
Complexity of Solo Chess with Unlimited Moves

Josh Brunner∗ Lily Chung∗ Michael Coulombe∗ Erik D. Demaine∗

Timothy Gomez∗ Jayson Lynch∗

Abstract

We analyze Solo Chess puzzles, where the input is an n×n board containing some standard
Chess pieces of the same color, and the goal is to make a sequence of capture moves to reduce
down to a single piece. Prior work analyzes this puzzle for a single piece type when each piece
is limited to make at most two capture moves (as in the Solo Chess puzzles on chess.com). By
contrast, we study when each piece can make an unlimited number of capture moves. We show
that any single piece type can be solved in polynomial time in a general model of piece types,
while any two standard Chess piece types are NP-complete. We also analyze the restriction (as
on chess.com) that one piece type is unique and must be the last surviving piece, showing that
in this case some pairs of piece types become tractable while others remain hard.

1 Introduction

The classic two-player game of Chess is PSPACE-complete [Sto83] or EXPTIME-complete [FL81]
depending on whether the number of moves is limited to a polynomial. Recent work analyzes
Chess-based puzzles, including Helpmate Chess and Retrograde Chess which are PSPACE-complete
[BDHW20] and Solo Chess which is NP-complete [AMM22]. In this paper, we extend the analysis
of Solo Chess to unbounded moves per piece.

First we review standard Solo Chess as implemented on chess.com [Che]. All pieces are of the
same color and may capture any piece except a king. Every move must be a capture. The objective
is to find a sequence of moves (captures) that results in only one piece remaining on the board.
If there is a king on the board, it must be last remaining piece. Further, each piece can make a
maximum of k = 2 moves. Past work [AMM22] generalizes Solo Chess to an arbitrary limit k on the
number of moves per piece (and arbitrary board size), denoting this game by (Generalized) Solo-
Chess(S, k) where S is the set of allowed piece types. They proved that Solo-Chess({ }, 2) and
Solo-Chess(S, 1) can be solved in linear time, while Solo-Chess({ }, 2), Solo-Chess({ }, 2),
and Solo-Chess({ }, 2) are NP-complete.

This paper analyzes the complexity of Solo Chess puzzles without the restriction on the number
of moves per piece, or equivalently when the move limit per piece is larger than the number of
pieces. We denote this game by Solo-Chess(S), which is equivalent to Solo-Chess(S,∞). We
also consider the game both with and without the restriction of a single uncapturable king, using

1 to denote the game with this restriction and to denote the more general case that permits
multiple capturable kings. We also extend this notion to T 1 for any piece type T , meaning that
there is one uncapturable piece of type T (so it must be the last piece standing).

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
02139, USA, {brunnerj,lkdc,mcoulomb,edemaine,dylanhen,tagomez7,jaysonl}@mit.edu

1

{brunnerj,lkdc,mcoulomb,edemaine,dylanhen,tagomez7,jaysonl}@mit.edu

1 P, Thm. 2.2 P, 2.16 NP-c, Thm. 3.9 OPEN P, Thm. 2.16 P, Thm. 2.16
1 NP-c, Thm. 3.7 P, Thm. 2.2 NP-c, Thm. 3.9 OPEN NP-c, Thm. 3.10 P, Thm. 2.16
1 NP-c, Thm. 3.1 NP-c, Thm. 3.1 P, Thm. 2.2 NP-c, Thm. 3.11 NP-c, Thm. 3.11 NP-c, Thm. 3.11
1 NP-c, Thm. 3.2 NP-c, Cor. 3.3 NP-c, Cor. 3.3 P, Thm. 2.2 NP-c, Cor. 3.4 P, Thm. 2.16
1 NP-c, Cor. 3.5 NP-c, Cor. 3.5 NP-c, Cor. 3.5 NP-c, Cor. 3.6 P, Thm. 2.2 P, Thm. 2.16
1 NP-c, Cor. 3.4 NP-c, Cor. 3.4 NP-c, Cor. 3.4 NP-c, Cor. 3.6 NP-c, Cor. 3.4 P, Thm. 2.2

Table 1: Summary of our results for one Chess piece type, on the diagonal; and for two Chess piece
types, one of which (the row label on the left) is constrained to be uncapturable and the last piece.

Our results. We prove that, for any single standard Chess piece type (|S| = 1), Solo-Chess(S)
can be solved in polynomial time. In fact, this result holds for a very general model of piece type
defined in Section 2.1. For any two distinct standard Chess piece types (|S| = 2), neither of which
are uncapturable, we prove that Solo-Chess(S) is NP-complete, by a variety of reductions. (All
problems considered here are trivially in NP.)

For the single uncapturable king 1, we prove that the pair S = { 1, } can in fact be solved
in polynomial time, essentially because king moves are a subset of queen moves. On the other hand,
S = { 1, }, { 1, }, { 1, } are all NP-complete. We also give polynomial-time algorithms
and NP-completeness results for several other pairs of the form {S1, T} where S1 is uncapturable;
see Table 1 for our results restricted to standard Chess pieces.

This paper is divided by algorithmic vs. hardness results. Section 2 describes our algorithmic
results for a single piece type (Section 2.2) and for certain pairs of capturable and uncapturable piece
types (Section 2.3), which both apply to a very general model of piece type defined in Section 2.1.
Section 3 describes our hardness results, which fall into two main categories: reductions from
Hamiltonian Path (Section 3.1) and reductions from SAT (Section 3.2). Section 4 concludes with
some open problems.

2 Algorithmic Results

In this section, we present polynomial-time algorithms for several cases of Solo Chess. First, in
Section 2.1, we define a generalized abstract notion of moves in which pieces must always capture
another piece. Then, in Section 2.2, we show that any single piece type in this general game
(which covers all normal Chess pieces) can be solved in polynomial time. Finally, in Section 2.3,
we consider two piece types, one of which consists of a single uncapturable piece, and show that
this problem can also be solved in polynomial time in many cases.

2.1 Generalized Chess Model

Our algorithmic results apply to a very general model of pieces moving on a board, which includes
all standard piece types from Chess, as well as many other Fairy Chess pieces such as riders and
leapers.

Define a board to be a set L of locations together with a set of pieces each assigned a unique
location. Thus, no two pieces can occupy the same location, but some locations may be empty .

Define a move to be a sequence ⟨ℓ0, ℓ1, . . . , ℓk⟩ of locations. This move is valid (in the sense
of a capture) if ℓ0 and ℓk each have a piece while ℓ1, . . . , ℓk−1 are empty. Executing such a valid
move removes the piece at location ℓk, and moves the piece at location ℓ0 to location ℓk.

2

Define a piece type to be a set of moves that that type of piece can make (when valid).
Effectively, a piece type lists, for every possible starting location, which locations the piece can
move to given that certain other intermediate locations are empty.

For example, the Chess piece type is defined by the moves{〈
(x, y), (x+ 1, y), . . . , (x+ i, y)

〉
,
〈
(x, y), (x, y + 1), . . . , (x, y + i)

〉
,〈

(x, y), (x− 1, y), . . . , (x− i, y)
〉
,
〈
(x, y), (x, y − 1), . . . , (x, y − i)

〉 ∣∣∣ i > 0
}
,

while the Chess piece type is defined by the moves{〈
(x, y), (x+ s, y + 2t)

〉
,
〈
(x, y), (x+ 2s, y + t)

〉 ∣∣∣ s, t ∈ {−1,+1}
}
,

where the board is either infinite or we restrict to moves whose locations are all on the board. Note
how the example implements the blocking nature of rook moves — all locations along the way
must be empty — while the example has no such blocking. In general, if all moves are sequences
of two locations, then the piece type is nonblocking .

