
Snipperclips: Cutting Tools into Desired1

Polygons using Themselves∗2

Zachary Abel† Hugo Akitaya‡ Man-Kwun Chiu§3

Erik D. Demaine† Martin L. Demaine† Adam Hesterberg†4

Matias Korman¶ Jayson Lynch‖ André van Renssen∗∗5

Marcel Roeloffzen††6

Abstract7

We study Snipperclips, a computer puzzle game whose objective is8

to create a target shape with two tools. The tools start as constant-9

complexity shapes, and each tool can snip (i.e., subtract its current shape10

from) the other tool. We study the computational problem of, given a11

target shape represented by a polygonal domain of n vertices, is it possible12

to create it as one of the tools’ shape via a sequence of snip operations? If13

so, how many snip operations are required? We consider several variants14

of the problem (such as allowing the tools to be disconnected and/or using15

an undo operation) and bound the number of operations needed for each16

of the variants.17

1 Introduction18

Snipperclips: Cut It Out, Together! [10] is a puzzle game developed by SFB19

Games and published by Nintendo worldwide on March 3, 2017 for their new20

console, Nintendo Switch. In the game, up to four players cooperate to solve21

∗An extended abstract of this paper appeared in the proceedings of the 29th Canadian
Conference on Computational Geometry (CCCG 2017) [4]. M. C. was supported by ERC StG
757609. M. K. was partially supported by MEXT KAKENHI Nos. 12H00855, and 17K12635.
M.-K. C., M. R. and A. v. R. were supported by JST ERATO Grant Number JPMJER1201,
Japan.
†Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, {zabel,

edemaine,mdemaine,achester,}@mit.edu
‡University of Massachusetts Lowell, USA, hugo akitaya@uml.edu
§Institut für Informatik, Freie Universität Berlin, chiumk@zedat.fu-berlin.de
¶Siemens EDA (formerly Mentor Graphics), OR, USA. matias korman@mentor.com.
‖University of Waterloo, Ontario, Canada.jayson.lynch@uwaterloo.ca
∗∗University of Sydney, Sydney, Australia, andre.vanrenssen@sydney.edu.au
††TU Eindhoven, Eindhoven, the Netherlands, m.j.m.roeloffzen@tue.nl

1

{zabel,edemaine,mdemaine,achester,}@mit.edu
{zabel,edemaine,mdemaine,achester,}@mit.edu
hugo_akitaya@uml.edu
chiumk@zedat.fu-berlin.de
matias_korman@mentor.com
jayson.lynch@uwaterloo.ca
andre.vanrenssen@sydney.edu.au
m.j.m.roeloffzen@tue.nl

puzzles. Each player controls a character1 whose shape starts as a rectangle in22

which two corners have been rounded so that one short side becomes a semi-23

circle. The main mechanic of the game is snipping : when two such characters24

partially overlap, one character can snip the other character, i.e., subtract the25

current shape of the first character from the current shape of the latter charac-26

ter; see Figure 1 (top middle) where the yellow character snips the red character27

subtracting from it their intersection (which is shown in green). In addition, a28

reset operation allows a character to restore its original shape. Finally, an undo29

operation allows a character to restore its shape to what it was before the prior30

snip or reset operation. A more formal definition of these operations follows31

in the next section. An unreleased 2015 version of this game, Friendshapes by32

SFB Games, had the same mechanics, but supported only up to two players [6].33

Puzzles in Snipperclips have varying goals, but an omnipresent subgoal is34

to form one or more players into desired shape(s), so that they can carry out35

required actions. In particular, a core puzzle type (“Shape Match”) has one36

target shape which must be (approximately) formed by the union of the char-37

acters’ shapes. In this paper, we study when this goal is attainable, and when38

it is, analyze the minimum number of operations required.39

2 Problem definition and results40

For the remainder of the paper we consider the case of exactly two characters41

or tools T1 and T2. For geometric simplicity, we assume that the initial shape of42

both tools is a unit square. Most of the results in this paper work for nice (in43

particular, fat) constant-complexity initial shapes, such as the rounded rectangle44

in Snipperclips, but would result in a more involved description.45

We view each tool as an open set of points that can be rotated and trans-46

lated freely.2 After any rigid transformation, if the two tools have nonempty47

intersection, we can snip (or cut) one of them, i.e., remove from one of the tools48

the closure of the intersection of the two tools (or equivalently, the closure of49

the other tool, see Figure 2). Note that by removing the closure we preserve the50

invariant that both tools remain open sets. In addition to the snip operation,51

we can reset a tool, which returns it back to its original unit-square shape.52

After a snip operation, the changed tool could become disconnected. There53

are two natural variants on the problem of how to deal with disconnection. In54

the connected model, we force each tool to be a single connected component.55

Thus, if the snip operation disconnects a tool, the user can choose which com-56

ponent to use as the new tool. In the disconnected model, we allow the tool57

to become disconnected, viewing a tool as a set of points to which we apply58

rigid transformations and the snip/reset operation. The Snipperclips game by59

1The game in fact allows one human to control up to two characters, with a button to
switch between which character is being controlled.

2In the actual game, the tools’ translations are limited by gravity, jumping, crouching,
stretching, standing on each other, etc., though in practice this is not a huge limitation.
Rotation is indeed arbitrary.

2

Nintendo follows the disconnected model, but we find the connected model an60

interesting alternative to consider.61

The actual game has an additional undo/redo operation, allowing each tool62

to return into its previous shape. For example, a heavily cut tool can reset63

to the square, cut something in the other tool, and use the undo operation to64

return to its previous cut shape. The game has an undo stack of size 1; we65

consider a more general case in which the stack could have size 0, 1 or 2.66

2.1 Results67

Given two target shapes P1 and P2, we would like to find a sequence of snip/reset68

operations that transform tool T1 into P1 and at the same time transform T269

Figure 1: Cropped screenshots of Snipperclips: snipping, resetting, and solving a
Shape Match puzzle. Sprites copyright SFB/Nintendo and included here under
Fair Use.

