
CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Reconfiguration of Linear Surface Chemical Reaction Networks with
Bounded State Change

Robert M. Alaniz∗ Michael Coulombe† Erik D. Demaine† Bin Fu∗ Timothy Gomez†

Elise Grizzell∗ Ryan Knobel∗ Andrew Rodriguez∗ Robert Schweller∗ Tim Wylie∗

Abstract

We present results on the complexity of reconfigura-
tion of surface Chemical Reaction Networks (sCRNs)
in a model where surface vertices can change state a
bounded number of times based on a given burnout pa-
rameter k. We primarily focus on linear 1× n surfaces.
Without a burnout bound, or even with an exponen-
tially high bound on burnout, reconfiguration on linear
surfaces is known to be PSPACE-complete. In contrast,
we show that the problem becomes NP-complete when
the burnout k is polynomially bounded in n. For smaller
k = O(1), we show the problem is polynomial-time solv-
able, and in the special case of k = 1 burnout, reconfig-
uration can be solved in linear O(n + |R|) time, where
|R| denotes the number of system rules. We addition-
ally explore some extensions of this problem to more
general graphs, including a fixed-parameter tractable
algorithm in the height m of an m × n rectangle in
1-burnout, a polynomial-time solution for 1-burnout in
general graphs if reactions are non-catalytic, and an NP-
complete result for 1-burnout in general graphs.

1 Introduction

A prominent area of research in molecular computation,
Chemical Reaction Networks (CRNs), study well-mixed
solutions of molecules. Limited by the inherent lack of
geometry, the model has important restrictions on its
computational power, including no proven capability of
error-free computation of logarithm [6] or Turing uni-
versality [16]. Specifically, CRNs are capable of com-
puting all semilinear functions [5]. The introduction of
a surface and, by extension, geometry, with abstract
Surface Chemical Reaction Networks (sCRNs) removes
these limitations, and thus has increased computational
power. Molecular computing on a surface is an increas-
ingly popular direction in both experimental [4, 18] and
theoretical [10, 13] research.

In this paper, we explore a restricted version of the
powerful surface CRN model, where each molecule in
the system can only change in a reaction a set number of

∗Department of Computer Science, University of Texas Rio
Grande Valley

†Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology

times. We refer to this constraint as burnout. Bounding
the number of state changes leads to polynomial-time
and XP algorithms for many reconfiguration problems
that are otherwise PSPACE-complete.

Motivations for the study of problems with burnout
include examples such as optimizing limited lifetime
biomolecules or modeling redox reactions in which the
electron transfer from one chemical species to another
increases the cost of further reaction beyond what any
other current or future neighbors could afford.

1.1 Previous Work

Surface Chemical Reaction Networks (sCRNs) were in-
troduced in [15] with a simulator provided in [7]. These
papers show various constructions such as Boolean cir-
cuits and a Cellular Automata simulation.

Another restricted version of sCRNs uses only swap
reactions, in which the two species only change position,
Example: A + B → B + A. In [2], the authors show
swap reactions are capable of feed-forward computation
and provide an analysis of thermodynamic properties of
the circuit. Recently, [1] showed that reconfiguration is
PSPACE-complete for swap surface CRNs with only 4
species and 3 reactions, and in P with any system of
fewer species or reactions. This work also introduces k-
burnout surface CRNs and show two important results:
that 1-reconfiguration (whether a single cell can change)
is NP-complete with 1-burnout and that general recon-
figuration is NP-complete with 2-burnout. Burnout is
similar to the freezing concept from Cellular Automata
[11, 12, 17] and Tile Automata [3], but while freezing is
defined as having an ordering on states or a tile never
revisiting a state, burnout is a constraint where a cell
never reacts more than a fixed number of times. Thus,
returning to a previous state is possible, unlike the freez-
ing restrictions.

1D Cellular Automata are capable of Turing compu-
tation from [8]. P-completeness of prediction, is this cell
in state at time step less than t, for Cellular Automata
Rule 110 was shown in [14], implying it is also capable of
efficient computation. This problem is also P-complete
for a number of Freezing CAs in 2D, while it is always
in NL for Freezing 1D CAs [12]. This work also gives a
1D freezing CA, which is Turing universal.