We require every piece type T to be closed under submoves meaning that, if ⟨ℓ0, ℓ1, . . . , ℓk⟩
is a move in T , then ⟨ℓi, ℓi+1, . . . , ℓj⟩ is a move in T for any integers 0 ≤ i < j ≤ k. (This restriction
is automatically satisfied by all nonblocking piece types.)

The definition of piece type supports pieces that move asymmetrically, such as the Chess piece
type : {〈

(x, y), (x+ s, y + 1)
〉 ∣∣∣ s ∈ {−1,+1}

}
.

If a piece type is closed under reversal of the sequences representing moves, we call it symmetric.
Examples of Chess-like piece types not represented by this model include the following:

1. The horses and elephants from Xiangqi (Chinese chess) and Janggi (Korean chess), whose
movement can be blocked by a piece they cannot capture (so their moves are not closed under
submoves);

2. The cannons from Xiangqi and Janggi, which require a piece to jump over before performing
a capture; and

3. Checkers, which land in a space past the piece captured.

In Solo Chess, any location that is initially empty will remain empty forever, so such locations
can be omitted from the board. More precisely, if ℓi is initially empty, then we can replace any
move ⟨ℓ0, . . . , ℓi, . . . , ℓk⟩ with ⟨ℓ0, . . . , ℓi−1, ℓi+1 . . . , ℓk⟩; and any move ⟨ℓ0, . . . , ℓi, . . . , ℓk⟩ for which
ℓ0 or ℓk is initially empty can be deleted entirely. These changes do not change the outcome of the
Solo Chess puzzle, so we assume henceforth that all locations are initially occupied.

Now we define a few useful structures and prove some useful facts about general Solo Chess
puzzles and their solutions.

Define the Split operation to split a given move into a sequence of submoves that capture
any pieces along the way. Precisely, suppose we have a move m = ⟨ℓ0, ℓ1, . . . , ℓk⟩ and a set L of
locations including both ℓ0 and ℓk. Let ℓj0 , ℓj1 , . . . , ℓjk′ be the subsequence of ℓ0, ℓ1, . . . , ℓk obtained
by intersecting with L. Define Split(m,L) to be the sequence of submoves ⟨ℓjr , ℓ(jr)+1, . . . , ℓj(r+1)

⟩
for r = 0, 1, . . . , k′ − 1 in increasing order. If m is a move for piece type T closed under submoves,
then Split(m,L) is a sequence of moves for piece type T . If furthermore L contains all locations in
m currently occupied by pieces, then Split(m,L) is a sequence of valid moves.

3

Lemma 2.1. Let r be the location of the final piece in a valid solution.

1. For every location v other than r, there is exactly one move out of v in the solution.

2. Let v0, v1, . . . be the sequence of locations obtained by repeatedly following the unique move
out of vi in the solution, starting at v0. Then the sequence is finite and terminates at r.

Proof. We prove each property separately.

1. If there is no such move, then v would remain occupied forever, contradicting that the solution
is valid. After the first such move, v is forever empty, so there cannot be a second move out
of v.

2. Suppose not. Because the number of locations is finite, the sequence must enter a cycle among
locations other than r. But then there is no move out of this cycle in the solution, so at least
one of the locations in the cycle must remain occupied forever, which contradicts the validity
of the solution.

2.2 One Piece Type is Easy

In this section, we prove that Solo Chess puzzles with any single piece type is solvable in polynomial
time, even for the very general piece types defined in Section 2.1.

Theorem 2.2. Solo-Chess({T}) can be solved in polynomial time for any single piece type T
closed under submoves.

Proof. Define the immediate capture graph ICG to be the directed graph with a vertex ℓ for each
location ℓ, and a directed edge (ℓ0, ℓk) for every move ⟨ℓ0, ℓ1, . . . , ℓk⟩ that is valid in the initial board
(without being blocked by other pieces). By the assumption above that all locations are occupied
in the initial board, such moves consist of just k = 2 locations. This graph can be computed in
polynomial time.

We claim that the instance is solvable if and only if the immediate capture graph ICG has a
spanning in-arborescence , i.e., a set of edges such that every vertex has a unique path to a
common root r.1 (For symmetric piece types, the immediate capture graph is undirected, so it
suffices to find a spanning tree and root it.) This property can be checked in polynomial time
via Edmonds’ 1967 Algorithm [Edm67], or its O(|E| + |V | log |V |) optimization [GGST86]; or in
O(|E|+ |V |) time using a modified depth-first search [KV06, Exercise 6.10].

If a spanning in-arborescence exists, we can solve the instance as follows. Every in-arborescence
with more than one vertex has a leaf vertex, i.e., a vertex with no incoming edges and one
outgoing edge. Repeatedly find a leaf and make the corresponding move from the leaf to its parent
(the vertex reached via the one outgoing edge), deleting the leaf. Every move is valid because
it corresponds to an edge in the immediate capture graph and, by construction, the two relevant
pieces have not yet been captured. Because the in-arborescence is spanning, we reduce to a single
piece at location r in the end.

Conversely, suppose that the instance is solvable via a sequence of moves. Let r be the location
of the final piece in the solution. We will show that ICG admits a spanning in-arborescence rooted
at r. It suffices to show that there is a directed walk in ICG from each location to r [KV06, Theorem
2.5(d)].

1An (out-)arborescence is usually defined in the reverse way, with a unique path from the root r to every
vertex. For this proof, we need the flipped in version. Existing algorithms for out-arborescence can be applied to
in-arborescence by reversing all edges in the graph.

4

Let v0 be any location and let v0, v1, . . . , r be the sequence of locations from Lemma 2.1.
For each pair (vi, vi+1) of locations, there is a move m from vi to vi+1 in the solution. Then
Split(m,L) (where L is the set of all locations) is a sequence of two-location moves, each of which
by definition corresponds to an edge of ICG. Hence we obtain a walk from vi to vi+1 in ICG. By
concatenating these walks, we obtain a walk from v0 to r in ICG. Therefore ICG admits a spanning
in-arborescence.

2.3 One Hero and Villains are Easy

In this section, we present an algorithm for solving certain Solo Chess puzzles consisting of n copies
of one piece type, and a single copy of a second piece type which is required to be the final piece
on the board (and is thus uncapturable). This is a generalization of the one-king restriction from
Solo Chess which says that, if there is a king in the initial puzzle, it must be the final piece on the
board in a valid solution.

We call the single uncapturable piece the hero, and the pieces that we have n copies villains.
Let S be the hero piece type, and T be the villain piece type. We require that S ⊆ T , that is,
every move for a hero is also a move for a villain. We also require that T is symmetric. Two useful
cases to think about are when the hero is a Chess king or pawn, and the villain is a Chess queen.
Among Chess pieces, {S1, T} includes { 1, }, { 1, }, { 1, }, { 1, }, and { 1, }.

The basic idea of the algorithm is to use villains capturing villains to collapse the pieces down
onto a path which the hero can traverse, thus capturing every villain. The main difficulty with this
approach is blocking : the hero itself prevents villains from moving through it, which may require
moves to be delayed until after the hero is out of the way.

