiles have two linearly
independent translational symmetries. The running time of our algorithm is polynomial in
the number of faces of the polyhedron and the number of tiles in the fundamental domain of
the the two translational symmetries. We essentially take advantage of the periodicity of the
tessellation, coupled with the structure of the polyhedron, to prove that the resulting rolling
graph also has a periodic structure that we can exploit.

We then apply this algorithm to completely categorize a natural finite set of interesting
special cases, compiled on the website https://akirabaes.com/polyrolly/resulttable/
shown in Figure 5. For polyhedra, we consider the regular-faced convex polyhedra where every
face is a regular polygon: the 5 Platonic solids [9], the 13 Archimedean solids [10], the 92
Johnson solids and their chiral variations [14, 17, 19], the n-prisms for n € {3,5,6,8, 10,12},
and the n-antiprisms for n € {4,5,6,8,10,12}, as higher-sided polygons cannot be used to
tile the plane [15]. For periodic plane tessellations, we consider all “k-uniform” tilings for
k > 4, as listed in [7]. A plane tessellation is k-uniform if its tiles are regular polygons and it
is k-isogonal, meaning that there are k equivalence classes of vertices (called orbits) formed
by applying all transformations in the symmetry group to the vertices. All k-uniform tilings
are periodic [15].
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Figure 5 Screenshot of the rolling-pair reachable-area classification interactive table available at

https://akirabaes.com/polyrolly/resulttable/.
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(a) hexagonal antiprism on (3%;3*.6)2 (b) J87 on (3%;33%.4%),

Figure 6 Examples of reachable-area patterns generated by B plane rollers which can reach the
entire plane.

NANNANEN NN NN
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/\4 VA% VAVAVAYAYAR VAN

A\ 4
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AVAV.VA NN
\VAVANIWAY AVAVAVAVAVAVARVA
(a) snub cube on (3%.4.3.4) (b) snub dodecahedron on (3%;3%.6),

Figure 7 Examples of reachable area patterns generated by €% hollow-plane rollers which reach a
constant fraction of the plane while leaving holes.
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(a) J90 on (3%.4%;3%.4.3.4); (b) snub cube on (3%.42:32.4.3.4)

Figure 8 Examples of reachable areas patterns generated by & band rollers which reach an
infinite area but a vanishing fraction of the plane, being restricted to an infinite band.

Including chiral variations of polyhedra that have one, these cases consist of 129 polyhedra
and 131 tilings. For each case, we tried all possible starting positions to find the largest
connected reachable area, thereby characterizing every pair of polyhedron and tiling as
plane roller, € hollow-plane roller, band roller, or bounded roller. See Figures 6, 7, 8, and
9 for examples of each respective type, and Tables 2, 3, and 4 in Appendix A for a condensed
view of all results.
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(a) J44 on (3%.4%;3%.4.3.4), (b) J22 on (3%3%.6)2

Figure 9 Examples of reachable area patterns generated by ® bounded rollers which are restricted
to a finite area containing the start.

The figures and tables use standard notation for k-uniform tilings based on vertex types
[7]. The type of a regular-polygon tile is the number of its sides, and the type of a vertex is
the clockwise cyclic order of tile types that surround a vertex. For a k-uniform tiling, there
are finitely many vertex types, so the tiling can be labeled by the list of vertex types, with
duplicate names differentiated by a subscript. See Figure 10.

X X X X XX

JAVAVAVAVA - /-VAVAVAN
\VAVAVAVAVA - /AVAVAVAVAY
\VARVARVARVARVARV,

’e

(a) (3%2.4.3.4) VAVAVAVAVAVAVAVAVAVAV

L-uniform tiling (b) (3%3%.4.3.4) (c) (3%3*.6;3.6.3.6)
(archimedean) 2-uniform tiling 3-uniform tiling

Figure 10 Examples of the naming convention of uniform tilings in the standardized “isogonal
vertex type” notation, each point belonging to an orbit describing vertex types around it.

The rest of this paper is organized as follows. Section 2 describes our algorithm. Section 3
shows how the results from this algorithm can also assist puzzle designers. Section 4 describes
our implementation.

2 The Algorithm
2.1 Tilings

First we review some basics about tilings, following Griinbaum and Shephard [15].