3

Figure 2: By translating and rotating the two tools we can make them partially
overlap (left figure). On the right we see the resulting shape of both tools after
the snip operation.

Connected Model Disconnected Model
Undo stack size 1 shape 2 shapes 1 shape 2 shapes

0 O(n) No O(n2) No
1 O(n) O(n+m) O(n) Yes
2 O(n) O(n+m) O(n) O(n+m)

Table 1: Number of operations required to carve out the target shapes of n and
m vertices, respectively. A cell entry with “No” means that it is not always
possible to do whereas “Yes” means it is possible (but the number of operations
needed is not bounded by any function of n or m).

into P2. Because our initial shape is polygonal, and we allow only finitely many70

snips, the target shapes P1 and P2 must be polygonal domains of n and m ver-71

tices, respectively. Whenever possible, our aim is to transform the tools into the72

desired shapes using as few snip and reset operations as possible. Specifically,73

our aim is for the number of snip and reset operations to depend only on n74

and m (and not depend on other parameters such as the feature size of the75

target shape).76

In Section 3, we prove some lower bound results. First we show in Section 3.177

that, without an undo operation, it is not always possible to cut both tools into78

the desired shape, even when P1 = P2. Then we show lower bounds on the79

number of snips/undo/redo/reset operations required to make a single target80

shape P1. For the connected model, Section 3.2 proves an easy Ω(n) lower81

bound. For the disconnected model, Section 3.3 gives a family of shapes that82

need Ω(n) operations to carve in a natural 1D model, and gives a lower bound83

of Ω(log n) for all shapes in the 2D model.84

On the positive side, we first consider the problem without the undo opera-85

tion in Section 4. We give linear and quadratic constructive algorithms to carve86

a single shape P1 in both the connected and disconnected models, respectively.87

In Section 5 we introduce the undo operation. We first show that even a88

4

stack of one undo allows us to cut both tools into the target shapes, although89

the number of snip operations is unbounded if we use the disconnected model.90

We then show that by increasing the undo stack size, we can reduce the number91

of operations needed to linear. A summarizing table of the number of snips92

needed depending on the model is shown in Table 1.93

2.2 Related Work94

Computational geometry has considered a variety of problems related to cutting95

out a desired shape using a tool such as circular saw [3], hot wire [7], and96

glass cutting [8, 9]. The Snipperclips model is unusual in that the tools are97

themselves the material manipulated by the tools. This type of model arises98

in real-world manufacturing, for example, when using physical objects to guide99

the cutting/stamping of other objects—a feature supported by the popular new100

Glowforge laser cutter [1] via a camera system.101

Our problem can also be seen as finding the optimal Constructive Solid102

Geometry (CSG) [5] expression tree, where leaves represent base shapes (in our103

model, rectangles), internal nodes represent shape subtraction, and the root104

should evaluate to the target shape, such that the tree can be evaluated using105

only two registers. Applegate et al. [2] studied a rectilinear version of this106

problem (with union and subtraction, and a different register limitation).107

3 Lower Bounds108

In this section, we first prove that some pairs of target shapes cannot be realized109

in both tools simultaneously, using only snip and reset operations. Then we110

focus on achieving only one target shape. In the connected model, we give a111

linear lower bound (with respect to the number n of vertices of the target shape)112

on the number of operations to construct the target shape. In the disconnected113

model, we give a logarithmic lower bound, and give a linear lower bound in a114

natural 1D version of Snipperclips.115

3.1 Impossibility116

We begin with the intuitive observation that not all combinations of target117

shapes can be constructed when restricted to the snip and reset operations.118

Observation 1. In both the connected and disconnected models, there is a target119

shape that cannot be realized by both tools at the same time using only snip and120

reset operations.121

Proof. Consider the target shape shown in Figure 3: a unit square in which we122

have removed a very thin rectangle, creating a sort of thick “U”. First observe123

that, if we perform no resets, neither tool has space to spare to construct a thin124

auxiliary shape to carve out the rectangular gap of the other tool. Thus, after125

5

Figure 3: A target shape that cannot be realized by both tools at the same
time.

we have completed carving one tool, the other one would need to reset. This126

implies that we cannot have the target shape in both tools at the same time.127

Now assume that we can transform both tools into the target shape by128

performing a sequence of snips and resets. Consider the state of the tools just129

after the last reset operation. One of the two shapes is the unit square and thus130

we still need to remove the thin hole using the other shape. However, because no131

more resets are executed, the other tool is currently and must remain a superset132

of the target shape. In particular, it can differ from the square only in the thin133

hole, so it does not have any thin portions that can carve out the hole of the134

other tool.135

Because the above argument is based solely on the shape of the figure, it136

holds in both the connected and disconnected model.137

3.2 Connected Model138

Next it is easy to see that in the connected model a target shape with Θ(n)139

holes requires Ω(n) operations.140

Theorem 2. There are target shapes that require Ω(n) operations (snip, reset,141

undo and redo) to construct in the connected model.142

Proof. Consider the target shape to be a square with n/3 triangular holes. Since143

we consider the connected model, the cutting tool created by any operations is144

connected and it can only carve out one hole at a time.145

3.3 Disconnected Model146

In the disconnected model, we conjecture that most shapes require Ω(n) snip147

operations to produce (see Conjecture 4), but such a proof or explicit shape148

remains elusive. The challenge is that a cutting tool may be reused many times,149

which for some shapes leads to an exponential speedup. Indeed, we prove in150

Theorem 5 that every shape requires Ω(log n) snips. As a step toward a linear151

lower bound, we prove that a natural 1D version of the disconnected Snipperclips152

model has a linear lower bound.153

Define the disconnected 1D Snipperclips model (with arbitrarily many tools)154

as follows. A 1D tool is a disjoint set of intervals in R. A 1D snip operation takes155