35th Canadian Conference on Computational Geometry, 2022

Shape Burnout Result Theorem
1× n 1 O(n+ |R|) Thm. 1
1× n 2 O(n · |S|2 · |R|4) Thm. 2
1× n O(1) P for O(1) degree Thm. 3
1× n k (unary) NP-complete Thm. 4
1× n Unbounded PSPACE-complete [15]

Planar 1 O(|V |1.5 + |R|) Thm. 5**
General 1 NP-complete Thm. 7

m× n 1 NP-complete [1]‡

m× n 1 FPT in m Thm. 8‡

Table 1: Comparison of reconfiguration results. For a
CRN system, R is the set of rules and S is the set of
species. V is the set of vertices for the graph defining
the shape. **Non-catalytic rules only. ‡These results
are for the problem of 1-Reconfiguration.

1.2 Our Contributions

This work investigates the reconfiguration problem for
linear surface CRNs with k-burnout. Our results are
outlined in Table 1. We begin in Section 3, where we
present a polynomial-time algorithm for 1D 1-burnout.
We then increase the burnout number to investigate
1D 2-burnout systems and prove that this is still in P.
Following this, we show that for the case of any fixed
k = O(1), there exists an algorithm that has a polyno-
mial runtime. In the terms of parameterized complex-
ity classes, this is the class XP, also known as slice-wise
polynomial [9]. We then present an NP-completeness
proof for when the burnout is a unary input. This re-
sult contrasts PSPACE-completeness known when the
burnout is unbounded or exponentially high [15].

After 1×n lines, we begin investigating 1-burnout in
2D systems in Section 5. We start with the problem
of reconfiguration, where we only have non-catalytic
rules. We then show that on an arbitrary graph and
with all types of rules, the reconfiguration problem
is NP-complete. Finally, we study the problem of 1-
reconfiguration for bounded-height surfaces, presenting
an XP algorithm parameterized by height.

2 Preliminaries

A brief overview of the model and relevant problems.
Surface, Cells and Species. A surface for a CRN

Γ is an undirected graph G of large size n. The vertices
of the surface are also referred to as cells. Many of our
results deal with 1× n grid graphs, or linear surfaces.

The state of a vertex is representative of a molecu-
lar species in the system. Chemical reactions consid-
ered here are bimolecular, as in they occur between two
species in neighboring vertices. A rule denoting that
neighboring species A and B may react to become C
and D is written as A + B → C + D. This is a non-
catalytic rule, as both species change. In a catalytic
reaction, only one of the two species will change, e.g.

{

Species

Reaction Rules

⟶

⟶

⟶

(a)

⟶

Left Catalytic

vi

⟶vi-1

Left

vi

⟶

Right Final

vi

(b)

Figure 1: (a) An example sCRN system with 4 species,
three rules, and 1 burnout. (b) Rule types used in
Figure 2 example. Note: The red ring outline shows
whether the vertex has been “burned out.” There is no
effect on the reaction rule itself.

Initial Configuration Final Configuration

Figure 2: A possible sequence of reactions for the system
described in Figure 1

C +D → C +B, the other used as a catalyst.
A surface Chemical Reaction Network (sCRN)

consists of a surface, a set of molecular species S, and
a set of reaction rules R. A configuration is a mapping
from each vertex to a species from the set S.

Reachable Configurations. For two configurations
I, T , we write I →1

Γ T if there exists a r ∈ R such that
performing reaction r on a pair of species in I yields the
configuration T . Let I →Γ T be the transitive closure
of I →1

Γ T , including loops from each configuration to
itself. Let Π(Γ, I) be the set of all configurations T
where I →Γ T is true.

Burnout. A limit on the number of changes that can
occur in any vertex vi. In systems that allow catalytic
reactions, after this limit has been reached, while vi will
not change again, neighboring species may still use the
species in that cell as a catalyst.

Reconfiguration Problem. Given an sCRN Γ and
two configurations I and T , is T ∈ Π(Γ, I)?

1-Reconfiguration Problem. Given an sCRN Γ,
configuration I, vertex v, and species s, does there exist
a T ∈ Π(Γ, I) such that T has species s at vertex v?

