
Complexity of Reconfiguration in Surface
Chemical Reaction Networks
Robert M. Alaniz �

University of Texas Rio Grande Valley, USA

Josh Brunner �

Massachusetts Institute of Technology, USA

Michael Coulombe �

Massachusetts Institute of Technology, USA

Erik D. Demaine �

Massachusetts Institute of Technology, USA

Jenny Diomidova �

Massachusetts Institute of Technology, USA

Timothy Gomez �

Massachusetts Institute of Technology, USA

Elise Grizzell �

University of Texas Rio Grande Valley, USA

Ryan Knobel �

University of Texas Rio Grande Valley, USA

Jayson Lynch �

Massachusetts Institute of Technology, USA

Andrew Rodriguez �

University of Texas Rio Grande Valley, USA

Robert Schweller �

University of Texas Rio Grande Valley, USA

Tim Wylie �

University of Texas Rio Grande Valley, USA

Abstract
We analyze the computational complexity of basic reconfiguration problems for the recently

introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species
nondeterministically transform into a different ordered pair of species according to a predefined set
of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to
the simulation of sCRNs are whether a given configuration of molecules can ever transform into
another given configuration, and whether a given cell can ever contain a given species, given a set of
transition rules. We show that these problems can be solved in polynomial time, are NP-complete,
or are PSPACE-complete in a variety of different settings, including when adjacent species just
swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited
number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few
distinct species (2 or 3).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Problems, reductions and completeness

Keywords and phrases Chemical Reaction Networks, reconfiguration, hardness

Digital Object Identifier 10.4230/LIPIcs...

© Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova,
Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller,
and Tim Wylie ;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.alaniz01@utrgv.edu
mailto:brunnerj@mit.edu
mailto:mcoulomb@mit.edu
mailto:edemaine@mit.edu
mailto:diomidov@mit.edu
mailto:tagomez7@mit.edu
mailto:elise.grizzell01@utrgv.edu
mailto:ryan.knobel01@utrgv.edu
mailto:jaysonl@mit.edu
mailto:andrew.rodriguez09@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Complexity of Reconfiguration in Surface Chemical Reaction Networks

1 Introduction

The ability to engineer molecules to perform complex tasks is an essential goal of molecular
programming. A popular theoretical model for investigating molecular systems and distrib-
uted systems is Chemical Reaction Networks (CRNs) [6, 26]. The model abstracts chemical
reactions to independent rule-based interactions that creates a mathematical framework
equivalent [8] to other well-studied models such as Vector Addition Systems [18] and Petri
nets [24]. CRNs are also interesting for experimental molecular programmers, as examples
have been built using DNA strand displacement (DSD) [27].

Abstract Surface Chemical Reaction Networks (sCRNs) were introduced in [25] as a way
to model chemical reactions that take place on a surface, where the geometry of the surface
is used to assist with computation. In this work, the authors gave a possible implementation
of the model similar to ideas of spatially organized DNA circuits [21]. This strategy involves
DNA strands being anchored to a DNA origami surface. These strands allow for “species”
to be attached. Fuel complexes are pumped into the system, which perform the reactions.
While these reactions are more complex than what has been implemented in current lab
work, it shows a route to building these types of networks.

1.1 Motivation
Feed-Forward circuits using DNA hairpins anchored to a DNA origami surface were imple-
mented in [5]. This experiment used a single type of fuel strand. The copies of the fuel
strand attached to the hairpins and were able to drive forward the computation.

A similar model was proposed in [9], which modeled DNA walkers moving along tracks.
These tracks have guards that can be opened or closed at the start of computation by
including or omitting specific DNA species at the start. DNA walkers have provided
interesting implementations such as robots that sort cargo on a surface [29].

A new variant of surface CRNs we introduce is the k-burnout model in which cells can
switch states at most k time before being stuck in their final state. This models the practical
scenario in which state changes expend some form of limited fuel to induce the state change.
Specific experimental examples of this type of limitation can be seen when species encode
“fire-once" DNA strand replacement reactions on the surface of DNA origami, as is done
within the Signal Passing Tile Model [22].

1.2 Previous Work
The initial paper on sCRNs [25] gave a 1D reversible Turing machine as an example of the
computational power of the model. They also provided other interesting constructions such
as building dynamic patterns, simulating continuously active Boolean logic circuits, and
cellular automata. Later work in [7] gave a simulator of the model, improved some results of
[25], and gave many open problems- some of which we answer here.

In [2], the authors introduce the concept of swap reactions. These are reversible reactions
that only “swap” the positions of the two species. The authors of [2] gave a way to build
feed-forward circuits using only a constant number of species and reactions. These swap
reactions may have a simpler implementation and also have the advantage of the reverse
reaction being the same as the forward reaction, which makes it possible to reuse fuel species.

A similar idea for swap reactions on a surface that has been studied theoretically are
friends-and-strangers graphs [10]. This model was originally introduced to generalize problems
such as the 15 Puzzle and Token Swapping. In the model, there is a location graph containing

Alaniz et al. XX:3

uniquely labeled tokens and a friends graph with a vertex for every token, and an edge if
they are allowed to swap locations when adjacent in the location graph. The token swapping
problem can be represented with a complete friends graph, and the 15 puzzle has a grid
graph as the location graph and a star as the friends graph (the ‘empty square’ can swap
with any other square). Swap sCRNs can be described as multiplicities friends-and-strangers
graph [19], which relax the unique restriction, with the surface grid (in our case the square
grid) as the location graph and the allowed reactions forming the edges of the friends graph.

1.3 Our Contributions
In this work, we focus on two main problems related to sCRNs. The first is the reconfiguration
problem, which asks given two configurations and a set of reactions, can the first configuration
be transformed to the second using the set of reactions. The second is the 1-reconfiguration
problem, which asks whether a given cell can ever contain a given species. Our results are
summarized in Table 1. The first row of the table comes from the Turing machine simulation
in [25] although it is not explicitly stated. The size comes from the smallest known universal
reversible Turing machine [20] (see [30] for a survey on small universal Turing machines.)