2.3.1 Walks in Immediate Capture Graphs

Let V and B be disjoint sets of locations. Define the immediate capture graph ICG(V,B) to be
the directed graph whose vertex set is V , and which has an edge (ℓ0, ℓm) whenever ⟨ℓ0, ℓ1, . . . , ℓm⟩ ∈
T is a villain move such that none of ℓ1, ℓ2, . . . , ℓm−1 are in V ∪B. (Note that ℓ1, ℓ2, . . . , ℓm−1 may
not be in V .) This is the graph of valid villain moves when villains are placed on the locations in
V and immobile uncapturable blocking pieces are placed on the locations in B.

We now prove some useful facts ensuring the existence of (directed) walks in ICG(V,B).

Lemma 2.3. Let V and B be disjoint sets of locations. Suppose ⟨ℓ0, ℓ1, . . . , ℓm⟩ ∈ T is a villain
move such that ℓ0, ℓm ∈ V and {ℓ0, ℓ1, . . . , ℓm}∩B = ∅. Then there is a directed walk in ICG(V,B)
from ℓ0 to ℓm.

Proof. Because ℓ0, ℓm ∈ V , ℓ0 and ℓm are both vertices of ICG(V,B). Consider the sequence of
villain moves Split(⟨ℓ0, ℓ1, . . . , ℓm⟩, V). By definition of Split, each such move ⟨ℓs, ℓs+1, . . . ℓs+r⟩ has
the property that {ℓs+1, ℓs+2, . . . , ℓs+r−1} ∩ (V ∪ B) = ∅ while ℓs, ℓs+r ∈ V . Thus (ℓs, ℓs+r) is an
edge of ICG(V,B). By concatenating these edges together, we obtain a directed walk in ICG(V,B)
from ℓ0 to ℓm.

Corollary 2.4. Let V and B be disjoint sets of locations, and let m0,m1, . . . ,mk ∈ T be a sequence
of villain moves such that

1. the destination of mi is the source of mi+1;

2. each move’s source and destination is in V ; and

3. no move passes through a location in B.

5

Then there is a directed walk in ICG(V,B) from the source of m0 to the destination of mk.

Proof. Each move satisfies the conditions of Lemma 2.3, and so there is a directed walk in ICG(V,B)
from the source to the destination of each move. Concatenating these walks together gives the
desired walk.

Corollary 2.5. Let V and B be disjoint sets, and let V ′ and B′ be disjoint sets such that V ⊆ V ′

and B′ ⊆ B. (Note the asymmetry.) Suppose there is a directed walk from ℓ0 to ℓ1 in ICG(V,B).
Then there is also a directed walk from ℓ0 to ℓ1 in ICG(V ′, B′).

Proof. A walk from ℓ0 to ℓ1 in ICG(V,B) is a sequence of moves, each of whose source and desti-
nation is in V ⊆ V ′ and none of which pass through locations in B ⊇ B′. Thus, by Corollary 2.4,
there is a directed walk from ℓ0 to ℓ1 in ICG(V ′, B′).

2.3.2 Hero Paths

Given a board, a hero location sequence is any sequence of locations p0, p1, . . . , pk where p0
is the hero’s initial position in the given board. A hero path is a hero location sequence with
the additional property that the hero has a sequence of valid moves ⟨p0, . . . , p1⟩, ⟨p1, . . . , p2⟩, . . . ,
⟨pk−1, . . . , pk⟩ in the initial board (without any other moves being made). This definition is partic-
ularly simple for e.g. Chess kings or pawns, but more generally, hero moves could be blocked by the
villain pieces. We will prove below in Lemma 2.9 that it suffices to look at solutions where the hero
follows a hero path, but for now we know that the hero at least follows a hero location sequence.

For a fixed hero location sequence p0, p1, . . . , pk (collectively denoted p) and an index i with
0 ≤ i < k, we define Hi(p) = ICG(L \ {p0, p1, . . . , pi}, {pi}) to be the immediate capture graph (as
defined above) of the villains on the board after making just the first i hero moves (so that the
hero is now at pi and p0, p1, . . . , pi−1 are empty). We will just write Hi (omitting the hero location
sequence p) when it is clear from context.

Define a villain at location v to be strongly capturable by hero location sequence p0, p1, . . . , pk
if, for some index i with 0 ≤ i < k, there is a directed walk in Hi from v to pi+1. Intuitively, when
the hero is at location pi, the villain can move to hero location pi+1, and then get captured by the
hero’s next move. By definition, all of p1, p2, . . . , pk are strongly capturable.

Lemma 2.6. Let p0, p1, . . . , pk be a hero location sequence. Suppose there is a directed walk in Hi

from v to pj, with i < j. Then v is strongly capturable by p0, p1, . . . , pk.

Proof. Without loss of generality we can assume the walk is minimal, so that pj is the first place
the walk visits any of {pi+1, pi+2, . . . , pk}. Then this walk forms a sequence of moves each of whose
source and destination is in L \ {p0, p1, . . . , pj−1} and which do not pass through pj−1 (because
they are edges of Hi). By Corollary 2.4, there is a directed walk from v to pj in Hj−1, and so v is
strongly capturable by p0, p1, . . . , pk using index j − 1.

Next we show that knowing the sequence of locations the hero visits suffices to solve the puzzle.
That is, given a hero path p0, p1, . . . , pk, we will show how to determine in polynomial time whether
there a valid solution such that the hero makes exactly k moves through this sequence of locations.
Specifically, we show that it is a necessary and sufficient condition for all villains to be strongly
capturable by p0, p1, . . . , pk, in two parts.

Lemma 2.7. Suppose there is a solution such that the hero makes exactly k moves along the hero
location sequence p0, p1, . . . , pk. Then all villains are strongly capturable by p0, p1, . . . , pk.

6

Proof. Consider a villain at location v0. Let v0, v1, . . . , pk be the sequence of locations from
Lemma 2.1 applied to the solution. Truncate the sequence at the first location vr = pi+1 where
vr ∈ {p0, p1, . . . , pk}, so that in particular vj /∈ {p0, p1, . . . , pi} for 0 ≤ j ≤ r.

For each pair (vj , vj+1) with 0 ≤ j < r, there is a villain move ⟨vj = ℓ0, ℓ1, . . . , ℓm = vj+1⟩ in
the solution. These villain moves must occur in the solution before the hero move from pi to pi+1,
because the hero must make the last move to pi+1. Thus pi /∈ {ℓ0, ℓ1, . . . , ℓm} as pi is still occupied
when each villain move occurs.

Therefore we have a sequence of moves each of whose source and destination is in L\{p0, p1, . . . , pi}
and none of which passes through pi. By Corollary 2.4, there is a directed walk from v0 to pi+1 in
Hi, and so v0 is strongly capturable.

Lemma 2.8. Let p0, p1, . . . , pk be a hero path such that every villain is strongly capturable by
p0, p1, . . . , pk. Then there is a solution such that the hero makes exactly k moves through the
sequence of locations p0, p1, . . . , pk.

Proof. For every villain starting at location v, by the definition of strongly capturable, we obtain
an index i with 0 ≤ i < k, which we call the villain’s rank , and a directed walk in Hi from v to
pi+1. By removing any cycles in the walk, we can assume that the walk is in fact a simple path.

We will output in reverse order a sequence of moves that solves the instance. Sort the villains
by rank, breaking ties arbitrarily, and process the villains in order from highest rank to lowest.
For each index i with 0 ≤ i < k, add the hero move from pi to pi+1 to the output, and process
the villains of rank i as follows. For each villain starting at location v and having rank i, find the
earliest location v′ in the simple path from v to pi+1 such that a move to or from v′ is already in
our output list of moves. Such a location always exists because we just added a hero move to pi+1.
Add (in reverse order) the sequence of villain moves corresponding to the subpath from v to v′.
(In particular, we do not add any moves if v = v′.) Define each villain move added by processing
a villain of rank i to also have rank i.