3 Algorithms for Constant Burnout

We show that reconfiguration of a linear surface is solv-
able in polynomial-time when the burnout is one or two.

3.1 1-Burnout Linear Surfaces

In the case of 1-burnout with a 1× n line, the problem
of reconfiguration is solvable in linear time with respect
to n and the size of the rule set. As an observation,
there are at most six reactions for any vertex, vi, on a

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

linear surface since a vertex has at most two neighbors.
These reactions include the following:

• A left reaction, where vertex vi reacts with vertex
vi−1 and both vertices reach their final states.

• A left catalytic reaction, where vertex vi reacts with
vertex vi−1 in its initial state to transition vertex
vi to its final state without changing vi−1.

• A left final-catalytic reaction (or left final), where
vertex vi reacts with vertex vi−1 in its final state to
transition vertex vi to its final state without chang-
ing vi−1.

• A right reaction, where vertex vi reacts with vertex
vi+1 and both vertices reach their final states.

• A right catalytic reaction, where vertex vi reacts
with vertex vi+1 in its initial state to transition
vertex vi to its final state without changing vi+1.

• A right final-catalytic reaction (or right final),
where vertex vi reacts with vertex vi+1 in its fi-
nal state to transition vertex vi to its final state
without changing vi+1.

Additionally, we also consider when a vertex is in its fi-
nal state. An example system and sequence of reactions
can be found in Figures 1 and 2.

We construct a 7 × n table (Example in Table 2),
where each row represents one of the possible reactions,
including no reaction, and each column represents the
starting configuration’s vertices from left to right. For
each entry in the table, we see if the reaction exists for
that vertex and if the vertex reaches its final state. If
both cases are satisfied, place a 1 in the corresponding
row, otherwise, place a 0. After all cells are evaluated,
we construct a directed graph with edges being directed
from column i to column i+ 1 with the following prop-
erties for each row entry in column i:

• In final state: edge to every row in column i + 1
with a 1 except left reaction.

• Left final: edge to every row in column i + 1 with
a 1 except left reaction.

• Left catalytic: edge to every row in column i + 1
with a 1 except left reaction.

• Left reaction: edge to every row in column i + 1
with a 1 except left reaction.

• Right final: edge to every row in column i+ 1 with
a 1 except left reaction and left final.

• Right catalytic: edge to every row in column i+ 1
with a 1 except left reaction and left catalytic.

• Right reaction: edge only to the row corresponding
to left reaction in column i+ 1 if there is a 1.

These edges ensure that no matter which reaction is
chosen for a vertex represented by column i, the reaction
chosen for the column i+1 vertex will be able to perform
its reaction either before or after the previous reaction.

Once these edges are defined for every column, the
problem is then finding a path from s to t, where s is a

Reaction Type

In Final State - - - -
Left - 1 - -
Left Catalytic - - - 1
Left Final - - - -
Right 1 - - -
Right Catalytic - - - -
Right Final - - 1 -

Table 2: Turning the example system from Figure 1 into
a table of reactions.

1

S T

1

1

1

Figure 3: Table 2 as a graph.

vertex that has directed edges to each entry in column 1
and t is a vertex that can be reached from each entry in
column n (see Table 2 and Figure 3 for reference). Any
path represents a set of rules that can be assigned an
ordering to reconfigure all vertices to their final states.

Theorem 1 Reconfiguration in 1-burnout for 1 × n
lines is solvable in O(n+ |R|) time.

Proof. We provide proof by induction for the previ-
ously described algorithm that solves reconfiguration in
1× n surfaces. This proof guarantees that any solution
from this algorithm constitutes a set of reactions that
can be reordered to successfully reconfigure a given ini-
tial configuration to its final configuration.

Base case: n = 2. Let vi be the leftmost vertex. Since
this vertex does not have a neighbor to its left, there are
only 4 reactions we need to consider for this vertex:

1. In final state: vertex vi+1 must be in its final state
or a left catalytic or left final reaction.

2. Right catalytic: vertex vi+1 must be in its final
state or a left final reaction.

3. Right final: vertex vi+1 must be in its final state or
a left catalytic reaction.

4. Right reaction: vertex vi+1 must be a left reaction.

If two such reactions exist for each vertex, then a path
exists from s to t visiting the vertices in the table that
correspond to each reaction. Otherwise, no such path
would exist.