We first investigate swap reactions in Section 3. We prove both problems are PSPACE-
complete using only four species and three swap reactions. For reconfiguration, we show
this complexity is tight by showing with three or less species and only swap reactions the
problem is in P.

In Section 4, we study a restriction on surface CRNs called k-burnout where each species is
guaranteed to only transition k times. This is similar to the freezing restriction from Cellular
Automata [14, 15, 28] and Tile Automata [4]. We start with a simple reduction showing
reconfiguration is NP-complete in 2-burnout. This is also of interest since the reduction only
uses three species types and a reaction set of size one. For 1-reconfiguration, we show the
problem is also NP-complete in 1-burnout sCRNs. This reduction uses a constant number of
species.

In Section 5, we analyze reconfiguration for all sCRNs that have a reaction set of size
one. For the case of only two species, we show for every possible reaction, the problem is
solvable in polynomial time. With three species or greater, we show that reconfiguration is
NP-complete. The hardness comes from the reduction in burnout sCRNs.

Finally, in Section 6, we conclude the paper by discussing the results as well as many
open questions and other possible directions for future research related to surface CRNs.

2 Surface CRN model

Chemical Reaction Network. A chemical reaction network (CRN) is a pair Γ = (S, R)
where S is a set of species and R is a set of reactions, each of the form A1 + · · · + Aj →
B1 + · · ·+ Bk where Ai, Bi ∈ S. (We do not define the dynamics of general CRNs, as we do
not need them here.)

Surface, Cell, and Species. A surface for a CRN Γ is an (infinite) undirected graph
G. The vertices of the surface are called cells. A configuration is a mapping from each cell
to a species from the set S. While our algorithmic results apply to general surfaces, our
hardness constructions assume the practical case where G is a grid graph, i.e., an induced
subgraph of the infinite square grid (where omitted vertices naturally correspond to cells
without any species). When G is an infinite graph, we assume there is some periodic pattern
of cells that is repeated on the edges of the surface. Figure 1 shows an example set of species
and reactions and a configuration of a surface.

XX:4 Complexity of Reconfiguration in Surface Chemical Reaction Networks

Problem Type Graph Species Rules Result Ref
Reconfiguration sCRN 1D 17 67 PSPACE-complete [25]
1-Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 3
1-Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 6
1-Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 6
Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 4
Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 5
Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 5
Reconfiguration 2-burnout Grid 3 1 NP-complete Thm. 7
1-Reconfiguration 1-burnout Grid 17 40 NP-complete Thm. 8
Reconfiguration sCRN Grid ≥ 3 1 NP-complete Cor. 15
Reconfiguration sCRN Any ≤ 2 1 P Thm. 11
Table 1 Summary of our and known complexity results for sCRN reconfiguration problems,

depending on the type of sCRN, number of species, and number of rules. All problems are contained
in PSPACE, while all k-burnout problems are in NP.

{
SurfaceReaction Rules

⟶x

⟶z y zx

z x xx ⟶

z y⟶x

Species

x

y

z

Figure 1 Example sCRN system.

Reaction. A surface Chemical Reaction Network (sCRN) consists of a surface and a
CRN, where every reaction is of the form A + B → C + D denoting that, when A and B

are in neighboring cells, they can be replaced with C and D. A is replaced with C and B

with D.
Reachable Configurations. For two configurations I, T , we write I →1

Γ T if there
exists a r ∈ R such that performing reaction r on a pair of species in I yields the configuration
T . Let I →Γ T be the transitive closure of I →1

Γ T , including loops from each configuration
to itself. Let Π(Γ, I) be the set of all configurations T for which I →Γ T is true. A sequence
of reachable states is shown in Figure 2

Initial Configuration

z

x

z

xy

y

Target Reconfiguration

x

z

x

y

y

⟶ ⟶ ⟶

z

x

z

xy

y ...

Figure 2 An initial, single step, and target configurations

Alaniz et al. XX:5

2.1 Restrictions
Reversible Reactions. A set of reactions R is reversible if, for every rule A + B → C + D

in R, the reaction C + D → A + B is also in R. We may also denote this as a single reversible
reaction A + B
 C + D.

Swap Reactions. A reaction of the form A + B
 B + A is called a swap reaction.
k-Burnout. In the k-burnout variant of the model, each vertex of the system’s graph

can only switch states at most k times (before “burning out" and being stuck in its final
state).

2.2 Problems
Reconfiguration Problem. Given a sCRN Γ and two configurations I and T , is T ∈
Π(Γ, S)?

1-Reconfiguration Problem. Given a sCRN Γ, a configuration I, a vertex v, and a
species s, does there exist a T ∈ Π(Γ, S) such that T has species s at vertex v?

3 Swap Reactions

In this section, we will show 1-reconfiguration and reconfiguration with swap reactions is
PSPACE-complete with only 4 species and 3 swaps in Theorems 3 and 4. We continue
by showing that this complexity is tight, that is, reconfiguration with 3 species and swap
reactions is tractable in Theorems 5 and 6.

3.1 Reconfiguration is PSPACE-complete
We prove PSPACE-completeness by reducing from the motion planning through gadgets
framework introduced in [11]. This is a one player game where the goal is to navigate a
robot through a system of gadgets to reach a goal location. The problem of changing the
state of the entire system to a desired state has been shown to be PSPACE-complete [1].
This reduction treats the model as a game where the player must perform reactions moving
a robot species through the surface.

The Gadgets Framework
Framework. A gadget is a finite set of locations and a finite set of states. Each state is a
directed graph on the locations of the gadgets, describing the traversals of the gadget. An
example can be seen in Figure 3. Each edge (traversal) describes a move the robot can take
in the gadget and what state the gadget ends up in if the robot takes that traversal. A robot
enters from the start of the edge and leaves at the exit.