There are uncountably infinitely many tilings, even when restricted to edge-to-edge tilings
with regular polygons. For example, the tiling in Figure 6b can be modified to follow any
binary sequence of triangle and square rows, and there are uncountably many such binary
sequences. We restrict our attention to periodic tilings T', which have two linearly independent

=,

translational symmetries (say, d and b) that act on the tiles of 7. What this means is that

-,

applying the translation vector d@ (respectively b) on any tile ¢t € T produces another tile of T'.


https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://akirabaes.com/polyrolly/resulttable/t/2u09.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J22#Elongated_and_gyroelongated_cupolae_and_rotundas
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
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The symmetry group generated by @ and b decomposes the set of tiles of T' into equivalence
classes, also called orbits, where two tiles are in the same class if there is a symmetry in the
group (an integer linear combination i@ + j b for some i,j € Z) that matches one to the other.

The tiling can then be described by a fundamental domain for the action of these
symmetries. Figure 11 shows an example. The fundamental domain is a connected subset of
the tiles (one tile for each orbit), which glued together form a supertile S. We denote by |S|
the number of tiles in the supertile. The supertile (and the tiles that compose it) can be
repeated by the action of the two translations to obtain the original tiling. As S tiles the
plane isohedrally by translation, its boundary can be decomposed into six pieces, denoted by
A, B,C, A, B,C, counterclockwise, where A, B, and C are translations of A by the action of
a, B by the action of 5, and C' by the action of b— a, respectively. See Figure 16 (right).

Figure 11 The same tiling as Figure 10b (3%;3%.4.3.4) in its supertile tiling representation.

A copy of the supertile can be identified by its integer coordinates in the basis formed by
the translation vectors @ and b. That is, the copy (7, ) corresponds to the application of the
translation iad + jl_; to S. An individual tile ¢ of the tiling 7" can then be uniquely identified
by ((i,7),s): the coordinates (i, ) of the copy of S it is located in and its representative tile
s within S. See Figure 12(a),(c)

(a) The periodic tiling and (b) The supertile f:((:))ordinates Ssl;:\;eri
the supertile described on it. ~ graph. over supertiles. Figure 13 Tiling where a
multigraph is necessary; see
Figure 12 Infinite tiling to supertile multigraph tiles 3 and 2.

A tiling T can also be represented by its (infinite) dual graph Gr,! where each tile is
a vertex of Gp, and two vertices are connected by an edge if the two corresponding tiles
are adjacent. When T is a periodic tiling, it is represented by the dual multigraph Gg of
its supertile S. For tiles touching the boundary of .S, we connect them to the tiles to which
they are adjacent in the other copy or copies of the supertile, and mark the dual edges by
A,B,C,A,B, or C depending on the portion of the boundary they cross, see Figure 12(b).
The graph Gg is in fact the quotient of G by the action of the symmetries @ and b (also
denoted Gr/{d, 8}) The graph Gg can be used to navigate the tiling T" or the graph G by
updating the representation ((4, j), s) when moving to an adjacent tile. The tile s is updated

1 This can be a multigraph, with parallel edges when two tiles are adjacent on more than one edge; see
Figure 13.
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25 saaa Ah44
SR AbAA
N . AAMA

[e][s ][]
Figure 14 Dual graph of a

pyramid with information about the Figure 15 A vertex of the rolling graph is composed of
relative orientations of its faces. ((4,7), (tile, face, orientation))

to the adjacent tile s’ in Gg, and the coordinates (i, j) need to be updated when crossing a
boundary of the supertile S, using the edge marks.

2.2 Rolling Graphs

Let P be a convex polyhedron in R3. We denote by |P| the number of faces of P. The face
structure of P can be represented by its dual graph Gp where each face of P is a vertex in
Gp and two vertices are connected by an edge if the two corresponding faces of P share an
edge (Figure 14).

For a face f € P or a tile t € T, denote by |f| and || its number of edges. We number
the edges of every face f of polyhedron P counter-clockwise starting from one arbitrary edge
that will serve as the reference edge. We do the same for every tile ¢ of the supertile S (and
the corresponding tessellation 7'), with one edge being the reference edge, and the next edges
being numbered in clockwise order. A face f € P is compatible with ¢t € T in the orientation
o if |f| = |[t| and the counter-clockwise sequence of edge lengths and angles in f starting
at edge number o matches exactly the clockwise sequence of edge lengths and angles in ¢
starting from the reference edge. This means that f can be placed in the plane with edge
number o overlapping with the reference edge of ¢ so that the two polygons overlap perfectly.

We say polyhedron P rests on the tile t in the tessellation T with its face f at orientation
o if f and t completely overlap and the edge number o of f overlaps the reference edge of ¢.
The position of P is then represented by the tuple (¢, f,0). When T is a periodic tiling with
supertile S, and t = ((4, ), s) for s € S, then this position can be written as ((7, ), s, f,0)
(Figure 15). The state associated with this position is the tuple (s, f, o).

