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PAPER Special Section on Discrete Mathematics and Its Applications

Computational Complexity and an Integer Programming Model of
Shakashaka

Erik D. DEMAINE†a), Nonmember, Yoshio OKAMOTO††b), Ryuhei UEHARA†††c),
and Yushi UNO††††d), Members

SUMMARY Shakashaka is a pencil-and-paper puzzle proposed by
Guten and popularized by the Japanese publisher Nikoli (like Sudoku).
We determine the computational complexity by proving that Shakashaka
is NP-complete, and furthermore that counting the number of solutions is
#P-complete. Next we formulate Shakashaka as an integer-programming
(IP) problem, and show that an IP solver can solve every instance from
Nikoli’s website within a second.
key words: integer programming, NP-completeness, pencil-and-paper
puzzle, Shakashaka

1. Introduction

The puzzle Shakashaka is one of many pencil-and-paper
puzzles (such as the famous Sudoku) popularized by
Japanese publisher Nikoli. Shakashaka was proposed by
Guten in 2008, and since then, has become one of the main
Nikoli puzzles.

An instance of Shakashaka consists of an m × n rect-
angular board of unit squares. Each square is either white
or black, and some black squares contain a number. A can-
didate solution to the puzzle consists of filling in some of
the white squares with a black half-square (isosceles right
triangle filling half the area) in one of the four ways: , ,

, . We call such squares b/w squares; white squares may
also be left entirely white. Each number in a black square
specifies the number of b/w squares that should be among
four (vertically or horizontally adjacent) neighbors of the
black square. (A black square without a number allows any
number of b/w neighbors.) The objective of the puzzle is to
fill the white squares in the given board while satisfying the
above constraints and so that the remaining white area con-
sists only of (empty) squares and rectangles. An example of
the puzzle Shakashaka in [1] is shown in Fig. 1(a), and its
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Fig. 1 An instance of the puzzle Shakashaka and its solution ([1]).

(unique) solution is given in Fig. 1(b).
As mentioned in the literature [2], a lot of pencil-and-

paper puzzles have been shown NP-complete. However, the
computational complexity of Shakashaka has not yet been
studied up to the knowledge of the authors. In this paper, we
prove that Shakashaka is NP-complete, by a reduction from
planar 3SAT. Because our reduction preserves the number
of solutions, we also prove that counting the number of so-
lutions to a Shakashaka puzzle is #P-complete.

Next we show how to formulate Shakashaka as a 0-1
integer-programming problem (a linear programming prob-
lem in which all variables are restricted to be 0 or 1). Al-
though 0-1 integer programming is one of Karp’s 21 NP-
complete problems, there are many efficient solvers from a
practical point of view. For example, recent mixed integer-
programming solvers run around one billion times faster
than those from 1991 [3]. Therefore, once we can formu-
late a puzzle as a 0-1 integer-programming problem, we can
hope to use these solvers to solve the puzzle efficiently in
practice.

Some authors have proposed integer-programming for-
mulations of several puzzles before, mainly for the didac-
tic purposes [4]–[8]. The formulation of Shakashaka is
not so straightforward because we have to avoid forming
nonrectangular orthogonal shapes or nested rectangles. We
show that our formulation characterizes the constraints of
Shakashaka. We also perform computational experiments,
and observe that each instance from Nikoli’s website can be
solved within one second by the IP solver SCIP [11].

2. Preliminaries

Let us begin with a formal definition of the puzzle

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Shakashaka. An instance I of Shakashaka is a rectangu-
lar board of size m × n. Each unit square is colored ei-
ther white or black. A black square may contain a number
i ∈ {0, . . . , 4}. A solution of the instance I is a mapping from
the set of white squares in I to the set { , , , , } sat-
isfying the following conditions:

1. Each white square mapped to is left uncolored
(white), while each square mapped to , , , or
is colored black and white as indicated (and called a
b/w square).

2. Each black square that contains the number i has ex-
actly i b/w squares among its four neighbors.

3. Each connected white area forms a white rectangle (or
square).

Computationally, Shakashaka is a decision problem:
for a given instance, does it have a solution? The count-
ing version of Shakashaka asks to compute the number of
distinct solutions to the given instance.

3. NP-Completeness of Shakashaka

In this section, we prove the following theorem:

Theorem 1: Shakashaka is NP-complete, even if each
black square contains either empty or 1.