We claim that there are no villain moves out of p0, p1, . . . , pk and that no villain move of rank i
captures pi. This is because the path from v to pi+1 does not include any of p0, p1, . . . , pi, because
those are not vertices ofHi; and because there are already hero moves involving all of pi, pi+1, . . . , pk.

We must show that the resulting sequence of moves is a solution that uses the hero path
p0, p1, . . . , pk. The full hero path p0, p1, . . . , pk appears in the solution by construction. Every
location except pk appears exactly once as the start of a move in the output, and there is no output
move out of pk. Each villain move of rank i occurs when the hero is at pi, having captured all of
p0, p1, . . . , pi. No villain move captures the hero because no villain move of rank i captures pi.

It remains to show that every move is legal at the time it is made. There are two ways a move
could have been illegal: either it was made to or from a location that is now empty, or it was
blocked by an intervening piece. The source of a move cannot be empty because each location
occurs as the source of a move at most once. The destination of a move cannot be empty because
every move is either to pk or to a location for which the unique move from that location occurs
later in time. No hero move is blocked by the definition of hero path: p0, p1, . . . , pk must be a legal
sequence of moves even without moving the villains. No villain move is blocked because villain
moves of rank i are made only along edges of Hi; by definition of Hi, such a move can be blocked
only by p0, p1, . . . , pi−1, which are empty when the hero is at pi.

Note that Lemma 2.7 applies to any hero location sequence p0 . . . pk, but Lemma 2.8 requires
a hero path. There is a technical issue here, because the hero moves might be blocked in a hero
location sequence, which a solution might avoid by moving villains out of the way. However, we
can show that there is always an alternate solution that avoids doing so:

7

Lemma 2.9. Suppose a puzzle has a solution. Then there is a solution such that the sequence of
locations visited by the hero forms a hero path.

Proof. Consider taking just the subsequence of hero moves from the solution, and attempting to
play them without making any villain moves. When doing so, we may encounter a hero move m
that is illegal because it is blocked by some set Vm of villains which have not yet been captured.
Replace each such hero movem with Split(m,Vm), which is a sequence of valid moves. The resulting
sequence of hero moves forms a hero path p0, p1, . . . , pk, which contains the original hero location
sequence and also contains all of the Vm sets.

It remains to show that there exists a solution such that the hero makes exactly k moves
following this hero path. By Lemma 2.8, it suffices to show that every villain is strongly capturable
by p0, p1, . . . , pk. We do this using a similar argument to Lemma 2.7.

Consider a villain at location v0. Let v0, v1, . . . , vr be the sequence of locations from Lemma 2.1
applied to the original solution. Truncate the sequence at the first location vr = pi+1 where
vr ∈ {p0, p1, . . . , pk}, so that in particular vj /∈ {p0, p1, . . . , pi} for 0 ≤ j ≤ r.

Let ps be the location of the hero in the original solution when the villain move from vr−1 to
pi+1 gets made, so that all of the above villain moves occur in the solution before the unique hero
move out of ps. None of these villain moves passes through ps because it is occupied when they
occur. It must be that s < i + 1, for in the solution the hero cannot move into or through pi+1

until after the last villain move to pi+1, which occurs after the hero move to ps.
By Corollary 2.4, there is a directed walk from v0 to pi+1 in Hs(p), and so by Lemma 2.6, v0 is

strongly capturable by p0, p1, . . . , pk.

By the above lemmas, we can consider a solution to the puzzle to consist of just a hero path
for which all villains strongly capturable.

Next we define the notion of “weak capturability”, which can be used to rule out prefixes of
solution hero paths. For a hero path p0, p1, . . . , pk, define Gi(p) = ICG(L \ {p0, p1, . . . , pi}, ∅) to
be the immediate capture graph of the board if we remove p0, p1, . . . , pi entirely. Define a villain
at location v to be weakly capturable after p0, p1, . . . , pk if there is a hero path p0, p1, . . . , pk′

with p0, p1, . . . , pk as a prefix, such that there is a directed walk in Gk from v to pk′ . While Hi(p)
is a subgraph of Gi(p), weak capturability does not necessarily imply strong capturability with the
same hero path because only the latter gets to pick an index i; weak capturability must use i = k.
(Intuitively, strong capturability means that the villain has effectively already been captured, while
weak capturability means that the villain could be in the future.)

We show that hero paths can be ruled out as potential prefixes of solutions if they do not at
least make all the villains weakly capturable:

Lemma 2.10. Let p0, p1, . . . , pk be a hero path, and suppose that there is a solution whose hero
path has p0, p1, . . . , pk as a prefix. Then every villain is either strongly capturable by p0, p1, . . . , pk
or weakly capturable after p0, p1, . . . , pk.

Proof. Let p0, p1, . . . , pk′ be the hero path in the solution, and let v be the location of a villain.
By Lemma 2.7, v is strongly capturable by p0 . . . pk′ . That is, there exists an index i < k′ and a
directed walk in Hi from v to pi+1. If i < k, then v is strongly capturable by p0 . . . pk, so suppose
i ≥ k.

By Corollary 2.5, a directed walk in Hi = ICG(L \ {p0, p1, . . . , pi}, {pi}) extends to a directed
walk in Gk = ICG(L \ {p0, p1, . . . , pk}, ∅). Thus there is a directed walk from v to pi+1 in Gk, and
so v is weakly capturable after p0, p1, . . . , pk.

8

2.4 Interesting Hero Paths

Consider a villain at location v. Define a hero path p0 . . . pk to be v-interesting if

1. v is not strongly capturable by p0, p1, . . . , pk; and

2. v is weakly capturable after p0, p1, . . . , pk.

We will show that v-interesting paths form a tree for any v, and that hero paths have v-
interesting prefixes for some v. Together these limit the number of possible hero paths we need to
search.

Lemma 2.11. If p0, p1, . . . , pk is a v-interesting path, then every prefix of the path is also.

Proof. Let p0, p1, . . . , pj be a prefix of p0, p1, . . . , pk, i.e., j ≤ k.
If v is strongly capturable by p0 . . . pj , then it is strongly capturable by p0 . . . pk also, using the

same index.
Suppose v is weakly capturable after p0, p1, . . . , pk. Then there is some hero path p0, p1, . . . , pk′

with p0, p1, . . . , pk as a prefix and a directed walk from v to pk′ in Gk = ICG(L\{p0, p1, . . . , pk}, ∅).
By Corollary 2.5, this directed walk extends to a directed walk in Gj = ICG(L\{p0, p1, . . . , pj}, ∅).
Thus v is weakly capturable after p0, p1, . . . , pj .

Corollary 2.12. Suppose p0, p1, . . . , pk with k > 0 is a minimal solution; that is, no prefix is
also a solution. Then there is a villain at location v such that p0, p1, . . . , pj is v-interesting for all
j < k.

Proof. Because p0, p1, . . . , pk−1 is not a solution, by Lemma 2.8, there is some v that is not strongly
capturable by p0, p1, . . . , pk−1. By Lemma 2.10, v is weakly capturable after p0, p1, . . . , pk−1. Hence
p0, p1, . . . , pk−1 is v-interesting. Finally, by Lemma 2.11, p0, p1, . . . , pj is v-interesting for all j <
k.

