The Stackelberg Minimum Spanning Tree Game*

Jean Cardinal', Erik D. Demaine?, Samuel Fiorini®,

Gwenaél Joret'*, Stefan Langerman'***, Ilan Newman®*, and Oren Weimann?
! Computer Science Department, Université Libre de Bruxelles,
B-1050 Brussels, Belgium, {jcardin,gjoret,slanger}@ulb.ac.be
2 MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA, {edemaine,oweimann}@mit.edu
3 Department of Mathematics, Université Libre de Bruxelles,
B-1050 Brussels, Belgium, sfiorini@ulb.ac.be
4 Department of Computer Science, University of Haifa,
Haifa 31905, Israel, ilan@cs.haifa.ac.il

Abstract. We consider a one-round two-player network pricing game,
the Stackelberg Minimum Spanning Tree game or STACKMST. The game
is played on a graph (representing a network), whose edges are colored
either red or blue, and where the red edges have a given fixed cost (repre-
senting the competitor’s prices). The first player chooses an assignment
of prices to the blue edges, and the second player then buys the cheap-
est possible minimum spanning tree, using any combination of red and
blue edges. The goal of the first player is to maximize the total price of
purchased blue edges. This game is the minimum spanning tree analog
of the well-studied Stackelberg shortest-path game.

We analyze the complexity and approximability of the first player’s
best strategy in STACKMST. In particular, we prove that the prob-
lem is APX-hard even if there are only two different red costs, and
give an approximation algorithm whose approximation ratio is at most
min{k,3 + 2Inb, 1 + In W}, where k is the number of distinct red costs,
b is the number of blue edges, and W is the maximum ratio between
red costs. We also give a natural integer linear programming formula-
tion of the problem, and show that the integrality gap of the fractional
relaxation asymptotically matches the approximation guarantee of our
algorithm.

1 Introduction

Suppose that you work for a networking company that owns many point-to-point
connections between several locations, and your job is to sell these connections.
A customer wants to construct a network connecting all pairs of locations in the
form of a spanning tree. The customer can buy connections that you are selling,
but can also buy connections offered by your competitors. The customer will
always buy the cheapest possible spanning tree. Your company has researched

* This work was partially supported by the Actions de Recherche Concertées (ARC)
fund of the Communauté francaise de Belgique.
** Aspirant F.R.S. — FNRS.
*** Chercheur qualifié F.R.S. — FNRS.

the price of each connection offered by the competitors. The problem considered
in this paper is how to set the price of each of your connections in order to
maximize your revenue, that is, the sum of the prices of the connections that
the customer buys from you.

This problem can be cast as a Stackelberg game, a type of two-player game
named introduced by the German economist Heinrich Freiherr von Stackel-
berg [I§]. In a Stackelberg game, there are two players: the leader moves first,
then the follower moves, and then the game is over. The follower thus optimizes
its own objective function, knowing the leader’s move. The leader has to optimize
its own objective function by anticipating the optimal response of the follower.
In the scenario depicted in the preceding paragraph, you were the leader and
the customer was the follower: you decided how to set the prices for the connec-
tions that you own, and then the customer selected a minimum spanning tree.
In this situation, there is an obvious tradeoff: the leader should not put too a
high price on the connections—otherwise the customer will not buy them—but
on the other hand the leader needs to put sufficiently high prices to optimize
revenue.

Formally, the problem we consider is defined as follows. We are given an
undirected graph G = (V, E') whose edge set is partitioned into a red edge set R
and a blue edge set B. Each red edge e € R has a nonnegative fixed cost c(e)
(the best competitor’s price). The leader owns every blue edge e € B and has to
set a price p(e) for each of these edges. The cost function ¢ and price function
p together define a weight function w on the whole edge set. By “weight of edge
e” we mean either “cost of edge e” if e is red or “price of edge e” if e is blue. A
spanning tree T' is a minimum spanning tree (MST) if its total weight

Yowle)= Y o)+ Y ple) (1)

ecE(T) e€cE(T)NR e€cE(T)NB

is minimum. The revenue of T is then

> ple) (2)

ecE(T)NB

The Stackelberg Minimum Spanning Tree problem, STACKMST, asks for a price
function p that maximizes the revenue of an MST. Throughout, we assume that
the graph contains a spanning tree whose edges are all red; otherwise, there is a
cut consisting only of blue edges and the optimum value is unbounded. Moreover,
to avoid being distracted by epsilons, we assume that among all edges of the
same weight, blue edges are always preferred to red edges; this is a standard
assumption. As a consequence, all minimum spanning trees for a given price
function p have the same revenue; see Section [2] for details.