The proof is by a reduction from planar 3SAT, one
of the well-known NP-complete problems [9]. Let F be
an instance of planar 3SAT. That is, F consists of a set
C = {C1,C2, . . . ,Cm} of m clauses over n variables V =
{x1, x2, . . . , xn}, where each clause Ci consists of three liter-
als, and the graph G = (C ∪V,E) is planar, where E con-
tains an edge {Ci, x j} if and only if literal x j or x̄ j is in the
clause Ci.

Now we show a reduction from F to an instance I of
Shakashaka. To do that, we design some gadgets to repre-
sent each literal and clause with wire gadget to join them.
The key idea is to use the pattern shown in Fig. 2. For the
pattern in Fig. 2(a), we have two choices for filling the 2× 2

Fig. 2 Basic pattern.

white squares as shown in Fig. 2(b). Essentially, this works
as a “wire” to propagate a signal. We regard the 2×2 square
containing the four white unit squares in Fig. 2(b) as repre-
senting “0,” and the big diamond containing four (different)
b/w squares in 2(b) as representing “1.” That is, the “wire”
pattern propagates a signal using the parity in two different
ways. Using the terminology of [2], we need the gadgets of
“variable,” “split,” “corner,” and “clause” to represent F in
the form of G, a network of literals and clauses. We describe
these gadgets one by one.

(1) Variable gadget:

Figure 3(a)† shows the variable gadget. It is easy to see that
we have two ways to fill the pattern as in Figs. 3(b), (c). It
can propagate its value by the wire gadget as in the figure. It
is also easy to obtain the negation of the variable by taking
the value at the appropriate position of the wire.

(2) Split gadget/corner gadget:

Figure 4 shows the split and corner gadgets. Using the split
gadget, we can increase the degree of the output of a variable
gadget.

Fig. 3 Variable gadget.

Fig. 4 Split and corner gadgets.

†Hereafter, each pattern is assumed to be surrounded by black
squares.
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(3) Clause gadget:

Figure 5 shows the clause gadget for a clause C = {x, y, z}.
According to the values of x, y, z, we have eight possible
cases. Among them, only the case x = y = z = 0 violates
the condition of Shakashaka (Fig. 6).

The gadgets for wire, variable, split, and corner are
aligned properly because they are designed to fit into a 3× 3
square tiling. However, at a clause gadget, we have to
change the positions of wires to fit the gadget. To shift the
position, we use a “parity” gadget shown in Fig. 7(a). Join-
ing copies of the gadget in a straightforward way, we can
change the position of a wire arbitrarily (Fig. 7(b)). Since
G is planar, we can arrange the variable and clause gadgets
on a sufficiently large rectangular board so that they can be
joined by edges without crossing. Then we join them by
using wire gadgets, split gadgets, and corner gadgets. At
a clause gadget, we adjust the positions of wire gadgets by
using parity gadgets appropriately. All gaps between gad-
gets are filled with black empty squares. As a result, we can
construct the resulting instance of Shakashaka in a rectan-
gular board of size O(n)×O(n) in polynomial time of n. An
example of a construction of Shakashaka for the instance

Fig. 5 Clause gadget.

Fig. 6 Feasible cases and infeasible case of a clause gadget.

f = C1 ∨ C2, where C1 = {x, ȳ, w} and C2 = {y, z̄, w̄} is
depicted in Fig. 8.

It is easy to see that the resulting Shakashaka has a so-
lution if and only if the original formula F is satisfiable.
It is clear that Shakashaka is in the class NP. Therefore,
Shakashaka is NP-complete. Moreover, once we fix an as-
signment of F, the filling pattern of the resulting instance
of Shakashaka is uniquely determined. Thus, our reduction
is parsimonious, i.e., it preserves the number of solutions.
That is, the number of satisfying assignments to the origi-
nal CNF formula is equal to the number of solutions to the
resulting instance of Shakashaka. Because the counting ver-
sion of planar 3SAT is #P-complete [10], we have the fol-
lowing corollary:

Corollary 2: The counting version of Shakashaka is #P-
complete.

Fig. 7 Parity gadget.
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Fig. 8 An example for C1 = {x, ȳ, w} and C2 = {y, z̄, w̄}.

4. Integer Programming Formulation

We formulate Shakashaka in terms of a 0-1 integer-
programming problem. Recall that an instance I of
Shakashaka consists of a rectangular board of size m×n. We
identify each square by (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n} in
the natural way.