Lemma 2.13. Suppose the villain piece type T is symmetric. If v is weakly capturable after a hero
path p0, p1, . . . , pk, then v is connected to pk in Gk−1.

Proof. By definition of weakly capturable, there is a hero path p0, p1, . . . , pk, pk+1, . . . , pk′ such that
there is a path P1 from v to pk′ in Gk. By Corollary 2.5, P1 extends to a path P ′

1 in Gk−1.
Consider the suffix of hero moves pk, pk+1, . . . , pk′ from the hero path. Because the hero piece

type S is a subset of the villain piece type T , we know by Corollary 2.4 that this sequence of hero
moves extends to a path P2 from pk to pk′ in ICG({pk, pk+1, . . . , pk′}, ∅). By Corollary 2.5, P2

extends to a path P ′
2 in Gk−1.

Concatenating P ′
1 with the reverse of P ′

2 (by symmetry of villain moves), we obtain a path from
v to pk in Gk−1.

Lemma 2.14. Suppose the villain piece type T is symmetric. If p0, p1, . . . , pk and q0, q1, . . . , qj
are two different hero paths with the same start and end points, then at most one of them is v-
interesting.

Proof. Suppose for contradiction that both paths are v-interesting. Let i + 1 be the first index
at which the two paths diverge, so pi = qi but pi+1 ̸= qi+1. By Lemma 2.11, we can assume
without loss of generality that k and j are the smallest integers > i for which pk = qj . By
Lemma 2.11, p0, p1, . . . , pi+1 is v-interesting. By Lemma 2.13, there is a path P1 in Gi from v
to pi+1. Truncate P1 at the first point that it enters R = {pi+1, pi+2, . . . , pk, qi+1, qi+2, . . . , qj};

9

without loss of generality, suppose that this point is qr for some i+ 1 ≤ r ≤ j. Thus P1 becomes a
path in ICG

(
(L \ (p ∪ q)) ∪ {qr}, R \ {qr}

)
. By Corollary 2.5, P1 extends to a path P ′

1 in Hk−1(p).
Consider the suffix of hero moves qr, qr+1, . . . , qj from the corresponding hero path. By the defi-

nition of hero path and minimality of j, none of these moves pass through any of pi+1, pi+2, . . . , pk−1.
Because the hero move type S is a subset of the villain piece type T , we know by Corollary 2.4 that
this sequence of hero moves extends to a path P2 from qr to qj in ICG({qr, qr+1, . . . , qj}, {pi+1, pi+2, . . . , pk−1}).
By Corollary 2.5, P2 extends to a path P ′

2 in Hk−1(p).
Finally, concatenating P ′

1 and P ′
2, we obtain a path in Hk−1(p) from v to qj = pk. But then v

is strongly capturable by p0, p1, . . . , pk, contradicting that it was v-interesting.

Call a hero path interesting if it is v-interesting for some villain location v.

Lemma 2.15. Given a hero path p0, p1, . . . , pk, we can compute in polynomial time whether it is
interesting and whether it is a solution.

Proof. We can compute whether a villain location v is strongly capturable by constructing the
graphs Hi and checking whether pi+1 is reachable from Q for each i.

We can also compute whether a villain location v is weakly capturable by constructing the
graph Gk and searching over all locations for a location ℓ such that ℓ is reachable from v in Gk and
also reachable from pk in the graph of possible hero moves.

Theorem 2.16. Solo-Chess({S1, T}) can be solved in polynomial time for any two piece types
S ⊆ T closed under submoves where T is symmetric.

Proof. By Corollary 2.12, every prefix of a minimal solution is necessarily interesting. Furthermore,
by Lemma 2.14, there is at most one interesting hero path ending at each location.

Our algorithm finds a minimal solution by searching over the tree of all interesting hero paths.
By Lemma 2.15, we can test whether a hero path is interesting in polynomial time, as well as
whether it solves the instance. There are only polynomially many locations, interesting paths, and
moves to try, so this search takes polynomial time.

3 Hardness Results

In this section, we prove that Solo-Chess(S) is NP-complete for any set S of two distinct standard
Chess pieces. These reductions also work when one of the piece types is denoted special , restricting
that there is only one copy of that piece and that it must be the last piece on the board. This is a
generalization of the one-king restriction 1; we use the same notation T 1 for other piece types T .
But all of our hardness reductions also work when piece type T is not constrained and could be
captured.

We divide the section into two subsections based on the source of reduction. In Section 3.1, we
give multiple reductions from Hamiltonian Path, where the special piece needs to visit the other
pieces. In Section 3.2, we reduce from a special case of 3SAT, where the special piece sets variables
and satisfies clauses.

3.1 Hamiltonian Path Reductions

All of these reductions are from Hamiltonian Path in maximum-degree-3 grid graphs with a specified
start vertex and possibly a specified end vertex, each of degree 1, or generalizations thereof (e.g.,
sometimes we do not need the grid-graph or degree-1 property). This problem is NP-hard by a
slight modification to [PV84] described in Appendix A.

10

(a) Pawns and one knight (b) Kings and one knight

Figure 1: Placing pawns or kings and one knight to simulate Hamiltonian Path in a grid graph
with a specified start vertex.

The first reduction, when the special piece is a knight, is particularly easy:

Theorem 3.1. For any T ∈ { , }, Solo-Chess({ 1, T}) and Solo-Chess({ , T}) are NP-
hard.

Proof. The reduction is from Hamiltonian Path in grid graphs with a given start vertex s (Lemma A.1).
Figure 1 shows an example of the reduction. We rotate the grid graph by arctan 1

2 and scale it so
that adjacent vertices form valid knight moves. We place pawns or kings at the grid-graph vertices,
except for s where we place a knight (the only knight in the construction). The pawns or kings
cannot make any captures, so they are immobile. Thus the knight must capture all of the other
pieces; such a sequence of captures corresponds to a Hamiltonian path starting at s.

Next we give a reduction from Hamiltonian Path to Solo-Chess({ 1, }). This reduction
forms the basis for proving NP-hardness of several other piece combinations by scaling and/or
rotation. Like the previous reduction, the main idea behind these constructions is to place many
pieces of one type so that they have no available moves, and a single piece of the special type which
must then capture all the other pieces, requiring a Hamiltonian path.

Theorem 3.2. Solo-Chess({ 1, }) and Solo-Chess({ , }) are NP-hard.

Proof. The reduction is from Hamiltonian Path in a maximum-degree-3 graph with a given start
vertex s and destination vertex t, both of degree 1 (Lemma A.1).

Refer to Figure 2. Each vertex other than s and t consists of seven pawns arranged among two
rows, with four pawns marking the corners of a very-wide height-2 rectangle, and three pawns on
the bottom row of the rectangle which each form half of an edge to another vertex. More precisely,
if we label each vertex with an integer 1 through |V | and each edge with an integer 1 through |E|,
then vertex i places its four corner pawns at positions (i, 3i), (i, 3i+1), (4|V |+i, 3i), (4|V |+i, 3i+1);
and edge k connecting vertices i and j adds pawns at the locations (|V | + k, 3i), (|V | + k, 3j), in
the bottom rows of vertex i’s and vertex j’s rectangles respectively. Thus every column has zero
or two pawns, and each row has between zero and five pawns. For the start vertex s with incident
edge ks, we add a single rook at (ks, 1). Similarly for the destination vertex t with incident edge
kt, we add a single pawn at (kt, 0).