In a system of gadgets there are multiple gadgets connected by their locations. The
configuration of a system of gadgets is the state of all gadgets in the system. There is a single
robot that starts at a specified location. The robot is allowed to move between connected
locations and allowed to move along traversals within gadgets. The system of gadgets can
also be restricted to be planar, in which case the cyclic order of the locations on the gadgets
is fixed, and the gadgets along with their connections must be embeddable in the plane
without crossings.

The 1-player motion planning reachability problem asks whether there exists a sequence
of moves within a system of gadgets which takes the robot from its initial location to a target
location. The 1-player motion planning reconfiguration problem asks whether there exists

XX:6 Complexity of Reconfiguration in Surface Chemical Reaction Networks

3

2

21 3

1

1

Figure 3 The Locking 2-Toggle (L2T) gadget and its states from the motion planning framework.
The numbers above indicate the state and when a traversal happens across the arrows, the gadget
changes to the indicated state.

a sequence of moves which brings the configuration of a system of gadgets to some target
configuration.

There are many sets of motion planning models and gadgets to build our reduction. We
select 1-player over 0-player since in the sCRN model there are many reactions that may
occur and we are asking whether there exists a sequence of reactions which reaches some
target configuration; in the same way 1-player motion planning asks if there exists a sequence
of moves which takes the robot to the target location. The existential query of possible
moves/swaps remains the same regardless of whether a player is making decisions vs them
occurring by natural processes. The complexity of the gadgets used here are considered in
the 0-player setting in [12].

Locking 2-Toggle. The Locking 2-toggle (L2T) is a 4 location, 3 state gadget. The
states of the gadget are shown in Figure 3. The L2T has advantages because it universal for
reversible deterministic gadgets. Reversibility was important to picking a gadget since swap
reactions are naturally reversible.

Constructing the L2T

We will show how to simulate the L2T in a swap sCRN system. Planar 1-player motion
planning with the L2T was shown to be PSPACE-complete [11]. We now describe this
construction.

Species. We utilize 4 species types in this reduction and we name each of them according
to their role. First we have the wire. The wire is used to create the connection graph between
gadgets and can only swap with the robot species. The robot species is what moves between
gadgets by swapping with the wire and represents the robot in the framework. Each gadget
initially contains 2 robot species, and there is one species that starts at the initial location
of the robot in the system. The robot can also swap with the key species. Each gadget
has exactly 1 key species. The key species is what performs the traversal of the gadget by
swapping with the lock species. The lock species can only swap with the key. There are 4
locks in each gadget. The locks ensure that only legal traversals are possible by the robot
species.

These species are arranged into gadgets consisting of two length-5 horizontal tunnels.
The two tunnels are connected by a length-3 central vertical tunnel at their 3rd cell. At the
4th cell of both tunnels there is an additional degree 1 cell connected we will call the holding
cell.

States and Traversals. The states of the gadget we build are represented by the
location of the key species in each gadget. If the key is in the central tunnel of the gadget
then we are in state 1 as shown in Figure 4b. Note that in this state the key may swap with
the adjacent locks, however we consider these configurations to also be in state 1 and take

Alaniz et al. XX:7

Robot Key

LockWire

(a) Swap rules/species (b) State 1 (c) State 2 (d) State 3

Figure 4 Locking 2-toggle implemented by swap rules. (a) The swap rules and species names.
(b-d) The three states of the locking 2-toggle.

Figure 5 Traversal of the robot species.

advantage of this later. The horizontal tunnels of the gadget in this state contain a single
lock with an adjacent robot species.

States 2 and 3 are reflections of each other (Figures 4c and 4d). This state has a robot in
the central tunnel and the key in the respective holding cell. The gadget in this state can
only be traversed from right to left in one of the tunnels.

Figure 5 shows the process of a robot species traversing through the gadget. Notice when
a robot species “traverse” a gadget, it actually traps itself to free another robot at the exit.
We prove two lemmas to help verify the correctness of our construction. The lemmas prove
the gadgets we design correctly implement the allowed traversals of a locking 2-toggle.

I Lemma 1. A robot may perform a rightward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the central tunnel to the north/south holding cell.

Proof. The horizontal tunnels in state 1 allow for a rightward traversal. The robot swaps
with wires until it reaches the third cell where it is adjacent to two locks. However the key
in the central tunnel may swap with the locks to reach the robot. The key and robot then
swap. The key is then in the horizontal tunnel and can swap to the right with the lock there.
It may then swap with the robot in the holding cell. This robot then may continue forward
to the right and the key is stuck in the holding cell.

Notice when entering from the left the robot will always reach a cell adjacent to lock
species. The robot may not swap with locks so it cannot traverse unless the key is in the
central tunnel. J

I Lemma 2. A robot may perform a leftward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the north/south holding cell to the central tunnel.

Proof. In state 2 the upper tunnel can be traversed and in state 3 the lower tunnel can be
traversed. The swap sequence for a leftward traversal is the reverse of the rightward traversal,
meaning we are undoing the swaps to return to state 1. The robot enters the gadget and

XX:8 Complexity of Reconfiguration in Surface Chemical Reaction Networks

swaps with the key, which swaps with the locks to move adjacent to the central tunnel. The
key then returns to the central tunnel by swapping with the robot. The robot species can
then leave the gadget to the left.

A robot entering from the right will not be able to swap to the position adjacent to
the holding cell if it contains a lock. This is true in both tunnels in state 1 and in the
non-traversable tunnels in states 2 and 3. J

We use these lemmas to first prove PSPACE-completeness of 1-reconfiguration. We
reduce from the planar 1-player motion planning reachability problem.

I Theorem 3. 1-reconfiguration is PSPACE-complete with 4 species and 3 swap reactions
or greater even when the surface is a subset of the grid graph.

Proof. Given a system of gadgets create a surface encoding the connection graph between
the locations. Each gadget is built as described above in a state representing the initial state
of the system. Ports are connected using multiple cells containing wire species. When more
than two ports are connected we use degree-3 cells with wire species. The target cell for
1-reconfiguration is a cell containing a wire located at the target location in the system of
gadgets.