The rolling graph G p for P and T is an infinite graph whose vertex set is the set of all
possible positions (¢, f,0), and two nodes are connected by an edge if there is a valid roll
between them. The positions adjacent to (¢, f,0) can be easily explored by using the dual
graphs of P and T. We write (t, f,0) ~ (t', f',0") if the two positions are connected by a
path in the rolling graph. In that case, we say that the two positions are reachable from one
another.

2.3 Symmetries of Rolling Graphs

In this section, we show that any large connected subgraph of the rolling graph G pr has a
translational symmetry. We start by bounding the number N of possible states (s, f,0) of a
rolling graph.

N = Z Z (number of compatible orientations between f and s)
seS feP

<D D Ifr<els|pl.

seS fepP
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Figure 16 By finding the symmetry vectors in a connected component, we can describe a compact
representation of the connected component’s periodic graph (over the rolling graph).

The last inequality is by Euler’s formula. Note that the rolling graph in itself has the
same translational symmetries as the tiling T', because the validity conditions are the same
in both positions.

» Fact 1. If<(Za])7 50, va 00> has a valid roll to <(7’+217]+]1)7 S1, flv 01>7 then <(i/,j/)7 50, va 00>
has a valid roll to {(i' + 10,7 + Jjo), s1, f1,01) for alld',j' € Z.

This however does not mean that the same symmetries apply to the connected components
of the rolling graph, that is, ((4,7), so, fo,00) and ((7', j'), S0, fo, 00) might not be reachable,
even if the connected components are infinite. However, the following lemma shows that if
two distinct reachable positions have the same state, then we obtain a translational symmetry
on their connected components in the rolling graph.

» Lemma 1. If {(3,]),s, f,0) ~ ((i + u,j + v),s, f,0), then for all ((i',7),s, f',0') ~
((4,7), s, f,0), we have {(i',7"),s' f',0") ~{(i' +u,j' +v),s, f,0).

That s, ud + vb defines a translational symmetry on the connected component of
((i,7), s, f,0) in the rolling graph.

Proof. Write the path from ((¢',j'), ', f/,0’) to ((i, ), s, f, 0) in the rolling graph as ((i, j), s,
fy0) = ((i+i0,7+ 7o), 805 f0,00), - {(i+ ik, G+ k), Sk, [ry0k) = (', 5), 8, f',0'). Since, by
Fact 1, ((i+u+ig, j+u+je), Se, fo,00) to {(i+u-+ips1,j+u+jes1), Sev1, fer1,0041) 18 a valid
roll, we can construct the path ((',j'), s, f',0") = ((i + ik, 7 + k), Sk [y Ok )s -, (i + 40,5 +
jO)a507f0700> = <(i7j)757f7 0> ~ <(i+uvj+v)a37fa 0> = <(i+u+i0>j+v+j0)750af0700>’ s <(’L—|—
U+ ig, j + U+ Jk), Sk, fr, on) = (0 +u, j" +v), f,0) <

» Lemma 2. There is an algorithm which, in O(|P||S|) time either finds a base of the
translational symmetries of the connected component of the rolling graph containing a given
position ((i,7), s, f,0), or decides that the connected component is of finite size.

Proof. Run a depth first search on the rolling graph starting from ((, ), s, f, 0), for N steps.
If the depth first search stops, then the connected component containing ((7, j), s, f, 0) in
the rolling graph is of finite size. Otherwise, by the pigeonhole principle, we have found two
positions with the same state. By Lemma 1, we obtain a translational symmetry ud + vb of
the connected component.

Next, factor the rolling graph by this symmetry vector, that is, Gpr/{ud + vb} identifies
any pair of positions ((4,7), s, f,0) and ((i + ku,j + kv), s, f,0) for all k € Z. Run again a
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depth first search in Gpp/{ud+ vb} starting from ((, ), s, f,0), for N steps. If the depth
first search stops, then there are only a finite number of orbits for this symmetry vector, and
so only one translational symmetry in this connected component. Otherwise, again by the
pigeonhole principle and Lemma 1, we have found a second linearly independent translational
symmetry u'd + v’ b for this connected component. |

The algorithm in the above lemma finds a basis of two, one or zero translational symmetries
in the connected component. We can factor the rolling graph by those symmetries by
identifying symmetric tiles. As the symmetries are multiples of the supertile symmetries, this
is easily done by performing a coordinate change from the (7, j) coordinates to coordinates
in the new basis. When there is no symmetry, the algorithm identifies a bounded connected
component in Gp . When there is one symmetry vector, the algorithm finds a finite number
of orbits for this symmetry. Finally, when there are two symmetry vectors in the basis, the
factored rolling graph G pr/{ud+ UI;, u'd—+' 5} is of size polynomial in N and the connected
component can be explored completely by depth first search. In all three cases, a compact
representation of the connected component has been found. In the two latter cases, it takes
the form of a polynomially-sized fundamental domain and one or two translational symmetry
vectors.