6

a translation of one tool, optionally reflects it around the origin, and subtracts156

it from another tool, producing a new tool.157

The main difference with the disconnected model that we consider is that158

we allow for arbitrarily many tools. Alternatively, this is can be done with two159

tools if you can recall any shape that has been created in the past (i.e., having160

infinitely many undo, redo, and reset operations).161

Theorem 3. For M a positive integer, consider the set of all 1D tools consisting162

of n disjoint intervals having integer endpoints between 0 and M . For all positive163

integers n and all ε ∈ (0, 1), for all sufficiently large M , almost all such tools164

(at least a 1− ε fraction of them) require at least 2n 1D snip operations to build165

from a single 1D tool consisting of a single interval.166

Proof. Starting from k = 1, the kth snip operation is determined by:167

1. A choice of the k + 1 existing tools for the cutting tool T ;168

2. A choice of the k + 1 existing tools for the cut tool U ;169

3. An offset xk of U relative to T .170

If T has interval endpoints t0, t1, . . . and U has interval endpoints u0, u1,171

. . . , then each interval endpoint of the tool created by the kth operation is either172

tj or xk + uj . The first tools have interval endpoints 0 and x0 = M (the board173

width), so by induction on k, each interval endpoint of the tool created by the174

kth operation is of the form
∑
i∈I xi for some I ⊂ {0, . . . , k}. Therefore, if we175

make, with k < 2n − 1 operations, a tool with endpoints y0, . . . , y2n−1, then176

there is a (2n− 1)× (k + 1) 0-1 matrix A such that A

x0...
xk

 =

 y0
...

y2n−1

 .177

If this matrix has rank rk(A) < k + 1, set k + 1 − rk(A) of the xi to be178

0 such that it still has a solution, and choose rk(A) of the yi such that the179

rk(A)×rk(A) square matrix B formed by restricting to the rows corresponding180

to nonzero xi and columns corresponding to those yi is full-rank. det(B) is a181

sum, over rk(A)! permutations σ, of a product of entries of A (or its negative).182

The entries of A are 0 or 1, so 0 < |det(B)| ≤ rk(A)! ≤ (k + 1)!. All the yi183

are integers, so for all i, det(B)xi is an integer, since we have that Bx = y, so184

x = B−1y, and B−1 is 1/det(B) times the cofactor matrix of B (which has only185

integer entries).186

Therefore, the kth snip operation has at most (k+1)2 choices for the cutting187

tools and (k + 1)!M < (k + 1)k+1M choices for the offset xk, so the number of188

choices for operations up to the (k − 1)st is at most Mk−1kk
2

. On the other189

hand, the number of 1D tools consisting of n intervals with integer endpoints y0,190

. . . , y2n−1 between 0 and M is
(
M
2n

)
> (M −2n)2n > (M2)2n. If k−1 < 2n, then191

the total number of integer-endpoint tools with n intervals is asymptotically (for192

large M) at most O(M−1) times the number of integer-endpoint tools we can193

build in k−1 steps, so almost all integer-endpoint tools with n intervals require at194

7

least 2n steps, as claimed. In particular, if ε ∈ (0, 1) and M > 22n(2n)(2n)
2

ε−1,195

then at most an ε fraction of such tools can be built in fewer than 2n snip196

operations, as claimed.197

We conjecture that the same linear lower bound applies to the 2D (discon-198

nected) model of Snipperclips as well:199

Conjecture 4. For M a positive integer, consider the collection of all possible200

2D “comb” tools consisting of a 1 ×M rectangle with n disjoint 1 × ti “teeth”201

attached above it (by its side of length ti), where each tooth has integer coor-202

dinates and 1 ≤ ti ≤ M so that the construction fits a 2 ×M rectangle. For203

all positive integers n and all ε ∈ (0, 1), for all sufficiently large M , almost204

all such tools (a 1 − ε fraction of them) require Ω(n) snip operations to build,205

even with arbitrarily many tools (and thus with arbitrary undo, redo, and reset206

operations).207

t1 t2 t3 t4

Figure 4: Illustration of Conjecture 4. Note that because the teeth are disjoint
and have integer coordinates, they are at least one unit apart.

Unfortunately, a reduction from 2D Snipperclips to 1D Snipperclips remains208

elusive. A natural approach is to view a 2D tool T as a set of 1D tools, one for209

each direction that has perpendicular edges in T . But in this view, it is possible210

in a linear number of snips to construct a 2D tool containing exponentially many211

1D tools, by repeated generic rotation and snipping of the tool by itself. The212

information-theoretic argument of Theorem 3 might still apply, but given the213

exponential number of tool choices in each step, it would give only a logarithmic214

lower bound on the number of snips. We can instead prove such a bound holds215

for all shapes:216

Theorem 5. Every tool shape with n edges requires Ω(log n) snip operations to217

build from initial shapes of O(1) edges in the disconnected model. This result218

holds even with arbitrarily many tools (and thus with arbitrary undo, redo, and219

reset operations).220

Proof. Each snip operation involving two tools with n1 and n2 edges, respec-221

tively, produces a shape with at most n1 +n2 edges. Thus, if we start with tools222

having c = O(1) edges, then in k snips we can produce a shape having at most223

ck edges, proving a lower bound of k ≥ logc n.224

8

4 Making one shape with snips and resets225

4.1 Connected Model226

In the connected model, the shapes must remain connected. Whenever the snip227

operation would break a tool into multiple pieces, we can choose one piece to228

keep. In this model, we show that O(n) snips suffice to create any polygonal229

shape of n vertices.230

Theorem 6. We can cut one of the tools into any target polygonal domain P1231

of n vertices using O(n) snip operations (and no reset or undo operations) in232

the connected model.233

Proof. The idea is that we can shape T2 into a very narrow triangle, a needle,234

