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1 Introduction

In this paper, we investigate the following prob-
lem. You are given a large sheet of material, from
which you would like to make n packages of the
same shape Q. The sheet is tough so cutting is ex-
pensive (such as with a waterjet), so you would like
to minimize the total length of cut. To minimize
the total length of cut and to reduce waste of mate-
rial, we focus on tiling shapes P . The sheet is large
and n is huge, so the boundary shape of the sheet
itself is insignificant. What is the best shape of P?

Minimizing the length of cut when we develop
a given polyhedron is a natural question. Surpris-
ingly, however, there is little research on this topic.
The only results we know are by Akiyama et al. [1],
who investigate the minimum length of cutting to
develop each of five regular polyhedra.

In this paper, we focus on the case that P folds
into a tetramonohedron Q, that is, a tetrahedron
made from four congruent triangles. It is known
that any development of a tetramonohedron tiles
the plane [2]. Therefore, we can focus on minimiz-
ing the cut length without worrying about whether
the unfolding P will tile. In this paper, we general-
ize the result for a regular tetrahedron from [1] to
a family of tetramonohedra.

Precisely, our problem is formalized as follows:
tile an infinite sheet with a single polygon P , while
minimizing the perimeter of P , such that P folds
into a target tetramonohedron Q, As a secondary
goal, we are interested in maximizing the volume
of T , as motivated by useful packaging. When we
only focus on the volume, T has the maximum vol-
ume if it is a regular tetrahedron. On the other
hand, when we focus only on the minimum length
of cut, P is a regular hexagon, and then the folded
tetramonohedron Q is in fact a doubly covered rect-
angle; i.e., the package has volume 0. Hence, there
is a trade-off between volume and cut length.

We investigate this trade-off for tetramonohedra
whose faces are isosceles triangles. When we focus
on these target polyhedra, four isosceles triangles
of size 1 :

√
14/2 :

√
14/2 = 1 : 1.87 · · · : 1.87 · · ·
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Figure 1: Folding a tetramonohedron by four copies
of a unit triangle ABC.

form a reasonable solution from the viewpoints of
volume and cut-length.

2 Preliminaries

The vertices of a triangle T are A,B, and C, and
let a, b, c be the lengths of three edges of T . The
angles ∠A, ∠B, and ∠C denote the corresponding
angles at the vertices A, B, and C. We assume that
the triangle inequality always holds.

Based on this triangle T , we may fold a tetra-
monohedron that consists of four copies of T as
shown in Figure 1.

We first point out that this construction works
only for acute triangles:

Theorem 1 Let T be a unit-area triangle with
three edge lengths a ≤ b ≤ c. Then, by the procedure
above, four copies of T (1) form a tetramonohedron
if T is an acute triangle, (2) form a doubly covered
rectangle if T is a right triangle, and (3) do not
form any polyhedron otherwise.

Hence, we consider only the case that the unit-area
triangle T is an acute triangle.

Let Q be any tetramonohedron folded from a
triangle T . Let P be the net of Q obtained by
minimum total cut length. Applying the analysis
in [1], we can observe that the minimum cut lines
form a Steiner tree on the surface of Q that spans
the four vertices of Q. This spanning tree as fol-
lows; refer to Figure 2(a). Take some two triangular
faces of Q. Their edge-length set {w, x, y} is the set
{a/2, b/2, c/2}. Then two points p and p′ are the
Fermat point, and the point q is at the center of the
edge of length w. When we cut along the Steiner
tree, we obtain a net as shown in Figure 2(b). When
Q is a tetramonohedron, it is easy to see that the
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Figure 2: Minimum-cut Steiner tree,
and resulting hexagon.
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Figure 3: Volume
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Figure 4: Minimum cut length

resulting net P is a hexagon such that (1) each an-
gle is 120◦, and (2) two parallel edges are of the
same length.

3 Minimum Cut of Isosceles
Tetramonohedron

Let Q be any tetramonohedron of surface area 4
that consists of four congruent isosceles unit trian-
gles. That is, Q can be specified by two parameters
a, b such that a unit triangle made by an edge of
length a and two edges of length b. Because the tri-
angle is acute, we have b/a is in (1/

√
2,∞). Based

on case analysis, we obtain the following theorem:

Theorem 2 Let Q be a tetramonohedron of sur-
face area 4 that consists of four congruent isosceles
unit triangles. Let a be the length of the base of
the isosceles unit triangle. Then the volume of Q

is given by 16a2−a6

144 , and the minimum cut length is

given by min{
√

8
a2 + a2

4 ,
√

13a2

16 + 1
a2 +

√
3}.

Note that Q is a regular tetrahedron when a =
(16/3)1/4 = 1.51967 · · · . Figures 3 and 4 give the
volumes and the minimum cut lengths, respectively,
for 0 ≤ a ≤ 2. The volume takes its maximum, and
the cutting-length function changes terms, when Q
is a regular tetrahedron. The cutting length takes
minimum value when a = (16/13)1/4 = 1.053 · · ·
and b/a =

√
14/2 = 1.87 · · · .

4 Conclusion

Another interesting open problem is cutting unit
cubes. It is known that each of the eleven edge
unfoldings of a unit cube forms a tiling. Unfor-
tunately, the development with the shortest cut
length in [1] does not form a tiling (Figure 5(a)).
When we pack its copies as in Figure 5(b), (1) two
unit edges (top and bottom) are shared, and (2)
four parts of edges (left and right) are shared. In
case (2), the length of each shared part is at most

(a) (b)

Figure 5: (a) A net of a cube with minimum perime-
ter in [1]. It is not a tiling, and one possible efficient
packing is shown in (b).

(a) (b)

Figure 6: (a) A net of a cube, and (b) its tiling.

√
3−1
2 by simple geometric analysis. Therefore, for

sufficiently large n, the total length of cut per cube
is (1+1)/2+16×... = 6+3

√
3 = 11.196 . . .. We con-

jecture that the development shown in Figure 6(a)
is the best development in our criteria; in the tiling
of this pattern (Figure 6(b)), the total length of cut
per cube is (8

√
2 + 2)/2 = 6.656 . . . .

Conjecture 3 When we make many unit cubes
from a large sheet, the tiling pattern Figure 5(b)
is the best way since (a) it has no waste, and (b)
the total cutting is the shortest.
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