(4) Variables:

For each white square (i, j), we will use five 0-1 variables
x[i, j, ], x[i, j, ], x[i, j, ], x[i, j, ], and x[i, j, ]. Ex-
actly one of these variables has value 1, and the rest are 0,
according to the following meaning:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x[i, j, ] = 1 means that (i, j) remains white,
x[i, j, ] = 1 means that (i, j) is filled with ,
x[i, j, ] = 1 means that (i, j) is filled with ,
x[i, j, ] = 1 means that (i, j) is filled with ,
x[i, j, ] = 1 means that (i, j) is filled with .

We construct a linear system S (I) with the vari-
ables x[i, j, ∗] such that the solutions of the instance I of
Shakashaka are in bijection with the solutions of S (I). To
this end, we set up five types of linear constraints as de-
scribed below.

(5) Constraint A (at most one triangle in each white
square):

In a solution to I, each white square either remains white, or
is filled with one of the four black isosceles right triangles.
We map this condition to the following linear equality:

x[i, j, ] + x[i, j, ] + x[i, j, ]

+x[i, j, ] + x[i, j, ] = 1 (1)

for each i and j where (i, j) is a white square.

Proposition 3: Let S A(I) be the linear system that consists
of Constraint A. Then any feasible solution of S A(I) gives
the mapping from each white square to exactly one of ,

, , , or .

(6) Constraint B (neighbors of black squares):

Next we look at the black squares (i, j). First we consider
the case that (i, j) contains no number. In this case, (i, j)
gives some restrictions to its white neighbors. For example,
suppose that (i − 1, j) is white. Then, if (i − 1, j) was
or , these two squares make a 45◦ white corner between
them. Thus (i − 1, j) must be , , or . Hence, in this
case, the equation (1) for (i − 1, j) can be replaced by

x[i − 1, j, ] + x[i − 1, j, ] + x[i − 1, j, ] = 1 (2)

and we can fix x[i − 1, j, ] = x[i − 1, j, ] = 0. For (i +
1, j) and (i, j ± 1), similar equations and simplifications are
applied.

On the other hand, when a black square (i, j) has a num-
ber k, it must have k b/w squares as its neighbor. This restric-
tion is described by the following equation:

x[i − 1, j, ] + x[i − 1, j, ] + x[i + 1, j, ]

+ x[i + 1, j, ] + x[i, j − 1, ] + x[i, j − 1, ]

+ x[i, j + 1, ] + x[i, j + 1, ] = k, (3)

where x[i, j, ∗] is regarded as 0 if (i, j) is black. We also fix
x[i−1, j, ] = x[i−1, j, ] = x[i+1, j, ] = x[i+1, j, ] =
x[i, j−1, ] = x[i, j−1, ] = x[i, j+1, ] = x[i, j+1, ] =
0 to avoid the 45◦ white angle.

(7) Constraint C (sequences of triangles):

Next we turn to the restrictions to make each connected
white area a rectangle. Suppose x[i, j, ] = 1. In this case,
the white triangle at (i, j) can be orthogonal if and only if
either x[i, j + 1, ] = 1 or x[i + 1, j + 1, ] = 1. Therefore,
we obtain the following constraint:

x[i, j, ] ≤ x[i, j + 1, ] + x[i + 1, j + 1, ]. (4)

Moreover, when x[i, j, ] = x[i + 1, j + 1, ] = 1, (i, j + 1)
must remain white, or x[i, j + 1, ] = 1. (When (i, j + 1) is

, we have a parity problem; we cannot enclose this area by
extending this pattern. The other cases are also prohibited.)
This implies the following constraint:
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x[i, j, ] + x[i + 1, j + 1, ] ≤ x[i, j + 1, ] + 1. (5)

We add the similar constraints for the other directions. Then,
we have the following proposition:

Proposition 4: Let S C(I) be the linear system that consists
of Constraints A, B, and C, and fix any feasible solution of
S (I). Then, each angle on the boundary of each connected
white area given by the mapping is 90◦.

(8) Constraint D (exclusion of concave corners):

By Proposition 4, any feasible solution to Constraints A,
B, and C produces a pattern consisting of orthogonal white
polygons. However, this does not yet exclude concave cor-
ners. For example, an instance in Fig. 9(a) has a unique
solution in Fig. 9(b). However, up to the constraints A, B,
and C, we have another solution in Fig. 9(c). By Equation
4, no b/w square forms a part of a concave corner. Thus,
a concave corner may be produced by only white squares.
Suppose that x[i, j, ] = x[i + 1, j, ] = x[i, j + 1, ] = 1.
Then, (i+1, j+1) must be or must remain white. Thus we
add the following constraints (for all possible directions):

x[i, j, ] + x[i + 1, j, ] + x[i, j + 1, ]

≤ x[i + 1, j + 1, ] + x[i + 1, j + 1, ] + 2. (6)

We now have the following proposition:

Proposition 5: Let S D(I) be the linear system that consists
of Constraints A, B, C, and D, and fix any feasible solution
of S (I). Then every connected part of a boundary of a white
area is a convex orthogonal polygon, i.e., a rectangle.