and use that to cut along the edges of the target shape P1. Whenever a snip235

disconnects the shape, we simply keep the one containing the target shape.236

Initially, we start with a long needle to cut the long edges of T2 and we gradually237

shrink the needle to cut the smaller edges.238

Let α and h be two small numbers to be determined. Our needle will be an239

isosceles triangle, with the two equal-length edges making an angle of α and the240

base edge with length at most h. We refer to the length of the needle as the241

length of the equal-length edges. We will choose α small enough so that (i) the242

needle can fit into all reflex vertices, and we choose h small enough so that, (ii)243

when placed on an edge of the target polygon, the needle does not intersect a244

non-adjacent edge.245

(a) (b)

v

u'
u

Figure 5: (a) The needle is an isosceles triangle with apex at most α and a base
edge of length at most h. The equal-length edges have length at most 1 so that
the whole triangle can fit inside a tool. (b) Dashed blue lines denote Ch(P1).
The choice of h guarantees that there is a segment of length ≥ h contained on
the boundary of T1 that can be used to shrink the needle T2.

Refer to Figure 5. Let v be an arbitrary vertex on the convex hull of P1,246

denoted Ch(P1), and let e1 and e2 be its incident edges. By the definition of247

convex hull, at least one edge in {e1, e2} has the property that its normal vector248

at v is outside of Ch(P1). Without loss of generality, let that be e1 and let u be249

the vertex of P1 whose orthogonal projection u′ on e1 is closest to v and u lies on250

the closed half-plane defined by the supporting line of e1 containing the normal251

9

vector. Note that u might be also in the convex hull and then u = u′. We first252

make T2 into a needle of length 1/2 using 2 snips. Fix a rigid transformation of253

P1 so that it is entirely contained in T1. We no longer move T1. Use the needle254

to cut off a 90◦ wedge at u′ containing the segment u′v on its boundary and so255

that we do not cut off any point in the interior of P1. This is done with at most256

4 snips due to the length of the needle.257

Now we group all edges of P1 into sets based on their length. Let E denote258

the full set of edges defining P1 and let Ei, for 0 ≤ i, be the set of edges whose259

length is between 2−i−1 and 2−i. To cut along the edges of Ei, we use a needle260

where the equal-length edges have length 2−i−2. Such a needle can cut each261

edge in Ei using at most four snips; see Figure 5 (a). For an edge e, its nearest262

other features of P1 are its two adjacent edges, the vertices closest to the edge,263

and the edges closest to its endpoints. We avoid cutting into the adjacent edges264

by placing the tip of the needle at the vertex when cutting near a vertex. By265

Properties (i)–(ii), we can make e an edge of T1 without removing any point in266

the interior of P1.267

By making the cuts along the edges in the sets Ei in increasing order of i the268

needle has to only shrink, which is easily done by using the segment u′v in the269

perimeter of T1 to shorten the needle by placing the short edge of the needle270

parallel to u′v. This is possible as long as (iii) h < ‖u′v‖ where ‖.‖ denotes271

Euclidean norm. We are now ready to set α and h. Property (i) is achieved if272

α is smaller than every external angle in P1. Property (ii) is achieved if h is273

smaller than the shortest distance between an edge and a nonincident vertex.274

We also have that the length of the initial needle is 1/2 and thus sin(α/2) ≤ h275

using the law of cosines.276

Recall that making the initial needle requires two snips, cutting each edge277

requires at most four snips and hence O(n) snips in total, and reducing the278

needle length requires one snip per nonempty set Ei of which there are at most279

O(n). Thus, in total the required number of snips is O(n).280

4.2 Disconnected Model281

We now consider the disconnected model. Recall that in this model we allow282

the tools to become disconnected. That is, when a snip would disconnect the283

tool, we keep all pieces. This is the actual version implemented in the game.284

Unfortunately, the method in the prior section will not work here. The first285

issue is that our tool must now remove the full area of the unwanted space286

rather than relying on separated components disappearing. The second issue is287

that we may cut up the boundary of our target in such a way that we can no288

longer ensure we have an exterior edge of sufficient size to efficiently trim our289

needle into the next needed shape. To solve these problems we end up using290

O(n2) snips and the reset operation which was not used in the previous section.291

The new algorithm works in phases where we only tackle an L-shaped portion292

of the shape at a time. This allows us to keep a solid square in the lower right293

which is sufficiently large to create the tools we need to carve out the desired294

shape. It also ensures that we can isolate the tool which we are using to carve295

10

S2

c

S1

Q1

Figure 6: The squares S1 and S2 along with L-shaped region Q1 and corner c.

the target region of the current phase. Thus each phase bounds how far into296

the target we must reach and ensures we have a block with which to alter our297

carving tool, allowing methods similar to those in Section 4.1 to complete each298

phase. We now give a formal description and proof of correctness.299

In order to carve out a target shape P1, we virtually fix a location of P1300

inside T1, pick a corner c of T1 (say, the lower right one) and consider the set301

of distances d1, . . . , dn′ from each of the vertices in the fixed location of the302

target shape P1 to c in decreasing order under the L∞-metric. For simplicity303

assume that all distances are distinct, and thus n′ = n (this can be achieved304

with symbolic perturbation). We refer to the part of T1 not in P1, i.e., T1 \ P1,305

as the free-space. We will remove the free-space in n steps, where in each step306

i we remove the free-space from an L-shaped region Qi that is the intersection307

of T1 and an annulus formed by removing the L∞-ball of radius di from the308

L∞-ball of radius di−1 centered at c. We argue that in each step we will need309

O(n) snips and resets, thus creating the target shape in O(n2) operations. Our310

inductive step is given in the following lemma.311

Lemma 7. The free-space in region Qi can be removed in O(n) snip and reset312

operations provided that
⋃
j≥iQj is a square in T1.313

Proof. Let Si be the bounding square containing Qi (see Figure 6) and let Fi be314

the set of faces created when removing the boundary edges of the target shape315

from Qi. By definition all vertices of the target shape on Qi must be on its inner316

or outer L-shaped boundary and all boundary segments must fully traverse Qi,317

i.e., they cannot have an endpoint inside Qi. It then follows that the set Fi of318

faces consists of O(n) constant complexity pieces. Now triangulate all faces of319