Related work. A similar pricing problem, where the customer wants to construct
a shortest path between two vertices instead of a spanning tree, has been studied
in the literature; see van Hoesel [I7] for a survey. Complexity and approxima-
bility results have recently been obtained by Roch, Savard and Marcotte [14],
and by Grigoriev, van Hoesel, Kraaij, Uetz, and Bouhtou [9]: the problem is
strongly NP-hard and O(log | B|)-approximable. A generalization of the problem

to more than one customer has been tackled using mathematical programming
tools, in particular bilevel programming; see Labbé, Marcotte, and Savard [12].
This generalization was motivated by the problem of setting tolls on highway
networks. Cardinal, Labbé, Langerman, and Palop [3] give a geometric version
of the problem.

Sometimes the goal of the leader is not to invite the followers to use his/her
part of the network and maximize his/her own revenue but to encourage so-
cially acceptable or optimal behaviors among the followers (the users of the
network) so as to maximize some global objective. These kinds of Stackelberg
games have been studied recently, e.g., by Cole, Dodis and Roughgarden [4] and
Swamy [I6]. An extensive bibliography on similar networking games has been
compiled recently by Altman et al. [2]. In another Stackelberg game studied
by Roughgarden [I5], the leader is a job scheduler whose goal is to compute a
scheduling strategy for the jobs he/she controls such that total latency in the
system is minimized after the followers have selfishly scheduled their jobs.

Hartline and Koltun [10] propose approximation algorithms for several APX-
hard pricing problems, where the goal is to find the best prices for a set of
items, given knowledge of the consumer’s behavior in the form of a combinatorial
preference structure.

Finally, our problem should not be confused with other spanning tree games
found in cooperative games and mechanism design theory [S[11], with parametric
spanning tree problems [76], or with two-stage stochastic minimum spanning
tree problems [5].

Our results. We analyze the complexity and approximability of the STACKMST
problem. Specifically, we prove the following:

1. STACKMST is APX-hard, even if there are only two red costs, 1 and 2
(Section . This result is also the first NP-hardness proof for this problem.
The reduction is from SETCOVER.

2. STACKMST is O(logn)-approximable, and is O(1)-approximable when the
red costs either fall in a constant-size range or have a constant number of
distinct values (Section . More precisely, we analyze the following simple
approximation algorithm, called Best-out-of-k: for all ¢ between 1 and k, con-
sider the price function for which all blue edges have price ¢;, and output the
best of these k price functions. Here, and throughout the paper, ¢; denotes
the ith smallest cost of a red edge and k the number of distinct red costs.
We prove that the approximation ratio of this algorithm is bounded above
by min{k,3 +21Inb,1 + In(ci/c1)}, where b is the number of blue edges.

3. The integrality gap of a natural integer linear programming formulation
asymptotically matches the approximation guarantee of Best-out-of-k (Sec-
tion . Thus, effectively, any approximation algorithm based on the linear
programming relaxation of our integer program (or any weaker relaxation)
cannot do better than Best-out-of-k. Of course, this result does not im-
ply that Best-out-of-k is optimal. In fact, a central open question about
STACKMST is to determine if it admits a constant factor approximation
algorithm.

For brevity, some of the proofs are omitted and will appear in the full version of
this paper.

2 Basic Results

Before we proceed to our main results, we prove a few basic lemmas about
STACKMST.