Inductive step: let n = k. Assume that there is a
set of k reactions for vertices v1, . . . , vk that can be re-
ordered to transition all k vertices to their final states.

35th Canadian Conference on Computational Geometry, 2022

In order for the reaction chosen for vertex vk+1 to be
valid, it must not interfere with the kth reaction corre-
sponding to vertex vk. Consider two cases:

1. Vertex vk is currently in its final state or reacts with
its left neighbor vk−1. Vertex vk+1 is never used,
so as long as vk+1 does not perform a left reaction
with vk, it will not interfere with the kth reaction.

2. Vertex vk reacts with vertex vk+1. Consider 3 pos-
sible reactions for vk: (1) Right reaction: the only
valid reaction for vk+1 is a left reaction, (2) Right
catalytic: except left or left catalytic, all reactions
are valid for vk+1, and (3) Right final: except left
or left final, all reactions are valid for vk+1.

If we think of vk as being column i and vk+1 as being
column i + 1, edges are defined from i to i + 1 in a
way that avoid these conflicting reactions. Any other
reaction that is chosen for vi+1 can always perform its
reaction before or after vi performs its reaction. As a
result, any path up to column i + 1 would represent a
set of reactions that can be reordered to transition these
k + 1 vertices to their final states.

Given the initial and final configurations, it takes
O(n) time to compare the states. Constructing the ta-
ble takes O(|R|) time. The path finding algorithm runs
in O(V + E) = O(n + E) time. However, the number
of edges is a constant factor of the number of vertices,
whereas |R| might be exponential in n. Thus, the final
runtime for the algorithm is O(n+ |R|). �

3.2 2-Burnout Linear Surfaces
Theorem 2 Reconfiguration of a 1×n line for surface
CRNs with 2-burnout is solvable in O(n·|S|2 ·|R|4) time.

Proof. Since we are considering 2-burnout, every cell
can only change species twice. This is a cell starting
with the initial species, possibly changing to an interme-
diate species, then finally changing to the target species.
It is then possible to track all the possible transitions of
a cell in a polynomial sized table. We define the table
D with each entry D(x, s, r1, r2) being a Boolean indi-
cating if the cells at indices 0, 1, . . . , x can reach their
target species using reactions r1 and r2 on x, and us-
ing s as intermediate species for cell x. (Note, r1 and
s may be null if the cell only reacts once to reach the
target species.) The reactions are specific with which
neighbor the cell reacts with, left or right. This results
in O(n · |S| · |R|2) cells of the table.

To compute each entry D(x, s, r1, r2), we check if r1

and r2 are consistent with cell x− 1. Meaning, if r1 re-
acts with the left neighbor, some entry D(x−1, s′, r1, r3)
or D(x− 1, s′, r3, r1) for any s, r3 must be true. If r1 is
a catalytic reaction, then the species in cell x − 1 does
not change and must be the initial species, intermediate
species, or the target species. We must also be careful
with the ordering of the reactions. If r1 or r2 reacts with

the intermediate species s′ of the (x− 1)th cell, then r1

must be the second reaction for x− 1. The run time to
compute each cell of the table is O(|S| · |R|2).

If any D(n − 1, s, r1, r2) is true, then the answer to
reconfiguration is true. �

3.3 Constant Burnout

In this section, we consider the problem of reconfigu-
ration for a surface CRN with n cells with at most k-
burnouts on a 1× n board.

Theorem 3 There is an n1+k log h-time algorithm for
k-burnout degree-h 1D surface CRN reconfiguration,
where each species is in at most h rules.

Proof. We have a divide-and-conquer approach in our
algorithm. A brute force method is used to enumerate
all the possible transitions for the median position. The
problem is split into two independent problems that can
be solved independently.

