Erratum for "Disjoint Segments have Convex Partitions with 2-Edge Connected Dual Graphs"

Nadia M. Benbernou^{*} Erik D. Demaine[†] Martin L. Demaine[‡] Michael Hoffmann[§] Mashhood Ishaque[¶] Diane L. Souvaine[∥] Csaba D. Tóth^{**}

A set of n disjoint line segments in the plane and a permutation π of the 2n segment endpoints define a partition of the plane into convex faces: extend the segments beyond their endpoints one-by-one in the order given by π until they hit another segment, a previous extension, or infinity. If no three segment endpoints are collinear, then every permutation π produces n + 1convex faces.

For convex partition, the *dual graph* is defined where the n + 1 convex faces correspond to the vertices, and every segment endpoint corresponds to an edge between the two incident faces on opposite sides of the segment.

In [1], we presented a partition algorithm (see below) that, for a set S of n disjoint line segments, computes a nonempty subset $S' \subseteq S$ and a convex partition P'of S' such that each remaining segment in $S \setminus S'$ lies in the interior of a face of P'. We claimed that the dual graph of P' is 2-edge connected. This claim is false. Sometimes the dual graph of P' has a bridge (Fig 1).

Partition Algorithm. Input S.

- Pick a segment $s_0 = a_0 b_0$ with an endpoint b_0 along $\operatorname{conv}(\cup S)$. Set $s := s_0, p := a_0, \gamma := 0, S' := \{s_0\}$, and i := 1.
- Repeat while $p \neq b_0$:

Extend s beyond p into a ray \overrightarrow{r} until it hits another segment, a previous extension, or to infinity.

- If \overrightarrow{r} hits a segment in $S \setminus S'$, denote it by $s_i = a_i b_i$ such that $\angle(\overrightarrow{r}, \overrightarrow{a_i b_i}) < 0 < \angle(\overrightarrow{r}, \overrightarrow{b_i a_i})$, let $\gamma_i = \gamma + \angle(\overrightarrow{r}, \overrightarrow{a_i b_i})$, put $S' := S' \cup \{s_i\}$, $s := s_i, p := a_i, \gamma := \gamma_i + \pi$, and i := i + 1.
- Else, over all integers $j, 0 \leq j < i$, such that $s_j \in S'$ has not been extended beyond b_j , pick one where the turning angle γ_j is maximal. Set $s := s_j, p := b_j$, and $\gamma := \gamma_j$.

Figure 1: Steps of our partition algorithm for five input segments, and the resulting dual graph.

Specifically, the last phrase in the "proof" for our Lemma 4 is false. It is not true that after a ray \overrightarrow{r} hits a segment a_ib_i , no extension can hit \overrightarrow{r} from the right before the extension a_ib_i beyond b_i is drawn.

References

[1] N. M. Benbernou, E. D. Demaine, M. L. Demaine, M. Hoffmann, M. Ishaque, D. L. Souvaine, and Cs. D. Tóth, Disjoint segments have a convex partition with a 2-edge connected dual graph, in *Proc. 19th Canadian Conf. Comp. Geom.*, 2007, Ottawa, ON, pp. 13–16.

^{*}Massachusetts Institute of Technology, nbenbern@mit.edu †Massachusetts Institute of Technology, edemaine@mit.edu ‡Massachusetts Institute of Technology, mdemaine@mit.edu §ETH Zürich, hoffmann@inf.ethz.ch

[¶]Tufts University, mishaq01@cs.tufts.edu

Tufts University, dls@cs.tufts.edu

^{**}University of Calgary, cdtoth@ucalgary.ca