If there exists a solution to the robot reachability problem then we can convert the
sequence of gadget traversals to a sequence of swaps. The swaps relocate a robot species to
the location as in the system of gadgets.

If there exists a swap sequence to place a robot species in the target cell there exists a
solution to the robot reachability problem. Any swap sequence either moves an robot along
a wire, or traverses it through a gadget. From Lemmas 1 and 2 we know the only way to
traverse a gadget is to change its state (the location of its key) and a gadget can only be
traversed in the correct state. J

Now we show Reconfiguration in sCRNs is hard with the same set of swaps is PSPACE-
complete as well. We do so by reducing from the Targeted Reconfiguration problem which
asks, given an initial and target configuration of a system of gadgets, does there exist sequence
of gadget traversals to change the state of the system from the initial to the target and
has the robot reach a target location. Note prior work only shows reconfiguration (without
specifying the robot location) is PSPACE-complete[1] however a quick inspection of the proof
of Theorem 4.1 shows the robot ends up at the initial location so requiring a target location
does not change the computational complexity for the locking 2-toggle. One may also find
it useful to note that the technique used in [1] for gadgets and in [17] for Nondeterministic
Constraint Logic can be applied to reversible deterministic systems more generally. This
means the method described in those could be used to give an alternate reduction directly
from 1-reconfiguration of swap sCRNs to reconfiguration of swap sCRNs.

I Theorem 4. Reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater.

Proof. Our initial and target configurations of the surface are built with the robot species at
the robots location in the system of gadget, and each key is placed according to the starting
configuration of the gadget.

Again as in the previous theorem we know from Lemmas 1 and 2 the robot species
traversal corresponds to the traversals of the robot in the system of gadgets. The target
surface can be reached if and only the target configuration in the system of gadgets is
reachable. J

Alaniz et al. XX:9

3.2 Polynomial-Time Algorithm
Here we show that the previous two hardness results are tight: when restricting to a smaller
cases, both problems become solvable in polynomial time. We prove this by utilizing
previously known algorithms for pebble games, where labeled pebbles are placed on a subset
of nodes of a graph (with at most one pebble per node). A move consists of moving a pebble
from its current node to an adjacent empty node. These pebble games are again a type of
multiplicity friends-and-strangers graph.

I Theorem 5. Reconfiguration is in P with 3 or fewer species and only swap reactions.
Reconfiguration is also in P with 2 or fewer swap reactions and any number of species.

Proof. First we will cover the case of only two swap reactions. There are two possibilities:
the two reactions share a common species or they do not. If they do not, we can partition the
problem into two disjoint problems, one with only the species involved in the first reaction
and the other with only the species from the second reaction. Each of these subproblems has
only one reaction, and is solvable if and only if each connected component of the surface has
the same number of each species in the initial and target configurations.

The only other case is where we have three species, A, B, and C, where A and C can
swap, B and C can swap, but A and B cannot swap. In this case, we can model it as a
pebble motion problem on a graph. Consider the graph of the surface where we put a white
pebble on each A species vertex, a black pebble on each B species vertex, and leave each C
species vertex empty. A legal swap in the surface CRN corresponds to sliding a pebble to
an adjacent empty vertex. Goraly et al. [16] gives a linear-time algorithm for determining
whether there is a feasible solution to this pebble motion problem. Since the pebble motion
problem is exactly equivalent to the surface CRN reconfiguration problem, the solution given
by their algorithm directly says whether our surface CRN problem is feasible. J

I Theorem 6. 1-reconfiguration is in P with 3 or fewer species and only swap reactions.
1-reconfiguration is also in P with 2 or fewer swap reactions.

Proof. If there are only two swap reactions, we again have two cases depending on whether
they share a common species. If they do not share a common species, then we only need
to consider the rule involving the target species. The problem is solvable if and only if the
connected component of the surface of species involved in this reaction containing the target
cell also has at least one copy of the target species. Equivalently, if the target species is A,
and A and B can swap, then there must either be A at the target location or a path of B
species from the target location to the initial location of an A species.

The remaining case is when we again have three species, A, B, and C, where A and C
can swap, B and C can swap, but A and B cannot swap. If C is the target species, then the
problem is always solvable as long as there is any C in the initial configuration. Otherwise,
suppose without loss of generality that the target species is A. Some initial A must reach
the target location. For each initial A, consider the modified problem which has only that
single A and replaces all of the other copies of A with B. A sequence of swaps is legal in this
modified problem if and only if it was legal in the original problem. The original problem has
a solution if and only if any of the modified ones do. We then convert each of these problems
to a robot motion planning problem on a graph: place the robot at the vertex with a single
copy of A, and place a moveable obstacle at each vertex with a B. A legal move is either
sliding the robot to an adjacent empty vertex or sliding an obstacle to an adjacent empty
vertex. Papadimitriou et al. [23] give a simple polynomial time algorithm for determining
whether it is possible to get the robot to a given target location. By applying their algorithm

XX:10 Complexity of Reconfiguration in Surface Chemical Reaction Networks

Figure 6 An example reduction from Hamiltonian Path. We are considering graphs on a grid,
so any two adjacent locations are connected in the graph. Left: an initial board with the starting
location in blue. Middle: One step of the reaction. Right: The target configuration with the ending
location in blue. Bottom: the single reaction rule.

to each of these modified problems (one for each cell that has an initial A), we can determine
whether any of them have a solution in polynomial time (since there are only linearly many
such problems), and thus determine whether the original 1-reconfiguration problem has a
solution in polynomial time.

J

4 Burnout

In this section, we show reconfiguration in 2-burnout with species (A, B, C) and reaction
A + B → C + A is NP-complete in Theorem 7. Next, we show 1-reconfiguration in 1-burnout
with 17 species and 40 reactions is NP-complete in Theorem 8.