In this construction, none of the pawns can make any captures, so only the rook can ever move.
The rook can only enter or exit a vertex via its three edge pawns, and thus can enter a vertex at
most once: entering, exiting, and entering again would prevent ever exiting again in a maximum-
degree-3 graph, preventing us from getting to t (which itself has degree 1 so it cannot ever be

11

Figure 2: Placing pawns and one rook to simulate Hamiltonian Path in a maximum-degree-3 graph
with specified start and end vertices. Two vertices connected by an edge are shown, as well as the
start and destination vertices.

exited). In order to visit all the pawns, the rook must therefore enter and exit each vertex other
than s and t exactly once. Once the rook enters a vertex it must therefore visit all seven pawns
of the vertex. By going clockwise or counterclockwise around the vertex rectangle, the rook can
choose to leave along either of the two other edges incident to the vertex. Thus the rook capturing
all pawns from its starting location in s if and only if there is a Hamiltonian path from s to t.

Corollary 3.3. For any T ∈ { , }, Solo-Chess({ 1, T}) and Solo-Chess({ , T}) are
NP-hard.

Proof. Scale the construction from Theorem 3.2 by a factor of 4 in both dimensions, and replace
each pawn with a piece of type T . This scaling prevents kings or knights from making captures,
without affecting rook moves.

Corollary 3.4. For any S ∈ { , } and T ∈ { , , , }. Solo-Chess({S1, T}) and Solo-
Chess({S, T}) are NP-hard.

Proof. Scale the construction from Theorem 3.2 by h+1 in the x direction, where h is the height of
the original construction. (In other words, add h empty columns between every consecutive pair of
columns of pieces.) This scaling spaces out the pieces far enough so that no diagonal captures are
possible. If S = , replacing the rook with a queen does not add any additional diagonal moves.
Finally we replace each pawn with a piece of type T . If T ∈ { , }, these pieces cannot move
because there are no diagonal moves. If T ∈ { , }, we scale by an additional factor of 4 in both
dimensions (as in Corollary 3.3) to guarantee these pieces have no moves.

Corollary 3.5. For any T ∈ { , , }, Solo-Chess({ 1, T}) and Solo-Chess({ , T}) are
NP-hard.

Proof. Rotate the construction from Theorem 3.2 by 45◦ and scale by
√
2; see Figure 3. This

transformation turns rook moves into bishop moves: vertices that were orthogonally adjacent are
now diagonally adjacent. Replace the rook with a bishop, and replace each pawn with a piece

12

Figure 3: Placing pawns and one bishop to simulate Hamiltonian Path in a maximum-degree-3
graph with specified start and end vertices, by rotating the construction in Figure 2.

of type T . For T ∈ { , }, we scale by an additional factor of 4 in both dimensions (as in
Corollary 3.3) to guarantee that these pieces have no moves.

Corollary 3.6. For any T ∈ { , }, Solo-Chess({T 1, }) and Solo-Chess({T, }) are
NP-hard.

Proof. First scale the construction from Theorem 3.2 by h+1 in the x direction, as in Corollary 3.3.
Then rotate by 45◦ and scale by

√
2, as in Corollary 3.5. The initial scaling eliminates diagonal

alignments in the original construction, thus preventing pieces from aligning orthogonally in the
rotated version. Then replace the rook with a piece of type T , and replace each pawn with a
rook.

The next reduction is also from Hamiltonian Path, but does not use the same framework as the
previous reductions.

Theorem 3.7. Solo-Chess({ 1, }) and Solo-Chess({ , }) are NP-hard.

Proof. The reduction is from Hamiltonian Path in maximum-degree-3 grid graphs with a specified
start vertex s (Lemma A.1). Figure 4 shows an example of the construction. First, we rotate the
given grid graph by 45◦ and scale it by 3

√
2, placing pawns at the vertices and along the edges.

Pawns at vertices are drawn blue. Adjacent vertex pawns are three spaces apart diagonally, and

13

Figure 4: Placing pawns and one king to represent Hamiltonian Path in a maximum-degree-3 grid
graph with a specified start vertex. Blue pawns are at grid-graph vertices, while green pawns have
no capture move.

have a diagonal chain of two (black) pawns between them. All of these pawns forming the grid
graph are placed on the light squares of the board.

Assume pawns capture upward. Now, for each vertex with at least one upward incident edge,
we place a green pawn on an adjacent dark square: if there are two upward incident edges, then we
place it above the vertex, and otherwise we place it below the vertex. Note that vertices with only
downward incident edges do not get a green pawn; in this case, we color the vertex pawn green.
The result is that every vertex has exactly one green pawn, which has no legal captures, while all
other pawns have legal captures. All of the other pawns (black or blue in Figure 4) have at least
one legal capture. The king replaces the green pawn on the starting vertex s of the Hamiltonian
Path problem (the bottommost vertex in Figure 4).

If there is a Hamiltonian path, then we claim that there is a valid capture sequence that leaves

14

only the king at the end. The king will capture along the Hamiltonian path, making sure to
divert and capture the green pawn at each vertex. Before the king moves, though, any pawns on
squares which are not part of the Hamiltonian path capture a pawn above them, starting from the
bottommost pawns. These pawns always have legal captures because, by our construction, every
pawn either has a legal capture or is a green pawn that is part of the Hamiltonian path. After
these captures happen, the only remaining pawns are those on the Hamiltonian path, so the king
can simply walk along that path, taking all the pawns.

Conversely, if there is a valid solution to the Solo Chess problem, then we claim that there must
exist a Hamiltonian path in the underlying grid graph. Because the green pawns can never move,
the king must at some point capture every green pawn. Thus the king’s path starts at the king’s
initial position, passes through pawns, never captures the same square twice, and captures every
green pawn. Because the graph has maximum degree 3, the king can visit each vertex at most
once, and because every vertex has a green pawn adjacent to it, the king’s path must be able to
visit each vertex at least once. Thus the king’s path provides a Hamiltonian path in the graph.
(This argument works even without the 1 restriction because, if the king gets captured before
reaching all the green pawns, the puzzle cannot be solved.)

At this point, we have completed our proof that Solo-Chess(S) is NP-complete for any two
standard Chess pieces:

Corollary 3.8. Solo-Chess(S) is NP-complete for any set S of two distinct standard Chess
pieces.

Proof. Corollary 3.4 and 3.4 together cover all cases where ∈ S or ∈ S, leaving S ⊆
{ , , , }. Corollary 3.5 covers all remaining cases where ∈ S, leaving S ⊆ { , , }.
Theorem 3.1 covers all remaining cases where ∈ S, leaving S ⊆ { , }. Theorem 3.7 covers
the final case S = { , }.

3.2 SAT Reductions

Next we turn to the uncapturable restriction for some of the piece types not covered by previous
reductions. The reductions in this section are from a special case of 3SAT2 with at most two
occurrences of each literal, which was shown to be NP-hard by Tovey [Tov84, Theorem 2.1].

It is convenient here to reduce from a planar version of 3SAT. De Berg and Khosravi [dBK10,
Theorem 1] prove NP-hardness of Planar Monotone 3SAT . In this variation of 3SAT, the
graph with a vertex for each clause, a vertex for each variable, edges between each clause and
the variables it contains, and a Hamiltonian cycle passing through all the variables, must have a
planar embedding. Furthermore, in this embedding, all clauses containing positive literals must be
placed inside the Hamiltonian cycle, while all clauses containing negative literals must be placed
outside it; in particular, every clause either consists entirely of positive literals or consists entirely
of negative literals. (A more precise name for this problem is “Sided Var-Linked Planar Monotone
3SAT” [Fil19].) Equivalently, one can imagine arranging the variables along a line in the plane,
with all positive clauses (and their edges) on one side of the line, and all negative clauses on the
other side.