(9) Constraint E (Exclusion of Nested White Rectangles):

The last problem is that the linear system so far may pro-
duce nested rectangles. (Two rectangles are nested if one
properly contains another; see Fig. 10. For the instance in

Fig. 9 An instance of the puzzle Shakashaka that allows to have another
solution without Constraint D.

Fig. 10 An instance of the puzzle Shakashaka that allows to have nested
rectangles without Constraint E.

Fig. 10(a), the center diamond in Fig. 10(b) is not allowed.
But it cannot be avoided by only the constraints from A to
D.) We suppose that both of (i, j) and (i + k, j + k) are .
Then, to avoid nesting, we must have between them. That
is, we must have at (i+k′, j+k′) for some 0 < k′ < k. And
it is not difficult to see that this is a necessary and sufficient
condition to avoid nested rectangles. This observation gives
us the following constraint:

x[i, j, ] + x[i + k, j + k, ]

≤
∑

0<k′<k

x[i + k′, j + k′, ] + 1. (7)

Combining all propositions and observations above, we
conclude the following:

Theorem 6: Let I be an instance of Shakashaka, and S (I)
be the linear system that consists of Constraints A–E. Then,
a feasible solution of S (I) gives a solution to I, and vice
versa.

5. Experimental Results

In this section, we describe our experimental results. The IP
solver we used is SCIP 3.0.0 [11]† (Binary: Windows/PC,
32 bit, cl 16, intel 12.1: statically linked to SoPlex 1.7.0,
Ipopt 3.10.2,CppAD 20120101.3). The machine we used
was a laptop (Intel Core2 Duo P8600@2.40 GHz with RAM
4 GB on Windows Vista Business SP2). Each of the ten in-
stances at nikoli.com†† was solved in less than one sec-
ond in our experiments (Table 1). We observed that each
of the instances was solved by the presolve functionality
of SCIP, and no branch-and-bound procedure was needed.
This should be a consequence of a quite powerful presolve
in SCIP. With the counting functionality of SCIP, we veri-
fied that each of the instances has a unique feasible solution.

We also looked at another instance at nikoli.com,
which was prepared for a competition. The board has size 31
× 45, the level is Extreme, and the number of white squares
is 1230. A solution was obtained in 2.63 seconds.

The other examples are artificial ones (see Fig. 11); for
each n = 1, 2, . . ., the board of size 2n × 2n consists of
4 ×∑n−1

i=1 i = 2n(n − 1) black squares, and 4 × (n − 1) black

Table 1 Experimental results for the instances at nikoli.com.

Problem Size Level # of white �s Time (sec)
1 10 × 10 Easy 76 0.02
2 10 × 10 Easy 77 0.03
3 10 × 10 Easy 82 0.03
4 10 × 18 Easy 131 0.07
5 10 × 18 Medium 156 0.09
6 10 × 18 Medium 144 0.07
7 14 × 24 Medium 297 0.21
8 14 × 24 Hard 295 0.19
9 20 × 36 Hard 645 0.84
10 20 × 36 Hard 632 0.91

†http://scip.zib.de/
††http://www.nikoli.com/ja/puzzles/shakashaka/
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Fig. 11 An artificial example of the puzzle Shakashaka.

Fig. 12 Seconds for the artificial examples (n = 2, 3, . . . , 40).

Fig. 13 An instance of Shakashaka without numbers.

squares contain the number 2 as shown in the figure. Each of
them has a unique solution. The experimental results for the
artificial ones for n = 2, 3, . . . , 40 are shown in Fig. 12. For
n = 40, the solution is obtained in 19.86 seconds. A sim-
ple regression shows that the computation time is roughly
proportional to 1.18n.

6. Concluding Remarks

In this paper, we proved that Shakashaka is NP-complete.
In our reduction, the black squares contain only the num-
ber 1 (or remain blank). An interesting question is to deter-

mine the computational complexity of Shakashaka with no
numbers in the black squares. Figure 13 shows a nontrivial
example, which has a unique solution. There are two nat-
ural questions in this Shakashaka puzzle. How many black
squares are required to have a unique solution in an m × n
board? Can this restricted Shakashaka be solved in polyno-
mial time?
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