Fi and let Ti denote the resulting set of triangles (Figure 7). Note that our aim320

is to remove some of the triangles of Ti. We will show that we can remove any321

triangle that fits in Si \ Si+1 with a constant number of cuts.322

For simplicity in the exposition we first consider the case in which Si+1 is323

large. That is, the side length of Si+1 is at least half the side length of Si.324

11

Si+1

tr

tb

tt` Qi

Figure 7: An L-shaped region Qi, the edges of the target shape that cross
it (thick edges) define Fi. We further triangulate each face (thin edges), and
consider the corresponding dual graph (dotted edges).

Consider a triangle t ∈ Fi that needs to be removed. To create a cutting tool325

move T2 so that its only overlap with T1 is Si. Let S′i denote the area in T2326

corresponding to Si and let t′ be the projection of t on T2. Our goal will be327

to remove S′i\t′ from T2 without affecting t′. Note that we can create a cut328

where only S′i overlaps T1 in Si, so the shape of T2\S′i does not influence the329

cut (Figure 8). That means we do not have to cut it away and we do not need330

to worry about cutting part of it while creating a cutting tool within S′i.331

T1 T2

t

Si

t′

S′
i

Figure 8: A triangle t in Si is cut out of T2 at t′.

Consider the halfspace H defined by one of the bounding lines ` of t′ that332

does not contain t′. We can remove H ∩ S′i by rotating T1 so that one of the333

sides of T1 along which Si+1 is situated aligns with ` and repeatedly snip with334

Si+1 in a grid-pattern as shown in Figure 9. Because Si+1 is large compared335

to S′i we can remove H ∩ S′i in O(1) snips. We then apply the same procedure336

for the other two halfspaces that should be removed to obtain the cutting tool337

12

for t. This means that, under the assumption that Si+1 is large, each triangle338

can be removed in O(1) snips. Since there are O(n) triangles in Si, the linear339

bound holds.340

`

Si+1

Si S′
i

t t′

Figure 9: If Si+1 is large, we can use it to carve out any desired shape in T2
with O(1) snips.

It remains to consider the case in which Si+1 is small. That is, the side341

length of Si+1 is less than half that of Si, and potentially much smaller. Al-342

though the main idea is the same, we need to remove the triangles in order, and343

use portions of Qi that are still solid to create the cutting tools.344

Let Gi be the dual graph of Ti. This graph is a tree with at most three345

leaves. Two leaves correspond to the unique triangles tb and tr that share an346

edge with the lower and right boundary of Qi respectively and the third exists347

only if the top-left corner of Qi is contained in a single triangle tt`, that is,348

there is at least one segment contained in Qi that connects the top and left349

boundaries; see Figure 7. Finally, we change the coordinate system so that c350

is the origin, and Si is a unit square (note that the vertices of this square are351

(−1, 1), (−1, 0), (0, 1), and c = (0, 0)).352

We process the triangles in the following order. We first process the cross-353

triangles, triangles with one endpoint on the left boundary and one on the top354

boundary (if any exist), starting from tt` following Gi until we find a triangle355

that has degree three in Gi which we do not process yet. The remaining fan-356

triangles form a path in Gi which we process from tb to tr.357

Cross-triangles. Recall that, by the way in which we nest regions Qi, there358

cannot be vertices to the right or below Si. In particular, cross-triangles have359

all three vertices in the top and left boundaries of Qi. Hence, while we have360

some cross-triangle that has not been processed, the triangle of vertices (−1, 0),361

(0, 1) and c must be present in T1. This triangle has half the area of Qi and362

can be used to create cutting pieces in the same way as in the case where we363

assumed Si+1 is large. Thus, we conclude that any cross-triangle of Qi can be364

removed from T1 with O(1) snips.365

Fan-triangles. We now process the fan-triangles in the path from tb to tr366

in Gi. We treat this sequence in two phases. First consider the triangles that367

13

Si+1

t

(0, 1)

(0, 3
4)

(− 1
4 ,

3
4)

Figure 10: The triangle used to cut out the fan-triangles. Cut cross-triangles
are above the dashed line and cut fan-triangles are below the dotted line.

have at least one vertex on the left edge of Si (that is, we process triangles up368

to and including the triangle that has degree three in Gi if it exists). Consider369

the triangle t of vertices (0, 1), (0, 3/4), and (−1/4, 3/4) (see Figure 10). This370

triangle has 1/32 of the total area of Si. It is also still fully part of T1 until371

we cut out the triangle of degree 3. That is, every cross-triangle that was cut372

is above the diagonal from (-1,0) to (0,1) and any fan-triangle that has at least373

one vertex on the left edge of Si and has degree two in Gi is below the line374

from (-1,1) to (0,1/2) (technically, below the line from (-1,1) to the top-right375

corner of Si+1, but the higher line suffices for our purposes). So we can use this376

triangle t as a cutting tool to create the desired triangle in T2 to cut out any377

undesired fan-triangles up to and including the triangle of degree 3.378

The remaining triangles have their vertices in the upper edge of Si and on379

the upper or left edge of Si+1. In this case we must be more careful as we cannot380

guarantee the existence of a large square in T1. However, we do not have to381

clear the entire space S′i any longer. Instead it suffices to clear a much smaller382

area.383

Let t denote the next triangle to be removed and let B denote the bounding384

box of t and c (see Figure 11). As before consider moving T2 so that the only385

overlap with T1 is B, let B′ denote this area in T2 and t′ the projection of t onto386

