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One of the most researched subsets of computa-
tional origami studies flat foldings—folded states of
a polygonal paper that lie in a plane. If we unfold
such a folding, we obtain a flat-foldable crease pat-
tern which is the planar straight-line graph formed
by the creases. Each crease originates from one
of two types of fold: mountain (the paper folds
backwards) or valley (the paper folds forwards). A
crease pattern is called assigned, if each of its creases
are labeled either mountain or valley, or unassigned,
if no crease is labeled. The Flat-Foldability
problem asks whether a given crease pattern comes
from some flat folding. This decision problem is
known to be NP-complete for both assigned and
unassigned crease patterns [2].

A simple fold is an operation that transforms
a flat folding into another by a rigid 180◦ rota-
tion of a subset of the paper around an axis `.
During the motion, the paper is not allowed to
tear or self-cross. This restriction is motivated
by practical sheet-metal bending, where a single
robotic tool can fold the sheet material at once.
The Simple-Foldability problem asks whether
a given crease pattern can be folded by a se-
quence of simple folds (unfolding is not allowed).
Arkin et al. [1] introduced many models of sim-
ple folds with respect to the number of layers
folded: they are one-layer (Fig. 1 (1), (5)), all-
layers (Fig. 1 (1), (2), (3)), and some-layers (which
imposes no restriction). They prove that Simple-
Foldability is weakly NP-complete for: one-
layer (assigned), some-layers (assigned/unassigned)
and all-layers (assigned/unassigned) if the paper is
an orthogonal polygon and the creases are paper-
aligned orthogonal (abbreviated ); and for some-
layers (assigned) and all-layers (assigned) if the pa-
per is square and the creases are paper aligned
at multiple of 45◦ (abbreviated ). They also
provide a polynomial-time algorithm for Simple-
Foldability with rectangular paper with paper-
aligned orthogonal creases (abbreviated ). Arkin
et al. pose as an open problem whether there exist
a pseudo-polynomial time algorithm for the models
proven weakly NP-hard.

We settle this long standing open problem by
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proving strong NP-completeness for all models with
crease patterns (assigned/unassigned), and for

some-layers and all-layers models with crease
patterns (assigned/unassigned). We reduce from 3-
Partition, which is NP-complete [3]: can a set of
integers A = {a1, . . . , an} be partitioned into n/3
triples each with sum

∑
A/(n/3) = t? Given an in-

stance of 3-Partition, we construct the crease
pattern shown in Fig. 2, where ∞ = 10nt. The ver-
tical creases force the long vertical uncreased strip
of paper on the left of the construction to pass
through the right part. Collision is only avoided
by folding through horizontal creases that encode
the integers ai if and only if the 3-Partition in-
stance has a solution. To prove the results for
we create a crease pattern that forces the square
paper to be folded into a long rectangular strip and
then, using turn gadgets, into the orthogonal poly-
gon shown in Fig. 2. We also point out an error
in the NP-hardness proof in [1](Theorem 7.1) when
the crease pattern is unassigned.

If it is hard to decide simple-foldability, a natu-
ral question arises: how close can we estimate the
number of possible simple folds that can be per-
formed? We define MaxFold, the natural op-
timization version of the decision problem asking
for the maximum number of simple folds that can
be folded given a crease pattern. We show that
given a crease pattern admitting a maximum se-
quence of m simple folds, approximating MaxFold
to within a factor of m1−ε for any constant ε > 0 is
NP-complete in the some-layers and all-layers mod-
els. To achieve such result, we transform the reduc-
tion in Figure 2 into a gap-producing reduction by
adding O(n1/ε) horizontal creases splitting the ex-
isting vertical creases. The new creases can only be
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Figure 1: Example folding steps demonstrating the
differences between simple folding models. The axis
` is a directed dotted line and the simple fold rotates
the textured subset of the paper.
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folded if all the preexisting creases of the construc-
tion are already folded.

Additionally, we propose three new simple folds
models, namely infinite-one-layer, infinite-some-
layers and infinite all-layers that require that ex-
actly one, at least one, or all layers are folded at
the intersection of ` and the flat folding, respec-
tively. Examples are shown in Fig. 1 (1), Fig. 1
(1), (3), (4), and Fig. 1 (1), (3), respectively.
We prove strong NP-hardness for the infinite-one-
layer and infinite-some-layers models by a reduc-
tion from 3-Partition. Given an instance of 3-
Partition, we construct the crease pattern
shown in Fig. 3, where δ = 3

2n . The uncreased
portion of the construction forces the creases la-
beled ci, i ∈ {1, . . . , 2n3 } to be folded only when
they are aligned with a crease labeled si after h1

and h2 are folded, or else the axis ` would intersect
an uncreased region of the paper. Alignment is only
possible by folding correct creases vj , j ∈ {1, . . . , n},
whose positions encode integers in A, if and only if
the 3-Partition instance has a solution.

Finally, we show a polynomial-time algorithm for
crease patterns in all infinite models based on the

algorithm in [1]. These results motivate why rectan-
gular maps have orthogonal, not diagonal creases.
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Figure 2: Reduction from 3-Partition to Simple-
Foldability for one-layer, some-layers, and all-
layers. Mountains and valleys are drawn in red and
blue respectively.
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Figure 3: Reduction from 3-Partition to Simple-Foldability in the infinite-one-layer and infinite-some-
layers models. Crease assignment is drawn in red and blue for mountain and valley respectively.
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