Let p be the position of the median in a 1D surface
CRN. We enumerate all the possible ways to burn out
the position p at most k times. Since each species is
in at most h rules, we have at most hk combinations
about the list of transitions involved by position p. Let
T (n) be the running time to solve the reconfiguration
problem. We have the recursion T (n) = hk(2T (n

2)). It
brings a solution with T (n) = hk log n ·n = n1+k log h. �

4 Non-constant Burnout on a Line

Here, we show that reconfiguration with k-burnout,
where k is part of the input, is NP-hard. Without
burnout (no bound on state changes), reconfiguration
of a 1× n line is PSPACE-complete [15], but even with
a burnout k given in binary, the problem may not be in
the class NP since O(kn) possible reactions could occur,
which is exponential in log k. This motivates looking at
bounds on state changes that are polynomial in n and
further motivates the other algorithms in the paper.

Reduction. We reduce from Vertex Cover (VC) by
enumerating all vertices and using them as states on a
1×n line. A state “walks” back and forth choosing a ver-
tex to add to the cover and crossing off instances it finds.
Given a graph G = (V,E) where V = {1, 2, . . . , n} and
an edge e ∈ E is defined as e = {vi, vj} for vi, vj ∈ V
and i 6= j. An edge is listed as two states: 34 meaning
an edge between vertices v3 and v4. Between any two
edges we include a spacing state −.

Create the line representing the graph with edges in
any order: BS0−e1−e2−· · ·−em−E, where the B state
indicates the beginning of the line, E is the end of the
line, and S0 is a special state indicating no vertices are
in the vertex cover. Example: BS0−34−13−21−14−E.

Basically, each edge independently and nondetermin-
istically picks the vertex to cover it with both possible

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

rules. Create rules for all vi, vj ∈ V as vi + vj → v′i + x
and vi + vj → x + v′j where x is an ignored state and
the prime state is the chosen vertex for that edge. The
spacing states ensure edges do not affect each other.
Example: 3 + 4→ 3′ + x and 3 + 4→ x+ 4′.

The S counting state sweeps back and forth k times
to choose a vertex to add to the cover and ignores the
other states. The S state takes the first picked vertex
and removes all duplicates of it while remembering the
count. There is a state Svertex

count that exists for each vertex
and count up to k. Thus, the rules Si + v′j → Sj

i+1 + x
are added for each vertex and count up to k. Example:
S0 + 3′ → S3

1 + x is used if v3 is the first vertex added.
Once a vertex transitions to an Si state, it ignores

everything but v′i states. Meaning it only swaps states,
or “walks” in that direction. Thus, all rules Si + A →
A+Si is added for any state X that is not vi, B, or E.
For vi, S

i
c + v′i → Si

c + x.
When a Sj

c vertex is next to the B or E states, it
can transition to Sc. The rules B + Sj

c → B + Sc and
E + Sj

c → E + Sc exist for all vertices vj . This means
we have removed all instances of the chosen vertex and
can pick a new vertex for the cover.

This requires O(kn) states to handle counting for each
vertex. If k is odd, the final configuration, given a k VC
exists, is B−xx−xx−xx−· · ·−SkE. If k is even, then
the final configuration is BSk −xx− xx− xx− · · · −E.
Sk can not interact with anything. This requires k + 1
burnout.

Theorem 4 Reconfiguration of a 1 × n configuration
in sCRNs with k-burnout is NP-hard, even when k < n,
and NP-complete as long as k is polynomial in n.

Proof. Given a VC with graph G = (V,E) and k ∈ N,
we create a surface CRN system with configuration C
and rules R as described above. We define the output
configuration D based on the number of edges and par-
ity of k as described. G has a VC of size k if and only if
C can reach configuration D with burnout k + 1. Note
that k ≤ n as input from VC, so the number of states
and rules in the reduction is polynomial.

Given that the graph G has a k vertex cover, in the
sCRN system, the only transitions possible at first are
for each edge to pick a vertex to cover it. Then the
counting state walks across, increases the count and se-
lects the vertex from the first edge, and that state con-
tinues walking and removes any other instance of that
vertex. In the best case, all locations but the first and
last have changed twice. If this continues, and it always
adds the correct vertices, then after k passes only x’s
are left. Sk does not interact with anything, so noth-
ing else transitions. The k passes and the initial choice
requires k + 1 burnout.