B′. To create a cutting tool we need only remove the area B′\t′.387

As before, we look for a region in T1 that has roughly the area of B to use388

for carving the desired shape in T2. Let w be the width of B. Also, let h′ be the389

height of Si+1. Note that the height of B is 1, and since Si+1 is small, we have390

h′ < 1/2. By construction of the bounding box, one of the vertices of t will have391

x-coordinate equal to −w; let q denote this vertex. The y-coordinate yq of q is392

either 1 or h′ as it must be on the upper edge of Si or on the upper boundary393

of Si+1—if t has vertices on the left boundary of Si+1, then there is a vertex on394

the upper boundary of Si with lower x-coordinate. Now consider the triangle395

with vertices (0, 1), (0, h′), q. This triangle has height at least 1− h′ > 1/2 and396

width w, and thus its area is at least 1/4 of the area of B. As in the previous397

14

Si

Si+1

t

B

c

Figure 11: The solid areas (grey) and bounding box B when cutting fan-triangles
with no vertices on the left boundary of Si.

cases, we use this triangle to create a cutting tool from T2 to remove triangle t398

from T1.399

Thus, it follows that all free-space triangles can be removed with a cutting400

tool that is constructed from T2 in O(1) snip and reset operations, hence we can401

clear Qi of free-space in total O(n) operations.402

Because there are at most n distinct distances, we repeat this procedure at403

most n times, giving us the desired result.404

Theorem 8. We can cut one of the tools into any target polygonal domain P1405

of n vertices using O(n2) snip and reset operations in the disconnected model.406

5 Adding the undo operation407

We now consider a more powerful model in which we can undo the k latest408

operations performed on either of the tools. More formally, each snip or reset409

operation will change the current shape of one of the two tools (if a snip or reset410

operation does not change the shape of either tool, we can ignore it). Given a411

sequence of such operations, consider the subsequence o1, . . . om of operations412

that have changed the shape of the first tool. Also, let P
(i)
1 be the shape of413

the first tool after oi has been executed. The k-undo operation on the first tool414

replaces the current shape with P
(m−k)
1 . The k-undo operation on the second415

tool is defined analogously.416

In this section we show that the k-undo operation is very powerful, and allows417

us to do much more than we can do without it. In particular, we can transform418

two tools into any two target polygonal domains in both the connected and419

disconnected model. This statement holds even if we force k to be equal to 1.420

15

5.1 Connected Model421

We first consider the connected model. The general idea in this case is that we422

first construct the target shape in one of the two tools. In order to construct423

the target shape into the second tool, we repeatedly create a needle in the first424

tool, cut a part of the second tool, and perform an undo operation to return the425

first tool to its target shape.426

Theorem 9. We can cut two tools T1 and T2 into any two target polygonal427

domains P1 and P2 of n and m vertices respectively using O(n+m) snip, reset428

and 1-undo operations in the connected model.429

Proof. Let e1 be the longest edge of P1 not on the boundary of the unit square430

and e2 be the longest edge of P2 not on the boundary of the unit square. Without431

loss of generality, we assume that e1 is longer than e2. We apply Theorem 6432

to cut T1 into P1. To create P2 we will use a needle to cut along edges as in433

Theorem 6. Each needle will be cut along e1 using a small construction along434

e2. We will ensure the needle can have varying sizes, so we can cut along each435

edge in O(1) cuts. We also guarantee that the needle can be created from P1 in436

a single cut, so we can easily undo the operation.437

e1e

e2
`

Figure 12: We can use e1, e2 and a small added edge on e2 to create a needle
in T1 that can be used to create P2 in T2. The needle is indicated in purple.

We first explain how to create the needle, as also illustrated in Figure 12.438

We create the needle from a segment e of P1, which is a subsegment of e1 that is439

half the length of e1 but centered at its center. The cutting tool will consist of a440

subsegment ` of e2 and an edge perpendicular to it, creating a 90◦ angle in the441

freespace. The segment ` is also half the length of e2 and centered at its center.442

This is to ensure that there is a constant size rectangle above and below e and443

` that does not contain edges or vertices of P1 or P2. Now to cut a needle from444

along e, assume that e is horizontal with freespace above it and that the edge445

perpendicular to ` is on its left endpoint oriented upward. Now place the right446

endpoint of ` on the right endpoint of e and rotate ` counterclockwise around447

the right endpoint by an arbitrarily small angle so that the right angle is in the448

16

interior of P1, just below e. This cut will disconnect a needle from the rest of449

P1 with a length proportional to `. By moving ` higher before cutting we can450

create shorter needles.451

For this cutting process to work, the triangle created by ` and the perpen-452

dicular edge must be empty. So this will be the first piece we remove from T2453

in the process of creating P2. How to do this is illustrated in Figure 13 and454

described next. We first reset T1 and cut a long narrow rectangle out of the455

top left corner of T2. This gives us a long vertical edge and a shorter horizon-456

tal edge perpendicular to it. We use this structure to create a narrow triangle457

along e1 as described above. This needle is then aligned with e2 and cuts out a458

narrow triangle above e2 so that an edge perpendicular to e2 is created that is459

sufficiently far from the endpoint of e2.460

The remainder of the process follows that of Theorem 6 where we use needles461

of a specific length to cut edges proportional to that length. The one exception462

is e2, which is cut last. Note that unlike in Theorem 6, the order in which we cut463

the edges is no longer relevant, since we can cut the needle to the size required464

for the current edge, cut that edge, and then return the needle to its original465

length using a 1-undo operation. This guarantees that the perpendicular edge466

required stays attached to the main shape and is removed only when no more467

needles need to be created.468

5.2 Disconnected Model469

Finally, we focus our attention on the disconnected model with undo operations.470