2.3.1 Results on reachability

The arguments above show how to identify the connected components in the rolling graph.
In order to find the set of tiles that can be reached from a starting position, we only need to
look at the first part (4, 7), s of the positions in the connected component. Because this is a
projection, it preserves the symmetry vectors. We obtain the following classification for the
reachable area.

x

|
VAVAVAVS

Figure 17 No vector, one vector, two vectors but fail to cover, two vectors and full cover.

If the rolling graph does not have symmetry vectors, the reachable area is bounded and
P on T starting at (¢, f,0), is a ® bounded roller.

If the rolling graph only has one linearly independent vector, the reachable area is a band
and P on T starting at (¢, f, o) is a & band roller.

If the rolling graph has two linearly independent vectors, the reachable area extends
infinitely in all directions. If not every tile ¢ is present in the reachable supertiles, the
reachable tiles forms a plane with holes and P on T starting at (¢, f, o) is a @ hollow-plane
roller.

If every tile t is present in the reachable supertiles, the reachable tiles cover the entire
plane and P on T starting at (¢, f,0) is a B plane roller.
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3 Toolbox for Puzzle Designers

As mentioned in the Introduction, a rolling puzzle game typically includes a playing area with
obstacles and/or paths, a polyhedron that will navigate that space, a starting position, and
a goal position. The starting and/or goal positions sometimes specify a specific polyhedron
face to match with a specific tile, in addition to just the tile. Once a polyhedron and a
tessellation have been selected, there are several additional properties that can facilitate
puzzle design. The rolling graph defined above can also be used to compute them.

3.1 Properties
Unused tiles in the playing area.

The first and most crucial piece of information is provided directly by the reachability
computed in the previous section. For the puzzle to be solvable, the goal tile should be in
the reachable area from the start tile. Also, when the game includes interactive elements,

they cannot not be usefully placed on tiles that cannot be reached (except as misdirection).

Unused faces on the polyhedron.

For face-matching puzzles, determining which faces of the polyhedron are usable in the
puzzle is also important. Some faces might not be compatible with the tiling, while others
might not appear in the connected rolling graph despite being compatible. For example,

puzzle designers should avoid placing the goal on a polyhedron face that cannot be rolled on.

Unused faces of the polyhedron can easily be detected while computing the reachable area.

Guaranteed starting points.

When using a plane roller, we must select a starting state (tile, face, and orientation) from
which the polyhedron can reach the whole plane. This task can be simplified by selecting a
guaranteed starting point, which has the property that every tile in the plane is reachable
from that starting tile, no matter what polyhedron face and orientation is used as a starting
state.

» Definition 3. Given a plane roller pair (P,T), a tile t € T is a guaranteed starting point
if, for every f € P with |f| = |t|, and for every o € f, we have P on T starting at (t, f,o0) is
a plane roller.

» Definition 4. Given a rolling pair (P,T) with reachable area RA, a tile t € T is a
guaranteed starting point if, for every f € P with |f| = |t|, for every o € f, and for every
t; € RA, there is a face f; and orientation o; such that (t, f,o0) ~ (t;, fi, 0:).

Which faces reach which tiles: face-completeness.

In a face-matching rolling puzzle game, the objective is to reach a specific tile with a specific
face on the polyhedron (often marked by a different color). In some cases, not every face of a
particular shape can reach every tile. When using a polyhedron/tiling pair in a puzzle game,
it can help to know which face can reach which tile. We can track specific tiles that can be
reached by every compatible face during our computation. We call such tiles face-complete
tiles. Refer to Figure 18.
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» Definition 5 (face-complete tile). A rolling pair (P,T) with starting state (to, fo,00) has
a face-complete tile t € T if all compatible faces of the polyhedron can roll on t with
some orientation, that is, for all f € P with |f| = |t|, there is an orientation o such that

<ta f’ O> ~ <t07 fO» 00>-
» Definition 6 (face-orientation-complete tile). A tile is face-orientation-complete if it can

be visited with all compatible faces in every orientation within a connected component.

3.2 Puzzlemaker’s Reference Image

We can combine all of the above results into one image that serves as a reference point for
puzzlemakers. Figure 18 shows an example. This image allows one to select a tessellation/
polyhedron pair very easily depending on the puzzle’s needs.