If the sCRN system ends in the output configuration
with x’s on every edge state, which can only occur if

the k passes chose vertices that appeared in the other
edges and were crossed out. Thus, every edge correctly
chose the right vertex to cover it so that only k different
vertices were used. �

5 Extension to 2D Graphs

As an extension to the 1D case, we now consider recon-
figuration and 1-reconfiguration for 2D surfaces. In the
case of reconfiguration, we study a restricted version of
the problem where all reactions are non-catalytic.

Theorem 5 Reconfiguration in 1-burnout for a planar
graph G = (V,E) is solvable in O(|V |1.5 + |R|) time if
every reaction is non-catalytic.

Proof. Given a planar graph G = (V,E), construct
a subgraph G′ from G such that there is an edge be-
tween pairs of vertices if there exists a non-catalytic re-
action that transitions both vertices to their final states.
Run maximum matching on G′. If all vertices are either
matched or in their final state, then reconfiguration is
possible. Otherwise, reconfiguration is not possible.

Since non-catalytic reactions transition both vertices
to their final states, a vertex must be involved in at
most one reaction. Edges represent these non-catalytic
reactions between two vertices. As a result, limiting a
vertex to one reaction is the equivalent of matching each
vertex inG′ to at most one other vertex it shares an edge
with, which is a perfect matching problem. For planar
graphs, this can be solved using a maximum matching
algorithm. If any unmatched vertex is not in its final
state, then reconfiguration is not possible because this
vertex is unable to react.

Constructing G′ takes O(V + |R|) time. Running the
maximum matching algorithm takes O(V 1.5) time. A
last check of G′ for any unmatched vertices that are
not in their final state takes O(V) time. Therefore, the
runtime is O(V 1.5 + |R|). �

Corollary 6 Reconfiguration in 1-burnout for general
graphs is solvable in O(V 4 + |R|) time if every reaction
is non-catalytic, where V is the number of vertices.

Proof. Proof follows from Theorem 5. Maximum
matching on general graphs runs in O(V 4) time. �

5.1 Arbitrary Graphs with 1-Burnout
We now consider surface CRNs that allow catalytic as
well as non-catalytic rules. With this additional rule
type, we prove the problem of reconfiguration is NP-
complete on an arbitrary graph with 1-burnout.

Theorem 7 Reconfiguration with 1-burnout of an ar-
bitrary surface in surface CRNs is NP-complete.

Proof. We reduce from the dominating set problem to
sCRN reconfiguration with 1-burnout. Let G = (V,E)
be an arbitrary graph and k be an integer parameter.

35th Canadian Conference on Computational Geometry, 2022

We need to decide if graph G has a dominating set of
size k. Note that a subset U ⊆ V is a dominating set
of G if each vertex v ∈ V − U has (u, v) ∈ E for some
u ∈ U (vertex u dominates v).

Let v1, · · · , vn be the n vertices of G. We design a
surface CRN system. For each edge (vi, vj) in E, create
two rules vi + vj → vi + v′j and vi + vj → v′i + vj . We
introduce k additional species u1, · · · , uk. The target
configuration is to let each vi enter v′i for i = 1, · · · , n
and each ut enter u′t. We set up the rules ut + vj →
u′t + v′j for all t ≤ k and all j ≤ n.

If graph G has a dominating set of size k, the tar-
get configuration is reachable. Assume that vi1 , · · · , vik
dominate all the vertices in the graph G. For each vj
with j ∈ {1, · · · , n}−{i1, · · · , ik}, it can be transformed
into v′j by a rule vis + vj → vis + v′j . Each vis can enter
v′is by a rule us + vis → u′s + v′is . Here, the burnout
is 1. Similarly, if the target configuration is reachable,
there is a dominating set of size k. If the target config-
uration is reachable, we have at most vi1 , · · · , vih with
(h ≤ k) such that each vir enters v′ir via the type of rule
ut +vir → u′t +v′ir as there is only one burnout for each
vi and uj . Clearly, vi1 , · · · , vih dominate all the other
vertices in the graph G.