We show that allowing undo operations reduces the upper bound on the number471

of operations required to cut one target shape out of one tool. In fact, we can472

cut any two target shapes out of the two tools, but the number of operations473

needed for this depends on the size of the undo stack.474

Theorem 10. We can cut one of the tools into any target polygonal domain P1475

of n vertices using O(n) snip, reset and 1-undo operations in the disconnected476

model.477

Proof. We first triangulate the free-space T1\P1. Then, we remove each triangle478

t by making a congruent triangle t′ in T2. Each time we create a triangle t′ in479

T2 we first reset T1 and T2. Then, we can remove T2\t′ using T1 with a constant480

number of snips. Since we only apply one operation on T1, we can use an undo481

operation to restore T1 to its previous shape, which is the partially constructed482

shape towards the target shape P1. Next, we can cut the triangle t in T1 using483

the congruent triangle t′ in T2. Thus, we use O(1) snip, reset and 1-undo484

operations. We apply this process for each triangle in the free-space. Hence,485

since the triangulation has linear complexity, we can remove the free-space with486

O(n) operations in total.487

Next, we show that we can cut the two tools into any two target shapes488

using only snip, reset and 1-undo operations.489

17

e1

e1

e2e1

reset

undo

cut

undo

cut

reset

cut

T1 T2

Figure 13: Steps illustrating the creation of a freespace triangle above e2 that
can be used to created needles along e1. Small squares indicate the shape that
is on the undo stack (omitted when not used later).

18

Theorem 11. We can cut two tools T1 and T2 into any two target polygonal490

domains P1 and P2 using a finite number of snip, reset and 1-undo operations491

in the disconnected model.492

Proof. We apply Theorem 10 to cut T1 into P1. Then, the idea is that we can493

shape P1 into a very narrow triangle, a needle, by using one snip operation, and494

use the needle to cut all the free-space T2\P2. After we get P2, we can perform495

a 1-undo operation to restore T1 to P1.496

Let α be the smallest angle between any two adjacent edges of P2, d be the497

length of the shortest edge of P2, and h be the shortest distance between any498

vertex and a non-adjacent edge of P2. These values will define how small the499

needle we create needs to be. Let `1 be the vertical line touching the leftmost500

vertex of P1. Since there may be multiple such vertices, let p be the bottommost501

vertex of P1 on `1. Let `2 be the vertical line touching the first vertex on the502

right side of `1 in P1. We first reset T2 to a unit square. We align the left edge503

L2 of T2 with `1 such that T2 fully covers P1. Then, we shift T2 a little bit504

to the right such that L2 is between `1 and the bisector of `1 and `2, and the505

length of the bottommost edge of P1 between `1 and L2 is less than d/2. We506

cut P1 with T2 so that we have a set T of triangles (or quadrangles) left in T1507

(see Figure 14).508

Let e be the bottommost edge of T and let t be the bottommost object of509

T . Let R be the function that rotates the input by 180◦ around the midpoint510

of e, i.e., R(T) is the set of triangles (or quadrangles) obtained by rotating T511

180◦ around the midpoint of e, and R(t) is the triangle obtained by rotating t512

in the same manner. Notice that the intersection of R(T) and T is only e. Let513

Rε be the function that rotates the input by 180◦ around the midpoint of e and514

then rotates it by a small angle ε counterclockwise around p of T . We pick a515

small ε < α/2 such that no triangle in Rε(T) crosses `2, only Rε(t) intersects516

with t, and the distance between Rε(p) and e is less than h/2. We shift T2 back517

to the left such that L2 is on `1. Then, we perform the rotation Rε on T and518

cut T2 with Rε(T). After this cut, we perform an undo operation to restore T1519

to P1 and rotate P1 back to its starting orientation. Finally, we cut P1 with T2520

to obtain the needle (see Figure 15).521

We argue why the final cut indeed leaves only the needle. Since T2 almost522

covers P1 except for the missing part Rε(T), it is essential to show that the523

intersection of Rε(T) and P1 is the needle. Since R(T) lies between `1 and the524

bisector of `1 and `2, there exists a small ε such that Rε(T) lies between `1525

and `2. In addition, e is the bottommost edge of T , so there cannot be any526

intersection of Rε(T) and P1 below e. The intersection of P1 and R(T) is e and527

all the triangles in R(T) are below e, so we can rotate them by a small angle ε528

around p so that only one vertex Rε(p) in Rε(T) lies above e (see Figure 14).529

As one of the endpoints of the edge of P1 that contains e lies on or to the530

right side of `2, the intersection of P1 and Rε(t) is a triangle. In particular, the531

intersection of Rε(T) and P1 is a narrow triangle with a base length of at most532

d/2, height of at most h/2 and a small angle of at most α/2.533

After we obtain the needle, we reset T2 and use the needle to cut the free-534

19

`1 `2
T

p
e

Rε(p)

Rε(T)

T1

P1

t

Figure 14: The figure shows the set T of the triangles and quadrangles (with
filled colors) after cutting P1 with the unit square T2 and the set Rε(T) obtained
by rotating T 180◦ around the midpoint of e and then rotating a small angle ε
counterclockwise around p.

space T2\P2 in a finite number of snip operations, because the free-space is a535

compact object. Finally, we perform an undo operation to restore the needle to536

P1, resulting in the two target polygonal domains.537

Finally, we show that if we are allowed to use a 2-undo operation instead of538

a 1-undo, the number of required operations reduces to linear in the complexity539

of the two target polygonal domains.540

Theorem 12. We can cut two tools T1 and T2 into any two target polygonal541

domains P1 and P2 using O(n + m) snip, reset and 2-undo operations in the542

disconnected model.543

Proof. We apply Theorem 10 to cut T1 into P1. Then, we define a cover of the544

free-space T2\P2 with only small right triangles. We remove each right triangle545

t by making a congruent triangle t′ in T1 by performing at most two operations546

on P1, so we can get the target shape P2 and restore T1 to P1.547

We first explain how to define the cover of the free-space with only right548

triangles. We start with any triangulation on the free-space T2\P2. Then, we549

subdivide each triangle into a constant number of smaller triangles such that550

20

P1

T2

Figure 15: The figure shows T2 after removing Rε(T) and the part of the bound-
ary of P1.