We also want the condition that each literal occurs at most twice. In Appendix B, we show
that the combined problem — Planar Monotone 3SAT with at most two occurrences of each literal
— remains NP-hard.

2By 3SAT , we mean CNF Satisfiability with at most three variables per clause, rather than exactly three variables
per clause (E3SAT).

15

Theorem 3.9. For any T ∈ { , }, Solo-Chess({T 1, }) is NP-hard.

Proof. We reduce from Planar Monotone 3SAT with at most two occurrences of each literal
(Lemma B.1). Refer to Figure 5.

For each variable xi, we construct a variable gadget consisting of two pawn-traversable paths.
Each path contains two literal knights (drawn green) corresponding to literals for that variable:
the literal knights on the left path correspond to the positive literal xi, while the literal knights on
the right path correspond to the negative literal ¬xi. These literal knights are connected together
by noncrossing paths of knights corresponding to the 3SAT clauses. The stipulation that each
literal occurs at most twice ensures that we have enough literal knights to construct the 3SAT
instance.

Assume pawns capture upward. The lone pawn or king must traverse the board from bottom
to top, visiting each variable gadget in turn. At each variable gadget, it is presented with a choice
of two paths, allowing it to visit either the positive literal knights or the negative literal knights for
that variable, but not both. (A king could go up one literal path and down the other literal path,
but then it would get stuck, unable to reach a final knight at the top of the construction.) In order
to capture the knights used in clauses, at least one literal knight from each clause must be visited
by the pawn or king. All other knights, including literal knights not used in a clause, are connected
to both sides of the gadget, so that they may be captured regardless of which path is taken. Thus
the Solo Chess instance can be solved if and only if the 3SAT instance is satisfiable.

The other reductions in this section are similar; we just have to design a suitable variable gadget
in each case.

Theorem 3.10. Solo-Chess({ 1, }) is NP-hard.

Proof. We reduce from Planar Monotone 3SAT with at most two occurrences of each literal, similar
to Theorem 3.9. Instead, we use the variable gadget shown in Figure 6. We add bishops to connect
literal bishops in each clause, or to connect unused literal bishops to both paths so that they may
be captured regardless of which is chosen.

Theorem 3.11. For any T ∈ { , , }, Solo-Chess({ 1, T}) is NP-hard.

Proof. We reduce from Planar Monotone 3SAT with at most two occurrences of each literal, similar
to Theorem 3.9. Instead, we use the variable gadget shown in Figure 7 (for the case T =). Note
that all non-literal pieces are connected to both paths even if the queens in the diagram are replaced
by rooks or bishops. We add queens/rooks/bishops to connect literal queens/rooks/bishops in each
clause, or to connect unused literal queens/rooks/bishops to both paths.

4 Open Problems

Our results in Table 1 leave open the complexity of two cases: { 1, } and { 1, }. We suspect
that both of these problems can be solved in polynomial time, essentially because a king or pawn
cannot slip by a rook, but it remains to generalize the algorithm in Section 2.3. Similarly, it is open
whether the algorithm can be generalized to non-symmetric pieces.

From the prior paper [AMM22], the complexities of Solo-Chess({ }, O(1)) and Solo-Chess({ }, O(1))
are still open. It may help to show hardness for the more nonblocking piece types on a graph, pos-
sibly constrained to have maximum degree 8 or to be a grid graph.

16

Figure 5: Variable gadget (left) and example reduction output (right) for Solo-Chess({ 1, }).
This instance corresponds to the formula (x1 ∨x2 ∨x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (¬x2 ∨¬x3). At least
one green literal knight must be visited in each clause.

Figure 6: Variable gadget for Solo-Chess({ 1, }).

17

Figure 7: Variable gadget for Solo-Chess({ 1, }).

Finally, although Solo Chess puzzles are not designed to ensure a unique solution, it is interesting
to determine whether the problem is ASP-complete and whether counting the number of solutions
is #P-complete. Some, but not all, of our reductions are parsimonious.

Acknowledgments

This work was initiated during extended problem solving sessions with the participants of the MIT
class on Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892) taught by Erik Demaine in
Spring 2019. We thank the other participants for their insights and contributions. In particular,
we thank Dylan Hendrickson for helpful discussions around algorithms for one piece type.

Most figures of this paper were drawn using SVG Tiler [https://github.com/edemaine/svgtiler].
Chess piece images are based onWikipedia’s https://commons.wikimedia.org/wiki/Standard chess
diagram, drawn by Colin M.L. Burnett and licensed under a BSD License.

References

[AMM22] N. R. Aravind, Neeldhara Misra, and Harshil Mittal. Chess is hard even for a single
player. In Pierre Fraigniaud and Yushi Uno, editors, Proceedings of the 11th Inter-
national Conference on Fun with Algorithms, volume 226 of LIPIcs, pages 5:1–5:20,
2022.

[BDHW20] Josh Brunner, Erik D. Demaine, Dylan H. Hendrickson, and Julian Wellman. Com-
plexity of retrograde and helpmate chess problems: Even cooperative chess is hard.

18

https://github.com/edemaine/svgtiler
https://commons.wikimedia.org/wiki/Standard_chess_diagram
https://commons.wikimedia.org/wiki/Standard_chess_diagram

In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, Proceedings of the 31st In-
ternational Symposium on Algorithms and Computation, volume 181 of LIPIcs, pages
17:1–17:14, 2020.

[Che] Chess.com. Solo chess. https://www.chess.com/solo-chess.

[dBK10] Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the plane. In
My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics, pages 216–225,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[Edm67] Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of
Standards B, 71:233–240, 1967.

[Fil19] Ivan Tadeu Ferreira Antunes Filho. Characterizing boolean satisfiability variants.
M.eng. thesis, Massachusetts Institute of Technology, 2019.

[FL81] Aviezri S. Fraenkel and David Lichtenstein. Computing a perfect strategy for n×n chess
requires time exponential in n. Journal of Combinatorial Theory, Series A, 31:199–214,
1981.

[GGST86] Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert Endre Tarjan. Efficient
algorithms for finding minimum spanning trees in undirected and directed graphs.
Combinatorica, 6(2):109–122, 1986.

[IPS82] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in
grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible representa-
tives. SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

[KV06] Bernhard Korte and Jens Vygen. Spanning trees and arborescences. In Combinatorial
Optimization: Theory and Algorithms, pages 119–141. Springer, 2006.

[PV84] Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related
to the travelling salesman problem. Journal of Algorithms, 5(2):231–246, June 1984.

[Sto83] James A. Storer. On the complexity of chess. Journal of Computer and System Sciences,
27(1):77–100, 1983.

[Tov84] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85–89, 1984.

A Hamiltonian Path in Maximum-Degree-3 Grid Graphs with
Specified Start/End Vertices

Itai, Papadimitriou, and Szwarcfiter [IPS82] prove NP-hardness of deciding whether a grid graph
has a Hamiltonian path with specified start and end vertices.3 Papadimitriou and Vazirani [PV84]
prove NP-hardness of deciding whether a maximum-degree-3 grid graph has a Hamiltonian path
(with no specified start/end vertices). Neither result is exactly what we need in this paper:

Lemma A.1. It is NP-hard to decide whether a maximum-degree-3 grid graph has a Hamiltonian
path that

1. starts at a specified start vertex s, which is degree 1 (but without a specified end vertex); or

3They also describe how to reduce this problem to deciding whether a graph has a Hamiltonian path (with no
specified start/end vertices), but their reduction (attaching a degree-1 vertex to each of the specified start and end
vertices) does not obviously preserve being a grid graph.