This is a polynomial-time reduction and membership
is known from [1]. �

5.2 1-Burnout 1-Reconfiguration

Theorem 8 1-Reconfiguration in 1-burnout of a
w × n rectangle for surface CRNs is solvable in
O
(
n · (|S||R|)2w · f(w)

)
time.

Proof. We use a dynamic programming approach sim-
ilar to that in Theorem 2, defining a table D with
Boolean entries D(x,~s, ~r, π), where x is a column in-
dex, ~s = [s1, s2, . . . , sw], ~r = [r1, r2, . . . , rw], and π a
permutation of [1, w]. Each sy ∈ S is a potential fi-
nal species of cell (x, y), which changes from its initial
species into (x, y) due to reaction ry ∈ R, and π gives
the order in which the reactions occur. As before, ry
specifies which of its up-to-four neighboring cells par-
ticipated in the reaction, and sy and ry may be null if
the cell never changes species.

Since only one cell (xt, yt) of the target configuration
is fixed, the top-level of the dynamic program will be
column xt, and it will symmetrically recurse outwards
in both directions, with base-cases at both ends. So,
for x < xt D(x,~s, ~r, π) is true if the cells in columns
0, 1, . . . , x can reach a target configuration in which col-
umn x reaches species ~s using reactions ~r occurring in
order π, for x > xt we consider columns x, x+1, . . . , n−1
instead, and for x = xt we consider the entire surface.

To compute D(x,~s, ~r, π), say when x < xt, we search
for a smaller subproblem D(x − 1, ~s ′, ~r ′, π′) which has
value true and (~r ′, ~r) together are a chain of reactions
that actually transform columns x−1 and x into species

(~s ′, ~s) from their initial species, given that they must
occur in relative orders π′ and π. Specifically, we can
search each possible interleaving of π(~r) and π′(~r ′), sim-
ulate the reactions in that order, and verify that the
reactions within these two columns can actually be per-
formed and do result in (~s ′, ~s). Notably, for reactions
between columns x − 2 and x − 1, we do not need to
validate the species in column x−2 because the smaller
subproblem already performed that validation, and for
reactions between columns x and x + 1, the species in
column x+1 are assumed to be validated later in a larger
subproblem. For x > xt, the recursion is symmetric.

For top-level subproblems D(xt, ~s, ~r, π), we only con-
sider ~s that include the fixed target species syt , and
we search for both D(xt − 1, ~s ′, ~r ′, π′) and D(xt +
1, ~s ′′, ~r ′′, π′′) and validate between all three columns
xt−1, xt, xt+1 in a similar manner. If any D(xt, ~s, ~r, π)
is true, then the answer to 1-reconfiguration is true.

The size of D is O (n · |S|w · (4|R|)w · w!). Computing
each entry involves checking O (|S|w · (4|R|)w · w!) sub-
problems, and each check considers

(
2w
w

)
interleavings

of orderings and runs an simulation taking O(w) time.
Combined, the total time is O

(
n · (|S||R|)2w · f(w)

)
for

a function f only depending on w. Therefore, for con-
stant w, this is polynomial time. �

6 Conclusion

In this paper, we have shown that the reconfiguration
problem on 1× n surface CRNs with k-burnout is in P
when k = 1 or k = 2. To show this, we have given al-
gorithms that output a sequence of reactions to achieve
the given configuration. Further, we show that for any
k = O(1), there exists an algorithm that has a poly-
nomial runtime in k. To conclude our investigation of
1-Dimensional surface CRNs, we prove that when the
burnout number, k, is part of the input (in unary), the
problem of reconfiguration is NP-complete.

Following by exploring 2-Dimensional surface CRNs
and showing that a restricted case of 1-burnout re-
configuration can be seen as perfect matching, show-
ing this case of the problem to still be in P. Finishing
with a proof that the problem of 1-Reconfiguration in
1-burnout can be solved in polynomial time on a w× n
rectangle when w is constant.

Some of the open questions are then:

• What is the lower bound for a given k-burnout?

• In a rectangle/grid graph, what is the lower/upper
bound for k-burnout?

• Most of our complexity is in terms of the size of
the surface. Are there interesting results looking at
the complexity of other aspects of an sCRN such
as states, rules, and burnout?

• We have a direct NP-complete reduction but does
there exist an L-reduction for some inapproxima-
bility result?