each smaller triangle fits in a 1
2 ×

1
2 square. For each triangle, we draw a line551

segment from the vertex of the largest angle perpendicular to its opposite edge552

in order to split the triangle into two right triangles. Hence, there are O(m)553

right triangles in the cover.554

Next, we describe how to create the cutting tool in T1 (see Figure 16). For555

each right triangle t in the free-space, we first reset both T1 and T2 (P1 and the556

partially constructed P2 are stored at the top of their stacks). We use the unit557

square T2 to cut the unit square T1 to get a triangle t′ congruent to t at a corner558

of T1 (P1 is stored at the second element of its stack). Note that there are other559

garbage components left in T1. Then, we translate T1 in such a way that only560

t′ overlaps T2, and cut T2 to make a square with a triangular hole (the partially561

constructed P2 is at the second element of its stack). We perform an undo562

operation to restore T1 back to the unit square. The next step is to align the563

bounding unit square of T1 and T2, and cut T1 with T2 so that we get only t′ in564

T1. After we get the cutting tool t′, we perform two undo operations to restore565

T2 to the partially constructed P2, and use t′ to remove t from the free-space.566

Finally, we perform two undo operations to restore T1 to P1. Overall, we use567

O(1) snip, reset and undo operations to make some progress on T2 towards P2568

while maintaining P1.569

21

T1

P1

T2

partial P2

t

t′

reset

cut

undo

cut

t′

cut undo ×2

partial P2

t

partial P2

t

cutundo ×2

P1

reset

Figure 16: The figure shows how to remove a triangle t in the partially con-
structed P2 of T2 while maintaining P1. Smaller squares indicate which shapes
are on the undo stack.

22

We repeat the above process for each right triangle in the free-space, so we570

use O(m) operations to carve out P2. Including the O(n) operations to carve571

out P1, we use O(n+m) operations in total.572

6 Open Problems573

The natural open problem is to close the gap between our algorithms and the574

lower bound. Specifically, we are interested in a method that could extend575

our lower bound approach to the case in which you have the undo operation.576

We believe that without the undo operation there must exist a shape in the577

disconnected model that needs ω(n) operations to carve.578

Our algorithms focus on worst-case bounds, but we also find the minimiza-579

tion problem interesting. Specifically, can we design an algorithm that cuts one580

(or two) target shapes with the fewest possible cuts? Is this problem NP-hard?581

If so, can we design an approximation algorithm? Although it is not always pos-582

sible to cut two tools simultaneously into the desired polygonal shapes, it would583

be interesting to characterize when this is possible. Is the decision problem584

NP-hard?585

It would also be interesting to consider the initial shape implemented in the586

Snipperclips game (instead of the unit squares we used for simplicity), namely,587

a unit square adjoined with half a unit-diameter disk. This initial shape opens588

up the possibility of making curved target shapes bounded by line segments and589

circular arcs of matching curvature. Can all such shapes be made, and if so, by590

how many cuts?591

The stack size has a big impact in the capabilities of what we can do and on592

how fast can we do it. Additional tools can have a similar effect, since they can593

be used to store previous shapes. It would be interesting to explore if additional594

tools have the same impact as the undo operation or they actually allow more595

shapes to be constructed faster.596

Acknowledgments597

This work was initiated at the 32nd Bellairs Winter Workshop on Computa-598

tional Geometry held January 2017 in Holetown, Barbados. We thank the other599

participants of that workshop for providing a fun and stimulating research en-600

vironment. We also thank Jason Ku for helpful discussions about (and games601

of) Snipperclips.602

References603

[1] Glowforge — the 3D laser printer. https://glowforge.com/, 2015.604

[2] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and J. Wang.605

Compressing rectilinear pictures and minimizing access control lists. In Proceed-606

23

https://glowforge.com/

ings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages607

1066–1075, New Orleans, Louisiana, 2007.608

[3] E. D. Demaine, M. L. Demaine, and C. S. Kaplan. Polygons cuttable by a circular609

saw. Computational Geometry: Theory and Applications, 20(1–2):69–84, October610

2001. CCCG 2000.611

[4] E. D. Demaine, M. Korman, A. van Renssen, and M. Roeloffzen. Snipperclips:612

Cutting tools into desired polygons using themselves. In Proceedings of the 29th613

Canadian Conference on Computational Geometry (CCCG 2017), pages 56–61,614

Ottawa, Canada, 2017.615

[5] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:616

Principles and Practice. Addison-Wesley Professional, 1996.617

[6] GDC. European innovative games showcase: Friendshapes. YouTube video, 2015.618

https://youtu.be/WJGooKIoy1Q.619

[7] J. W. Jaromczyk and M. aw Kowaluk. Sets of lines and cutting out polyhedral620

objects. Computational Geometry: Theory and Applications, 25(1):67–95, 2003.621

CCCG 2001.622

[8] M. H. Overmars and E. Welzl. The complexity of cutting paper. In Proceedings623

of the 1st Annual ACM Symposium on Computational Geometry, pages 316–321,624

Baltimore, Maryland, June 1985.625

[9] J. Pach and G. Tardos. Cutting glass. Discrete & Computational Geometry,626

24:481–495, 2000.627

[10] Wikipedia. Snipperclips. https://en.wikipedia.org/wiki/Snipperclips, 2017.628

24

https://youtu.be/WJGooKIoy1Q
https://en.wikipedia.org/wiki/Snipperclips

	Introduction
	Problem definition and results
	Results
	Related Work

	Lower Bounds
	Impossibility
	Connected Model
	Disconnected Model

	Making one shape with snips and resets
	Connected Model
	Disconnected Model

	Adding the undo operation
	Connected Model
	Disconnected Model

	Open Problems