Reconfiguration and 1-Reconfiguration for burnout sCRNs are in NP since there is the
length of any reconfiguration is bounded. For space we do not include this proof but note
this has been proved in other system such as Resource Bounded Cellular Automata [13],
Freezing Cellular Automata [14] and Freezing Tile Automata [3].

4.1 2-Burnout Reconfiguration
This is a simple reduction from Hamiltonian Path, specifically when we have a stated start
and end vertex.

I Theorem 7. Reconfiguration in 2-burnout sCRNs with species (A, B, C) and reaction
A + B → C + A is NP-complete even when the surface is a subset of the grid graph. It is
also NP-complete with the same species and reactions without the 2-burnout restriction.

Proof. Let Γ = {(A, B, C), (A + B → C + A)}. Given an instance of the Hamiltonian path
problem on a grid graph H with a specified start and target vertex vs and vt, respectively,
create a surface G where each cell in G is a node from H. Each cell contains the species B

except for the cell representing vs which contains species A. The target surface has species C

in every cell except for the final node containing A, vt. An example can be seen in Figure 6.
The species A can be thought of as an agent moving through the graph. The species B

represents a vertex that hasn’t been visited yet, while the species C represents one that has
been. Each reaction moves the agent along the graph, marking the previous vertex as visited.

(⇒) If there exists a Hamiltonian path, then the target configuration is reachable. The
sequence of edges in the path can be used as a reaction sequence moving the agent through
the graph, changing each cell to species C finishing at the cell representing vt.

(⇐) If the target configuration is reachable, there exists a Hamiltonian path. The sequence
of reactions can be used to construct the path that visits each of the vertices exactly once,

Alaniz et al. XX:11

ending at vt.
Note that we have not discussed the effect of Burnout on the reduction. However since

each cell transitions through species in the following order: B, A, C this reaction always
results in a 2-burnout sCRN so the reduction holds with and without the restriction.

This means the CRN is 2-burnout which bounds the max sequence length for reaching
any reachable surface, putting the reconfiguration problem in NP. J

4.2 1-Burnout 1-Reconfiguration
For 1-burnout 1-reconfiguration, we show NP-completeness by reducing from 3SAT and
utilizing the fact that once a cell has reacted it is burned out and can no longer participate
in later reactions.

T

T

TT

T
↷

↷ T

TT

T
↷

↷ T

TT

T
↷

↷

T

T

TT

T
↷

↷

↷↷↷

↷↷↷
F

F

F

F

↷↷↷

↷↷↷
F

F

F

F

↷↷↷

↷↷↷
F

F

F

F

↷↷↷

↷↷↷
F

F

F

F

T
↷↷↷

↷↷↷

T

Figure 7 All the possible configurations of two variable gadgets.

I Theorem 8. 1-reconfiguration in 1-burnout sCRNs with 17 species and 40 reactions is
NP-complete even when the surface is a subset of the grid graph. It is also NP-complete with
the same species and reactions without the 1-burnout restriction.

Proof. We reduce from 3SAT. The idea is to have an ‘agent’ species traverse the surface to
assign variables and check that the clauses are satisfied by ‘walking’ through each clause. If
the agent can traverse the whole surface and mark the final vertex as ‘satisfied’, there is a
variable assignment that satisfies the original 3SAT instance.

Variable Gadget. The variable gadget is constructed to allow for a nondeterministic
assignment of the variable via the agent walk. At each intersection, the agent ‘chooses’ a
path depending on the reaction that occurs. If the agent chooses ‘true’ for a given variable,
it will walk up then walk down to the center species. If the agent chooses ‘false’, the agent
will walk down then walk up to the center species. From the center species, the agent can
only continue following the path it chose until it reaches the next variable gadget. Examples
of the agent assigning variables can be seen in Figure 7.

Each variable assignment is ‘locked’ by way of geometric blocking. When the agent
encounters a variable gadget whose variable has already been assigned, the agent must follow
that same assignment or it will get ‘stuck’ trying to react with a burnt out vertex. This can
be seen in Figure 8.

Initial Configuration. First, the configuration is constructed with variable gadgets
connected in a row, one for each variable in the 3SAT instance. This row of variable gadgets
is where the agent will nondeterministically assign values to the variables. Next, a row of
variable gadgets, one row for each clause, is placed on top of the assignment row, connected
with helper species to fill in the gaps.

For each clause, if a certain variable is present, the center species of the variable gadget
reflects its literal value from the clause. For example, if the variable x1 in clause c1 should
be true to satisfy the clause, the variable gadget representing x1 in c1’s row will contain
a T species in the center cell. Lastly, the agent species is placed in the bottom left of the
configuration. An example configuration can be seen in Figure 9.

The agent begins walking and nondeterministically assigns a value to each variable. After
assigning every variable, the agent walks right to left. If at an intersection, the agent chooses

XX:12 Complexity of Reconfiguration in Surface Chemical Reaction Networks

↷↷↷
F

F

F

F

S

(a) Successful navigation of an intersection.

↷↷↷

F

S↷↷↷

↷↷↷
F

F

F

(b) Agent stuck due to not following the assignment.

Figure 8 The assignment ‘locking’ process.

T

T

F

TF T

F T

T T

⤭ ⤭⤭ ⤭⤭ ⤭⤭

⤭

⤭

⤭⤭ ⤭⤭⤭ ⤭

⤭

⤭⤭ ⤭⤭ ⤭⤭

⤭⤭ ⤭⤭ ⤭

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

Assign T/F
Input Variables

X1 X2 X3 X4

 X1 v X2 v X3

Clause 3:

 X2 v X3 v X4

Clause 1:

Clause 2: ___
 X1 v X2 v X4

(a) Example starting configuration.