J1 Plane roller on 2u05 (326;3/2x4x3x4) . .. ...

Figure 18 Puzzlemaker’s reference image: Left: polyhedron and its used faces (net). Right:
Tiling and tile properties.

B Reachable

B with all faces

B in all orientations

@ guaranteed starting point

The full set of reference images can be found on our website: https://akirabaes.com/
polyrolly/.

4 Implementation

The roller classification algorithm was implemented in Python 3.8 and is available on
GitHub at https://github.com/akirbaes/RollingPolyhedron/. It uses NumPy and
SymPy for creating a minimal linearly independent base, and pygame to produce images. The
implemented version performs further manipulations, such as aggregating connected rolling
graph states grouped by supertile into superstates, to lower processing time and avoid dealing
with individual tile positions calculations by only looking at the supertile cartesian coordinates.
The result table can be consulted at https://akirabaes.com/polyrolly/resulttable/.

We defined the supertiles of each tiling by hand in a custom periodic tessellation drawing
tool, as we lacked code to automatically convert vertex-type orbits (isohedral, edges) notation
to dual-graph supertile (isogonal, tiles) notation, but we did have a list of n-uniform
tessellation drawings [7].

An interactive 3D visualization of the rolling logic was implemented by Université libre
de Bruxelles Computer Science Bachelor students [3]; see Figure 1.


https://akirabaes.com/polyrolly/
https://akirabaes.com/polyrolly/
https://akirabaes.com/polyrolly/
https://github.com/akirbaes/RollingPolyhedron/
https://akirabaes.com/polyrolly/resulttable/
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5 Open Problem

It is left to determine, for the 87 polyhedra out of the 129 considered that did not generate a
plane roller with the 131 considered tilings, if there exists a tiling on which they would be
able to roll on the 2D plane.

dodecahedron, truncated cube, truncated octahedron, rhombicuboctahedron,
truncated cuboctahedron, snub cube, snub cube ¢, icosidodecahedron,
truncated  dodecahedron, truncated  icosahedron, rhombicosidodecahedron,
truncated icosidodecahedron, snub dodecahedron, snub dodecahedron c, j2, j4,
j5, 6, j7, 39, j18, j19, j20, j21, j23, j24, j25, j32, j33, j34, j35, j36, j38, j39, j40, j41, j42,
j43, j45, j45 c, j46, j46 c, j47, j47 c, j48, j48 c, j49, j52, jb3, jbb, joT, jb8, jb9, j60, j61,
j63, j64, j66, j67, j68, j69, j70, j71, j72, j73, j74, j75, j76, j77, j78, j79, j80, j81, j82,
j83, j91, j92, triangular prism, pentagonal prism, hexagonal prism, octagonal prism,
decagonal prism, dodecagonal prism, pentagonal antiprism, octagonal antiprism,
decagonal antiprism, dodecagonal antiprism

Table 1 Considered polyhedra which did not generate a plane roller with considered tilings
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A  Result Tables