19

https://www.chess.com/solo-chess

v

(a) A dumbbell with a pin con-
nection, based on [PV84, Fig-
ure 12(b)]

v

ℓ

(b) Adding a degree-1 vertex

v

ℓ

(c) Resulting Hamiltonian path

Figure 8: The hardness reduction to Hamiltonian path in maximum-degree-3 grid graphs from
[PV84] has two copies of the gadget in (a). This graph is Hamiltonian if and only if the modification
in (b) is, which forces the Hamiltonian path to look like (c), in particular starting or ending at ℓ.

2. starts at a specified start vertex s and ends at a specified end vertex t, both of which are
degree 1.

Proof. We modify the proof of Papadimitriou and Vazirani [PV84]. Their proof reduces from
Hamiltonian Circuit in a planar directed graph G1 where each vertex has either in-degree 2 and
out-degree 1 or in-degree 1 and out-degree 2.

Their first modification to G1 [PV84, Figure 2] forms an undirected graph G2 such that G1 has
a Hamiltonian cycle if and only if G2 has a Hamiltonian path. Part of this modification [PV84,
Figure 2(b)] replaces one vertex v1 of G1 with a gadget of four vertices that includes two degree-1
vertices vin′1 and vout1. Clearly if G2 has a Hamiltonian path, then it must start and end at vin′1
and vout1.

Next their proof forms a maximum-degree-3 grid graph G′
4 such that G′

4 has a Hamiltonian path
if and only if G2 has a Hamiltonian path. G′

4 is essentially a grid drawing of G2 (which turns out
to be bipartite), expanded by a constant factor, and replacing each vertex and edge by a thickened
gadget. The degree-1 vertices of G2, vin

′
1 and vout1, are each mapped in G4 to a “dumbbell” (two

length-8 cycles connected via a length-6 path) attached to a single “tentacle” (a 2 × n rectangle
with length-8 cycles at turns) via a “pin connection” (single adjacency); see Figure 8a. Because
the dumbbell is connected to the rest of the graph via only a single edge (the pin connection),
any Hamiltonian path must start or end within each such dumbbell. In particular, we can choose
a particular start or end vertex within the dumbbell to be either vertex adjacent to the far end
(relative to the pin connection) of the path between the two cycles; we label such a vertex v in
Figure 8a. By [PV84, Lemma] or Figure 8c, if we declare this vertex v to be the specified start
or end vertex, then we preserve the existence of a Hamiltonian path in G4. This vertex v has
degree 2, and has a neighboring grid point (below v in Figure 8a) with no neighboring vertices, so
we can add a degree-1 vertex ℓ at that point as shown in Figure 8b, increasing v’s degree from 2
to 3 (preserving maximum-degree-3), and then the degree-1 vertex ℓ must be the start or end of
any Hamiltonian path. Figure 8c shows the local configuration any Hamiltonian path must have
(in particular verifying the preservation of the existence of a Hamiltonian path). We can declare
the vertex from vin′1 to be the start vertex, and optionally declare the vertex from vout1 to be the
end vertex, to prove the two variations NP-hard.

20

B Sided Var-Linked Planar Monotone 3SAT with Restricted Vari-
able Occurrences

Lemma B.1. Sided Var-Linked Planar Monotone 3SAT is NP-hard, even when each literal occurs
at most twice and each variable occurs at most three times.

Knuth and Raghunathan [KR92] observe that any instance of Var-Linked Planar 3SAT has a
rectilinear layout. That is, the clauses and variables can be drawn as horizontal line segments in
the plane with vertical line segments connecting incident variables to clauses, such that no line
segments intersect each other otherwise and all variables lie on the same horizontal line. Thus this
result also extends to the version of the problem where such a rectilinear layout is provided.

Proof. The reduction is from Sided Var-Linked Planar Monotone 3SAT. Refer to Figure 9. We show
that each variable can be replaced by a set of new variables and clauses to form an equisatisfiable
instance of Sided Var-Linked Planar Monotone 3SAT, such that the new variables each have at
most three occurrences, at most two of which have the same sign. In the following we assume each
variable has at least one occurrence of each sign; any variable which doesn’t can be deleted without
affecting satisfiability.

Let x be a variable with n negative occurrences in clauses N1, . . . , Nn andm positive occurrences
in clauses P1, . . . , Pm. We replace x by two sequences of variables x1, . . . , xn+m and y1, . . . , yn+m−1.
For each 1 ≤ i ≤ m+n−1 we add a new positive clause xi∨yi and a new negative clause ¬yi∨¬xi+1.
Finally for each 1 ≤ k ≤ n we replace each occurrence of ¬x in clause Nk with an occurrence of
¬xk, and for each 1 ≤ j ≤ m we replace each occurrence of x in clause Pj with an occurrence of
xn+j . This completes the construction. Each new variable xi or yi occurs at most three times and
at most twice with the same sign. It can be seen from Figure 9 that this construction preserves
the sided planarity property. We must show that the resulting instance is equisatisfiable with the
original.

In one direction, let v be a satisfying assignment (i.e. a mapping from variables to {0, 1}) for
the original instance. Define a new assignment w by w(xi) = v(x) and w(yi) = ¬v(x) for each
original variable x. Then w is a satisfying assignment for the new instance.

In the other direction, let w be a satisfying assignment for the new instance. Define an assign-
ment v over the original variables x by v(x) = w(xn) where n is the number of negative occurrences
of x. We claim that v is a satisfying assignment for the original instance. In order to do this it
suffices to show for each variable x with n negative and m positive occurrences, that

w(xk) ≥ v(x)

w(xn+j) ≤ v(x)
(B.1)

for 1 ≤ k ≤ n and 1 ≤ j ≤ m. For then any clause Nk or Pj which was satisfied by having
w(xk) = 0 or w(xn+j) = 1 is also satisfied by the value of v(x).

The clauses xi ∨ yi and ¬yi ∨ ¬xi+1 together require xi+1 → xi for 1 ≤ i ≤ m+ n− 1. Thus w
is weakly monotonically decreasing on x1, . . . , xn+m. Since v(x) = w(xn) this immediately yields
(B.1). Thus the new instance of Sided Var-Linked Planar Monotone 3SAT is equisatisfiable with
the original.

21

x

P1 P2 P3

N1 N2 N3

y1 y2 y3 y4 y5x1 x2 x3 x4 x5 x6

N1 N2 N3

P1 P2 P3

Figure 9: Transforming a variable in Sided Var-Linked Monotone Planar 3SAT to reduce the
number of occurrences. Clauses above the line of variables (red) are positive; clauses below the
line of variables (blue) are negative. Above: A variable with three positive occurrences and three
negative occurrences. Below: An equivalent collection of clauses and variables. Each variable
occurs at most three times and has at most two occurrences with the same sign.

22

	Introduction
	Algorithmic Results
	Generalized Chess Model
	One Piece Type is Easy
	One Hero and Villains are Easy
	Walks in Immediate Capture Graphs
	Hero Paths

	Interesting Hero Paths

	Hardness Results
	Hamiltonian Path Reductions
	SAT Reductions

	Open Problems
	Hamiltonian Path in Maximum-Degree-3 Grid Graphs with Specified Start/End Vertices
	Sided Var-Linked Planar Monotone 3SAT with Restricted Variable Occurrences