T

T

F

F T

T T⤭

⤭⤭ ⤭⤭ ⤭⤭

⤭⤭ ⤭⤭ ⤭

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

T

TT

T
↷ ↷↷↷F

F

F

FT

TT

T
↷ ↷↷↷F

F

F

F

F

S

U

F

F

F

F

F

F

F

F

F

T

T T

T

S

T

T

T

T

 X2 v X3 v X4

Clause 1:

↷↷↷

↷↷↷

(b) The surface after evaluating the first clause.

Figure 9 Reduction from 3SAT to 1-burnout 1-reconfiguration. (a) The starting configuration of
the surface for the example formula ϕ = (¬x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3). (b)
The configuration after evaluating the first clause. A red outline represents the unsatisfied state,
and a green outline represents the satisfied state.

a different assignment than it did its first pass, the agent becomes ‘stuck’ only being able to
react with a burnt out vertex.

After walking all the way to the left, the first clause can be checked. The agent starts in
the unsatisfied state, walking through each variable in the row, left to right. If the current
variable assignment at a variable gadget satisfies this clause, the agent changes to the satisfied
state and continues walking. If the agent walks through all the variables without becoming
satisfied, the computation ends. If the clause was satisfied, the agent continues by walking
back, right to left, to begin evaluation of the next clause. If the agent walks all the way to
the final vertex with a satisfied state, then the initial variable assignment satisfies all the
clauses.

(⇒) If there exists a variable assignment that satisfies the 3SAT instance, then the final
vertex can be marked with the satisfied state s. The agent can only mark the final cell with
the satisfied state s if all clauses can be satisfied.

(⇐) If the final vertex can be marked with satisfied state s, there exists a variable
assignment that satisfies the 3SAT instance. The variable assignment that the agent non-
deterministically chose can be read and used to satisfy the 3SAT instance. J

5 Single Reaction

When limited to a single reaction, we show a complete characterization of the reconfiguration
problem. There exists a reaction using 3 species for which the problem is NP-complete. For
all other cases of 1 reaction, the problem is solvable in polynomial time.

Alaniz et al. XX:13

N/S/U - Not Yet Evaluated/Satisfied/Unsatisified

T/F

Xy / Xy

Input Clause Variable:

N/S/U

Clause Evaluation Status at Vertex v:

N/S/U US

Clause Checkpoint Status:

Traversed Signal Direction:

🠖 🠖

Non-Deterministic Pivot Points:

⤭
🠖 🠖

Traversal Assist States:

⤭
🠖 🠖

↷
⇄

↷↷↷
⇄

TF F F⟶

FF F F⟶

F ⤭ F F⟶

F ↷ F F⟶F ⤭ F

FF

T⟶

T T T T⟶

T F T T⟶

T ↷↷↷ T T⟶

T T T⟶

⤭T

FT

T T⟶

FFTF ⟶

F FFF ⟶

↷F F F⟶

F F F⟶⤨

⤭F

F

T

F

F⟶

↷↷↷T T T⟶

⤨T T T⟶

TT T T⟶

FT T T⟶

T ⤭ T

F

T

T

⟶

⟶ ⟶

↷ ⟶

⟶

↷↷↷ ⟶

⟶

U ⤭

F

U

U

T⟶

S S

S

⟶

U⟶

U⟶

STT ⟶

F F S⟶

Figure 10 Species identification and transition rules for 1-burnout 1-reconfiguration.

5.1 2 Species
We start with proving reconfiguration is in P when we only have 2 species and a single
reaction.

I Lemma 9. Reconfiguration with species {A, B} and reaction A + A→ A + B OR A + B →
A + A is solvable in polynomial time on any surface.

Proof. The reaction A + B → A + A is the reverse of the first case. By flipping the target
and initial configurations, we can reduce from reconfiguration with A + B → A + A to
reconfiguration A + A→ A + B.

We now solve the case where we have the reaction A + A→ A + B.
All cells that start and end with species B can be ignored as they do not need to be

changed, and can not participate in any reactions. If there is a cell that contains B in the
initial configuration but A in the target, the instance is ‘no’ as B may never become A.

Let any cell that starts in species A but ends in species B be called a flip cell, and any
species that starts in A and stays in A a catalyst cell.

An instance of reconfiguration with these reactions is solvable if and only if there exists
a set of spanning trees, each rooted at a catalyst cell, that contain all the flip cells. Using
these trees, we can construct a reaction sequence from post-order traversals of each spanning
tree, where we have each non-root node react with its parent to change itself to a B. In the
other direction, given a reaction sequence, we can construct the spanning trees by pointing
each flip cell to the neighbor it reacts with. J

I Lemma 10. Reconfiguration with species {A, B} and reaction A + A→ B + B is solvable
in polynomial time on any surface.

Proof. Reconfiguration in this case can be reduced to perfect matching. Create a graph
M including a node for each cell in S containing the A species initially and containing B

in the target, with edges between nodes of neighboring cells. If M has a perfect matching,
then each edge in the matching corresponds to a reaction that changes A to B. If the target
configuration is reachable, then the reactions form a perfect matching since they include
each cell exactly once. J

I Theorem 11. Reconfiguration with 2 species and 1 reaction is in P on any surface.

Proof. As we only have two species and a single reaction, we can analyze each of the four
cases to show membership in P. We divide into two cases:

XX:14 Complexity of Reconfiguration in Surface Chemical Reaction Networks

A + A: When a species reacts with itself, it can either change both species, which is
shown to be in P by Lemma 10; or it changes only one of the species, which is in P by
Lemma 9.

A + B: When two different species react, they can either change to the same species,
which is in P by Lemma 9; or they can both change, which is a swap and thus is in P by
Theorem 5. J

5.2 3 or more Species
Moving up to 3 species and 1 reaction, we showed earlier that there exists a reaction for
which reconfiguration is NP-complete in Theorem 7. Here, we give reactions for which
reconfiguration between 3 species is in P, and in Corollary 15 we prove that all remaining
reactions are isomorphic to one of the reactions we’ve analyzed.

I Lemma 12. Reconfiguration with species (A, B, C) and reaction A+B → C +C is solvable
in polynomial time on any surface.