tetrahedron with (3°) e cube with (4*) e octahedron with (35) e icosahedron
with (3%) e truncated tetrahedron with (3%;32.6%) e cuboctahedron with
(32.4.3.4), (3%;32.4.3.4), (3%.4%;32.4.3.4)1, (3%;32.4.3.4;3%.4.3.4) e j1 with (3%2.4.3.4),
(35;32.4.3.4), (33.42%;3%2.4.3.4)1, (3%;3%.42;32.4.3.4), (3%;3%2.4.3.4;3%.4.3.4) e j3 with
(35;32.4.3.3.4;3.42.6), (3%,3%.4.3.4;3.4%.6;3.4.6.4) e j8 with (4%), (35;3%.42;4%)1,
(3%;3%.4%;4%)3, (35;33.4%;3%2.4.3.4;4%) e jl10 with (3%), (35;3%.42)1, (3%;3%.4%)2,
(3%;32.4.3.4), (35;33.42;32.4.3.4), (35,35, 33.42)1, (39, 3%, 3%.42)2, (30;3%.42;32.4.3.4;4%) e
j11 with (3%) @ j12 with (3°) e j13 with (3°) e j14 with (35;33.4%)1 e j15 with (3%;3%.42)1
e j16 with (3%,3%.42)1 e j17 with (3%) e j22 with (3%;3%.6)1, (35;3%.6;3.6.3.6)2,
(35;31.6;3.6.3.6)3,  (35:35;31.6%) e j26 with (3%2.4.3.4), (3%.4%32.4.34)2,
(36;32.4.3.4;3%2.4.3.4) e j27 with (3%.4%), (3%.4%;32.4.3.4)1, (35;33.4%;32.4.3.4),
(3%.42;32.4.3.4;32.4.3.4) o j28 with (3%.42%), (33.4%,4% 41 e j29 with (3%2.4.3.4),
(30,32.4.3.4;3%.4.3.4) e j30 with (3%.4%) e j31 with (3%2.4.3.4), (3%;32.4.3.4;3%.4.3.4) e
j37 with (4%) e j44 with (3%;32.4.3.4;32.4.3.4), (33.4%;3%2.4.3.4;3%.4.3.4) e j44 chiral
with (3%;32.4.3.4;32.4.3.4) e j50 with (3%), (3%;3%.42)1, (35;3%.4%)2, (3%;32.4.3.4),
(39;3%:33.4%)1, (3%;3%;3%.4%)2, (3%,3%.42;32.4.3.4;4*) e j51 with (3°) e j54 with (3.4.6.4)
e j56 with (3.4.6.4) e j62 with (3°) e j65 with (3.6.3.6) e j84 with (3°) e j85 with (3°),
(3%;3%.42)1, (35;33.42)2, (35;32.4.3.4), (3%;3%;33.4%)1, (35;35;33.42)2, (35;33.42;33.4%)1,
(30,33.42;33.42)2, (3%,3%.42;32.4.3.4;4%) e j86 with (3%), (3%;3%.42)1, (3%;33.4%)2,
(36;32.4.3.4), (3%,3%.42;32.4.3.4), (3,342,411, (35;3%.4%;4%)2, (35;3%;3%.42)1,
(30,39,33.42)2, (36,33.42,32.4.3.4;4%) e j87 with (3%), (39;33.42)1, (3%;3%.4%)2,
(36;32.4.3.4), (3%;3%,3%.42)1, (35;3%;3%.4%)2, (36:;3%.42;32.4.3.4;4*) e j88 with
(35), (3%;3%.42)1, (3%;33.42)2, (35;33.4%;32.4.3.4), (35;33.42;4%)1, (35;3%.42;4%)2,
(36;35:3%.42)1, (39;35;3%.4%)2, (3%,33.42;33.4%)1, (35;3%.42;3%.4%)2 e j89 with
(35), (35;33.4%)1, (3%;33.4%)2, (3%;32.4.3.4), (35;33.4%;32.4.3.4), (35;3%.42;4%)3,
(3%;3%.4%;4%)4, (35;3%,3%.42)1, (35;35;33.42)2, (35;33.4%;33.4%)1, (3°;3%.4%;33.42)2
e j90 with (3%), (35;3%.42)1, (3%;3%.4%)2, (3%;32.4.3.4), (35;33.42;32.4.3.4),
(35;33.4%;44)1, (35;33.4%;4%)2, (3%;35;3%.4%)1, (39;35;3%.4%)2, (3°;33.42;33.42)1,
(3%;3%.42;3%.4%)2, (3°,3%.4.3.4;3%.4.3.4), (3%,3%.4%,3%.4.3.4;4") e square antiprism
with (3%.4%) e hexagonal antiprism with (3%.6), (3%;3%.6)1, (35;3%.6)2, (3*.6;32.6%),
(3%:3%.6;32.62)2, (3%,3%.6;3.6.3.6)1, (3%;3%.6;3.6.3.6)2, (3%,34.6;3.6.3.6)3, (3%;35;3%.62),
(3%,3%.6;3%.6), (3%.6;3.6;3.6.3.6)1, (3%.6;3.6;3.6.3.6)2, (3%;31.6;32.6%,3.6.3.6),
(3%.6;32.6%; 32.62;3.6.3.6)

Table 2 I Plane-roller polyhedra and tilings (42 polyhedra and 145 pairings).
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tetrahedron (x7) e octahedron (x7) e icosahedron (x7) e truncated tetrahedron (x12)
e cuboctahedron (x4) e truncated cube e truncated octahedron (x10) e
rhombicuboctahedron (x8) e truncated cuboctahedron (x6) e snub cube (x13)
e snub cube chiral (x12) e truncated icosahedron (x4) e rhombicosidodecahedron (x4)
e truncated icosidodecahedron (x5) e snub  dodecahedron  (x5)