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] R. M. Alaniz, J. Brunner, M. Coulombe, E. D. De-
maine, Y. Diomidov, T. Gomez, E. Grizzell, R. Knobel,
J. Lynch, A. Rodriguez, R. Schweller, and T. Wylie.
Complexity of reconfiguration in surface chemical reac-
tion networks. In Proc. of the 29th International Con-
ference on DNA Computing and Molecular Program-
ming, DNA’23, 2023. To appear.

[2] T. Brailovskaya, G. Gowri, S. Yu, and E. Winfree. Re-
versible computation using swap reactions on a surface.
In Proc. of the International Conference on DNA Com-
puting and Molecular Programming, DNA’19, pages
174–196. Springer, 2019.

[3] C. Chalk, A. Luchsinger, E. Martinez, R. Schweller,
A. Winslow, and T. Wylie. Freezing simulates non-
freezing tile automata. In DNA Computing and Molecu-
lar Programming: 24th International Conference, DNA
24, Jinan, China, October 8–12, 2018, Proceedings 24,
pages 155–172. Springer, 2018.

[4] G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips,
and G. Seelig. A spatially localized architecture for fast
and modular DNA computing. Nature nanotechnology,
12(9):920–927, 2017.

[5] H.-L. Chen, D. Doty, and D. Soloveichik. Deterministic
function computation with chemical reaction networks.
Natural computing, 13:517–534, 2014.

[6] C. T. Chou. Chemical reaction networks for computing
logarithm. Synthetic Biology, 2(1):ysx002, Jan. 2017.

[7] S. Clamons, L. Qian, and E. Winfree. Program-
ming and simulating chemical reaction networks on
a surface. Journal of the Royal Society Interface,
17(166):20190790, 2020.

[8] M. Cook et al. Universality in elementary cellular au-
tomata. Complex systems, 15(1):1–40, 2004.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized algorithms, volume 5. Springer, 2015.

[10] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and
A. J. Turberfield. DNA walker circuits: computational
potential, design, and verification. Natural Computing,
14(2):195–211, 2015.

[11] E. Goles, D. Maldonado, P. Montealegre, and M. Ŕıos-
Wilson. On the complexity of asynchronous freez-
ing cellular automata. Information and Computation,
281:104764, 2021.

[12] E. Goles, N. Ollinger, and G. Theyssier. Introducing
freezing cellular automata. In Cellular Automata and
Discrete Complex Systems, 21st International Work-
shop (AUTOMATA 2015), volume 24, pages 65–73,
2015.

[13] R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig. DNA-
based molecular architecture with spatially localized
components. ACM SIGARCH Computer Architecture
News, 41(3):177–188, 2013.

[14] T. Neary and D. Woods. P-completeness of cellu-
lar automaton rule 110. In Automata, Languages and
Programming: 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
I 33, pages 132–143. Springer, 2006.

[15] L. Qian and E. Winfree. Parallel and scalable com-
putation and spatial dynamics with DNA-based chem-
ical reaction networks on a surface. In DNA Com-
puting and Molecular Programming: 20th International
Conference, DNA 20, Kyoto, Japan, September 22-26,
2014. Proceedings, volume 8727, page 114. Springer,
2014.

[16] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck.
Computation with finite stochastic chemical reaction
networks. natural computing, 7:615–633, 2008.

[17] G. Theyssier and N. Ollinger. Freezing, bounded-
change and convergent cellular automata. Discrete
Mathematics & Theoretical Computer Science, 24,
2022.

[18] A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen,
S. Doroudi, Y. L. Lee, G. Izatt, S. Wittman, N. Srinivas,
D. Woods, et al. A cargo-sorting DNA robot. Science,
357(6356):eaan6558, 2017.

	Introduction
	Previous Work
	Our Contributions

	Preliminaries
	Algorithms for Constant Burnout
	1-Burnout Linear Surfaces
	2-Burnout Linear Surfaces
	Constant Burnout

	Non-constant Burnout on a Line
	Extension to 2D Graphs
	Arbitrary Graphs with 1-Burnout
	1-Burnout 1-Reconfiguration

	Conclusion