Proof. At a high level, we create a new graph of all the cells that must change to species C,
and add an edge when the two cells can react with each other. Since a reaction changes both
cells to C we can think of the reaction as “covering” the two reacting cells. Finding a perfect
matching in this new graph will give a set of edges along which to perform the reactions to
reach the target configuration.

Consider a surface G and a subgraph G′ ⊆ G where we include a vertex v′ in G′ for each
cell that contain A or B in the initial configuration and C in the target configuration. We
include an edge (u′, v′) between any vertices in G′ that contain different initial species, i.e.
any pair of cell which one initially contains A and the other initially B.

Reconfiguration is possible if and only if there is a perfect matching in G′. If there is
a perfect matching then there exists a set of edges which cover each cell once. Since G′

represents the cells that must change states, and the edges between them are reactions, the
covering can be used as a sequence of pairs of cells to react. If there is a sequence of reactions
then there exists a perfect matching in G′: each cell only reacts once so the matching must
be perfect, and the cells that react have edges between them in G′. J

I Lemma 13. Reconfiguration with species (A, B, C) and reaction A+B → A+C is solvable
in polynomial time on any surface.

Proof. The instance of reconfiguration is solvable if and only if any cell that ends with
species C either contained C in the initial configuration, or started with species B and have
an A adjacent to perform the reaction. Additionally, since a reaction cannot cause a cell
to change to A or B, each cell with an A or B in the target configuration must contain the
same species in the initial configuration. J

The final case we study is 4 species 1 reaction. Any sCRN with 5 or more species and 1
reaction has a species which is not included in the reaction.

I Lemma 14. Reconfiguration with species (A, B, C, D) and the reaction A + B → C + D is
in P on any surface.

Proof. We can reduce Reconfiguration with A + B → C + D to perfect matching similar to
Lemma 12. Create a new graph with each vertex representing a cell in the surface that must
change species. Add an edge between each pair of neighboring cells that can react (between
one containing A and the other B). A perfect matching then corresponds to a sequence of
reactions that changes each of the species in each cell to C or D. J

Alaniz et al. XX:15

I Corollary 15. Reconfiguration with 3 or greater species and 1 reaction is NP-complete on
any surface.

Proof. First, from Theorem 7 we see that there exists a case of reconfiguration with 3 species
that is NP-hard with or without the burnout restriction.

For membership in NP, we analyze each possible reaction. We note that we only need to
consider two cases for the left hand side of the rule, A + A and A + B. Any other reaction is
isomorphic to one of this form as we can relabel the species. For example, rule B +C → A+A

can be relabeled as A + B → C + C. Also, we know that C must appear somewhere in the
right hand side of the rule. If it does not then the reaction only takes place between two
species, which is always polynomial time as shown above, or it involves a species we can
relabel as C.

Here are the cases for A + B and our analysis results:

A + B → A + C P in Lemma 13
A + B → C + B P in Lemma 13 under isomorphism
A + B → C + A NP in Theorem 7
A + B → B + C NP in Theorem 7 under isomorphism
A + B → C + C P in Lemma 12
A + B → C + D P in Lemma 14

When we have A + A on the left side of the rule, the only case we must consider is
A + A→ B + C (since all 3 species must be included in the rule). We have already solved
this reaction: first swap the labels of A and C giving rule C + C → B + A, then reverse the
rule to B + A→ C + C and swap the initial and target configuration. Finally since rules do
not care about orientation this is equivalent to the rule A + B → C + C in Lemma 12.

Finally, for 4 species and greater, the only new case is A + B → C + D, which is proven
to be in P in Lemma 14. Any other case would have species that are not used since a rule
can only have 4 different species in it.

Thus, all cases are either in NP, or in P which is a subset of NP, therefore, the problem
is in NP. Also, since our results for each case apply for any surface, the same is true in
general. J

6 Conclusion

In this paper, we explored the complexity of the configuration problem within natural
variations of the surface CRN model. While general reconfiguration is known to be PSPACE-
complete, we showed that it is still PSPACE-complete even with several extreme constraints.
We first considered the case where only swap reactions are allowed, and showed reconfiguration
is PSPACE-complete with only four species and three distinct reaction types. We further
showed that this is the smallest possible number of species for which the problem is hard
by providing a polynomial-time solution for three or fewer species when only using swap
reactions.

We next considered surface CRNs with rules other than just swap reactions. First, we
considered the burnout version of the reconfiguration problem, and then followed by the
normal version with small species counts. In the case of 2-burnout, we showed reconfiguration
is NP-complete for three species and one reaction type, and 1-burnout is NP-complete for
17 species with 40 distinct reaction types. Without burnout, we achieved, as a corollary,

XX:16 Complexity of Reconfiguration in Surface Chemical Reaction Networks

that three species, one reaction type is NP-complete while showing that dropping the species
count down to two yields a polynomial-time solution.

6.1 Computing Polynomial Space Functions
An interpretation of Theorem 3 is that surface Chemical Reactions are capable of computing
any function that can be computed in polynomial space. Perhaps the most important
PSPACE-Complete is the acceptance problem for polynomial space Turing machines. While
there may be a few reduction between these problems, we can may turn any polynomial
space Turing machine into a surface CRN such that the robot species swaps with a wire
species at a target location. In experiments one can imagine the target location as having a
special type of wire species that acts as a reporting, emitting a signal when it reacts with the
robot species. The size of the surface is polynomial in the space of the Turing machine since
these are all polynomial time reductions. While we do not claim this experiment can be done
with such a small number of species, but rather that theoretically more sequence efficient
reaction systems which can compute should exists by taking advantage of the surface.

Our polynomial time algorithms describe experiments with 1, 2, or 3 reactions on surfaces
where well studied algorithms for problems such as matching and motion planning may be of
use.