snub dodecahedron chiral (x4) e jl (x6) e j3 (x8) e j7 (x5) e j8 e j10 (x15)
J11 (x6) o j12 (x7) ® j13 (x7) e j14 (x15) ® j15 (x15) e 16 (x15) ® j17 (x7) e j18 (x7)
19 (x4) » j22 126 (x2) ® j27 (x13) ® j28 (x8) ® j29 (x2)  j30 (x6) e j31 e 35 (x11)
j37 (x3) e j38 (x7) e j44 (x6) e j44 chiral (x5) e j45 (x2) e j45 chiral (x2) e j49 (x8)
o j50 (x16) ® j51 (x7) e j53 (x6) ® j54 (x14) ® 55 (x10) e j56 (x16) e j57 (x14) e
j62 (x4) e j65 (x3) e j66 e j72 (x4) e j74 (x10) e j75 (x6) e j76 (x4) e j78 (x4) e
j79 (x6) e j81 (x4) e j84 (x7) e j85 (x16) e j86 (x16) e j87 (x18) e j88 (x18) e j89 (x20)
e j90 (x16) e triangular prism (x12) e hexagonal prism (x18) e octagonal prism

e dodecagonal prism (x4) e square antiprism (x5) e hexagonal antiprism (x2) e
dodecagonal antiprism (x2)

Table 3 € Hollow-plane-roller polyhedra and tilings (76 polyhedra and 588 pairings).

tetrahedron (x35) e cube (x41) e octahedron (x35) e icosahedron (x35) e
truncated tetrahedron (x34) e cuboctahedron (x3) e truncated octahedron (x15)
e rhombicuboctahedron (x43) e snub cube (x7) e snub cube chiral (x8) e
truncated icosahedron (x13) e rhombicosidodecahedron (x2) e snub dodecahedron (x7)
e snub dodecahedron chiral (x7) e j1 (x7) e j3 (x2) e j7 (x43) e j8 (x39) e j9 (x42) e
710 (x29)  j11 (x31) ® 12 (x35) ® j13 (x35) ® j14 (x42) e j15 (x42) e j16 (x42) e j17 (x35)
0 j18 (x43) @ j19 (x41) @ j20 (x42) e j21 (x42) @ j22 (x30) e j23 (x30) e j24 (x30) e j25 (x30)
©j26 (x7) @ j27 (x17) ® 28 (x46) @ j29 (x4) ® j30 (x15) @ j31 (x3) @ j35 (x44) ® j36 (x49) e
§37 (x46) » 38 (x44) » j39 (x47) © 40 (x42) @ j41 (x42) e j42 (x42) ® 43 (x42) » j44 (x32)
e j44 chiral (x33) e j45 (x31) e j45 chiral (x32) e j46 (x32) e j46 chiral (x32) e j47 (x30)
j47 chiral (x30) e j48 (x30) e j48 chiral (x30) e j49 (x20) e j50 (x27) e j51 (x35) e j54 (x8)
o j55 (x10) 56 (x15) @ j57 (x11) @ j62 (x17) @ j65 (x25) @ j67 ® j72 ® jT3 (x5) @ j76 e
j77 (x5) @ j80 (x5) e j84 (x35) e j85 (x32) e j86 (x27) e j87 (x28) e j88 (x23) e j89 (x21)
® j90 (x25) e triangular prism (x45) e pentagonal prism (x42) e hexagonal prism (x36)
e octagonal prism (x42) e decagonal prism (x42) e dodecagonal prism (x43) e
square antiprism (x37) e pentagonal antiprism (x30) e hexagonal antiprism (x40) e
octagonal antiprism (x30) e decagonal antiprism (x30) e dodecagonal antiprism (x30)

Table 4 & Band-roller polyhedra and tilings (94 polyhedra and 2623 pairings).