6.2 Open Problems
This work introduced new concepts that leaves open a number of directions for future work.
While we have fully characterized the complexity of reconfiguration for the swap-only version
of the model, the complexity of reconfiguration with general rule types for three species
systems remains open if the system uses more than one rule. All of hardness results also
use a square grid graph, while our algorithms work on general surfaces. We would like to
know if the threshold for hardness can be lowered on more general graphs. In the 1-burnout
variant of the model, we have shown 1-reconfiguration to be NP-complete, but the question
of general reconfiguration remains a “burning” open question.

References
1 Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, and Jayson Lynch.

Traversability, reconfiguration, and reachability in the gadget framework. In WALCOM:
Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022,
Jember, Indonesia, March 24–26, 2022, Proceedings, pages 47–58. Springer, 2022.

2 Tatiana Brailovskaya, Gokul Gowri, Sean Yu, and Erik Winfree. Reversible computation using
swap reactions on a surface. In International Conference on DNA Computing and Molecular
Programming, pages 174–196. Springer, 2019.

3 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and
computation in restricted tile automata. Natural Computing, pages 1–19, 2020.

4 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing simulates non-freezing tile automata. In DNA Computing and Molecular
Programming: 24th International Conference, DNA 24, Jinan, China, October 8–12, 2018,
Proceedings 24, pages 155–172. Springer, 2018.

5 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig. A
spatially localized architecture for fast and modular DNA computing. Nature nanotechnology,
12(9):920–927, 2017.

6 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural computing, 13:517–534, 2014.

Alaniz et al. XX:17

7 Samuel Clamons, Lulu Qian, and Erik Winfree. Programming and simulating chemical reaction
networks on a surface. Journal of the Royal Society Interface, 17(166):20190790, 2020.

8 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Algorithmic bioprocesses, pages 543–584. Springer, 2009.

9 Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J Turberfield. DNA walker
circuits: computational potential, design, and verification. Natural Computing, 14(2):195–211,
2015.

10 Colin Defant and Noah Kravitz. Friends and strangers walking on graphs. Combinatorial
Theory, 1, 2021.

11 Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity
of motion planning of a robot through simple gadgets. In 9th International Conference on
Fun with Algorithms (FUN 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

12 Erik D Demaine, Robert A Hearn, Dylan Hendrickson, and Jayson Lynch. Pspace-completeness
of reversible deterministic systems. In Machines, Computations, and Universality: 9th Interna-
tional Conference, MCU 2022, Debrecen, Hungary, August 31–September 2, 2022, Proceedings,
pages 91–108. Springer, 2022.

13 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Giancarlo Mauri, and Antonio E Porreca.
Computational complexity of finite asynchronous cellular automata. Theoretical Computer
Science, 664:131–143, 2017.

14 Eric Goles, Diego Maldonado, Pedro Montealegre, and Martín Ríos-Wilson. On the complexity
of asynchronous freezing cellular automata. Information and Computation, 281:104764, 2021.

15 Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular auto-
mata. In Cellular Automata and Discrete Complex Systems, 21st International Workshop
(AUTOMATA 2015), volume 24, pages 65–73, 2015.

16 Gilad Goraly and Refael Hassin. Multi-color pebble motion on graphs. Algorithmica, 58:610–
636, 2010.

17 Robert A Hearn and Erik D Demaine. Games, puzzles, and computation. CRC Press, 2009.
18 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer

and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.
19 Aleksa Milojevic. Connectivity of old and new models of friends-and-strangers graphs. arXiv

preprint arXiv:2210.03864, 2022.
20 Kenichi Morita and Yoshikazu Yamaguchi. A universal reversible turing machine. In Machines,

Computations, and Universality: 5th International Conference, MCU 2007, Orléans, France,
September 10-13, 2007. Proceedings 5, pages 90–98. Springer, 2007.

21 Richard A. Muscat, Karin Strauss, Luis Ceze, and Georg Seelig. DNA-based molecular
architecture with spatially localized components. ACM SIGARCH Computer Architecture
News, 41(3):177–188, 2013.

22 Jennifer Padilla, Wenyan Liu, and Nadrian Seeman. Hierarchical self assembly of patterns from
the robinson tilings: Dna tile design in an enhanced tile assembly model. Natural computing,
11:323–338, 06 2012. doi:10.1007/s11047-011-9268-7.

23 Christos H Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao Tamaki. Motion
planning on a graph. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 511–520. IEEE, 1994.

24 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälischen
Institutes für Instrumentelle Mathematik an der Universität Bonn, 1962.

25 Lulu Qian and Erik Winfree. Parallel and scalable computation and spatial dynamics with
DNA-based chemical reaction networks on a surface. In DNA Computing and Molecular
Programming: 20th International Conference, DNA 20, Kyoto, Japan, September 22-26, 2014.
Proceedings, volume 8727, page 114. Springer, 2014.

26 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. natural computing, 7:615–633, 2008.

https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1007/s11047-011-9268-7

XX:18 Complexity of Reconfiguration in Surface Chemical Reaction Networks

27 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

28 Guillaume Theyssier and Nicolas Ollinger. Freezing, bounded-change and convergent cellular
automata. Discrete Mathematics & Theoretical Computer Science, 24, 2022.

29 Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim
Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, et al. A cargo-sorting
DNA robot. Science, 357(6356):eaan6558, 2017.

30 Damien Woods and Turlough Neary. The complexity of small universal turing machines: A
survey. Theoretical Computer Science, 410(4-5):443–450, 2009.

	1 Introduction
	1.1 Motivation
	1.2 Previous Work
	1.3 Our Contributions

	2 Surface CRN model
	2.1 Restrictions
	2.2 Problems

	3 Swap Reactions
	3.1 Reconfiguration is PSPACE-complete
	3.2 Polynomial-Time Algorithm

	4 Burnout
	4.1 2-Burnout Reconfiguration
	4.2 1-Burnout 1-Reconfiguration

	5 Single Reaction
	5.1 2 Species
	5.2 3 or more Species

	6 Conclusion
	6.1 Computing Polynomial Space Functions
	6.2 Open Problems