https://en.wikipedia.org/wiki/tetrahedron
https://en.wikipedia.org/wiki/octahedron
https://en.wikipedia.org/wiki/icosahedron
https://en.wikipedia.org/wiki/truncated_tetrahedron
https://en.wikipedia.org/wiki/cuboctahedron
https://en.wikipedia.org/wiki/truncated_cube
https://en.wikipedia.org/wiki/truncated_octahedron
https://en.wikipedia.org/wiki/rhombicuboctahedron
https://en.wikipedia.org/wiki/truncated_cuboctahedron
https://en.wikipedia.org/wiki/snub_cube
https://en.wikipedia.org/wiki/snub_cube
https://en.wikipedia.org/wiki/truncated_icosahedron
https://en.wikipedia.org/wiki/rhombicosidodecahedron
https://en.wikipedia.org/wiki/truncated_icosidodecahedron
https://en.wikipedia.org/wiki/snub_dodecahedron
https://en.wikipedia.org/wiki/snub_dodecahedron
https://en.wikipedia.org/wiki/Johnson_solid?solid=J1#Pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J3#Cupolae_and_rotunda
https://en.wikipedia.org/wiki/Johnson_solid?solid=J7#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J8#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J10#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J11#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J12#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J13#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J14#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J15#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J16#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J17#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J18#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J19#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J22#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J26#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J27#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J28#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J29#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J30#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J31#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J35#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J37#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J38#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J45#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J45#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J49#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J50#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J51#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J53#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J54#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J55#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J56#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J57#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J62#Diminished_and_augmented_diminished_icosahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J65#Augmented_Archimedean_solids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J66#Augmented_Archimedean_solids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J72#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J74#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J75#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J76#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J78#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J79#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J81#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J84#Snub_antiprisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J85#Snub_antiprisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J86#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J87#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J88#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J89#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J90#Others
https://en.wikipedia.org/wiki/triangular_prism
https://en.wikipedia.org/wiki/hexagonal_prism
https://en.wikipedia.org/wiki/octagonal_prism
https://en.wikipedia.org/wiki/dodecagonal_prism
https://en.wikipedia.org/wiki/square_antiprism
https://en.wikipedia.org/wiki/hexagonal_antiprism
https://en.wikipedia.org/wiki/dodecagonal_antiprism
https://en.wikipedia.org/wiki/tetrahedron
https://en.wikipedia.org/wiki/cube
https://en.wikipedia.org/wiki/octahedron
https://en.wikipedia.org/wiki/icosahedron
https://en.wikipedia.org/wiki/truncated_tetrahedron
https://en.wikipedia.org/wiki/cuboctahedron
https://en.wikipedia.org/wiki/truncated_octahedron
https://en.wikipedia.org/wiki/rhombicuboctahedron
https://en.wikipedia.org/wiki/snub_cube
https://en.wikipedia.org/wiki/snub_cube
https://en.wikipedia.org/wiki/truncated_icosahedron
https://en.wikipedia.org/wiki/rhombicosidodecahedron
https://en.wikipedia.org/wiki/snub_dodecahedron
https://en.wikipedia.org/wiki/snub_dodecahedron
https://en.wikipedia.org/wiki/Johnson_solid?solid=J1#Pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J3#Cupolae_and_rotunda
https://en.wikipedia.org/wiki/Johnson_solid?solid=J7#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J8#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J9#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J10#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J11#Elongated_and_gyroelongated_pyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J12#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J13#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J14#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J15#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J16#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J17#Bipyramids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J18#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J19#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J20#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J21#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J22#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J23#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J24#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J25#Elongated_and_gyroelongated_cupolae_and_rotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J26#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J27#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J28#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J29#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J30#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J31#Bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J35#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J36#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J37#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J38#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J39#Elongated_bicupolae
https://en.wikipedia.org/wiki/Johnson_solid?solid=J40#Elongated_cupola-rotundas_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J41#Elongated_cupola-rotundas_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J42#Elongated_cupola-rotundas_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J43#Elongated_cupola-rotundas_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J45#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J45#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J46#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J46#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J47#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J47#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J48#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J48#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://en.wikipedia.org/wiki/Johnson_solid?solid=J49#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J50#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J51#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J54#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J55#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J56#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J57#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J62#Diminished_and_augmented_diminished_icosahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J65#Augmented_Archimedean_solids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J67#Augmented_Archimedean_solids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J72#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J73#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J76#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J77#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J80#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J84#Snub_antiprisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J85#Snub_antiprisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J86#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J87#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J88#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J89#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J90#Others
https://en.wikipedia.org/wiki/triangular_prism
https://en.wikipedia.org/wiki/pentagonal_prism
https://en.wikipedia.org/wiki/hexagonal_prism
https://en.wikipedia.org/wiki/octagonal_prism
https://en.wikipedia.org/wiki/decagonal_prism
https://en.wikipedia.org/wiki/dodecagonal_prism
https://en.wikipedia.org/wiki/square_antiprism
https://en.wikipedia.org/wiki/pentagonal_antiprism
https://en.wikipedia.org/wiki/hexagonal_antiprism
https://en.wikipedia.org/wiki/octagonal_antiprism
https://en.wikipedia.org/wiki/decagonal_antiprism
https://en.wikipedia.org/wiki/dodecagonal_antiprism

	1 Introduction
	1.1 Rolling Rollers
	1.2 Our Results

	2 The Algorithm
	2.1 Tilings
	2.2 Rolling Graphs
	2.3 Symmetries of Rolling Graphs
	2.3.1 Results on reachability


	3 Toolbox for Puzzle Designers
	3.1 Properties
	3.2 Puzzlemaker's Reference Image

	4 Implementation
	5 Open Problem
	A Result Tables