We claimed in the introduction that the revenue of the leader depends on the
price function p only, and not on the particular MST picked by the follower. To
see this, let w; < wy < -+ < wy denote the different edge weights. The greedy
algorithm (a.k.a. Kruskal’s algorithm) will work in ¢ phases: in its ith phase, it
will consider all blue edges of price w; (if any) and then all red edges of cost
w; (if any). The number of blue edges selected in the ith phase will not depend
on the order in which blue or red edges of weight w; are considered. This shows
the claim. Moreover, if there is no red edge of cost w; then p is not an optimal
price function because the leader can raise the price of every blue edge of price
w; to the next weight w;4+1 and thus increase his/her revenue. This implies the
following lemma.

Lemma 1. In every optimal price function, the prices assigned to the blue edges
appearing in some MST belong to the set {c(e) : e € R}. O

Notice that the prices given to the blue edges that are in no MST do not
really matter (as long as they are high enough). We find it convenient to see them
as equaling oo. This has the same effect as deleting those blue edges. A direct
consequence of Lemma (1] is that the decision version of STACKMST belongs to
NP, using some price function p with p(e) € {c(e) : e € R} U{oo} for alle € B as
a certificate. Another possibility for a certificate is an acyclic set of blue edges F,
interpreted as the set of blue edges in any MST. Given F', we can easily compute
an optimal price function such that F' is the set of blue edges in any MST, with
the help of Lemma |2 below. In the lemma, we denote by C. the set of cycles of
G = (V, E) that include some edge e. (Notice that C. is nonempty whenever e
is blue because G, = (V, R) is connected.)

Lemma 2. Consider a price function p, a corresponding minimum spanning
tree T, and let F' = E(T) N B. Then for every e € F, we have

e)< min max c(e). 3

p()* CeCc e’€E(C)NR () ()

Moreover, whenever F is any acyclic set of blue edges and we set p(e) equal to

the right hand side of fore € F and p(e) = oo for e € B — F, we have
E(T"YNB = F for any corresponding MST T'.

It follows from the above lemma that STACKMST is fixed parameter
tractable with respect to the number of blue edges. Indeed, to solve the problem,
one could try all acyclic subsets F' of B, and for each of them put the prices as
above (this can easily be done in polynomial time), and finally take the solu-
tion yielding the highest revenue. We conclude this section by stating a useful
property satisfied by all optimal solutions of STACKMST.

Lemma 3. Let p be an optimal price function and T be a corresponding MST.
Suppose that there exists a red edge e in T and a blue edge f not in T such that
e belongs to the unique cycle C in T+ f. Then there exists a blue edge f' distinct
from f in C such that c(e) < p(f') < p(f).

3 Complexity and Inapproximability

By Lemma [l STACKMST is trivially solved when the cost of every red edge is
exactly 1, i.e., when c¢(e) = 1 for all e € R. In this section, we show that the
problem is APX-hard even when the costs of the red edges are only 1 and 2, i.e.,
when c(e) € {1,2} for all e € R. We start with NP-hardness:

Theorem 1. STACKMST is NP-hard even when c(e) € {1,2} for all e € R.

Proof. We present a reduction from SETCOVER (in its decision version).
Let (U,S) and the integer ¢ be an instance of SETCOVER, where U =
{u1,ug,...,un}, and § = {S1,S2,...,Sn}. Without loss of generality, we as-
sume that u, € S; for every i = 1,2,...,m (we can always add one element to
U and to every S; to make sure this holds).

We construct a graph G = (V, E) with edge set E = RUB and a cost function
¢ : R — {1,2} as follows. The vertex set of G is Y US = {uy,ug,...,u,} U
{81, 89,...,Sm}. The edge set of G and cost function c are defined as follows:

— there is a red edge of cost 1 linking w; and u; 1 for every 1 <1i < n;

— there is a red edge of cost 2 linking u,, and S;, and linking S; and S, for
every 1 < j <m;

— whenever u; € S; we link u; and S; by a blue edge.

(a) (b)

Fig.1. (a) The graph G constructed for n = 6, m = 3 with S; =
{u1,uz2,us, ug, ug}, S = {us,us,ue} and Sz = {us, ug}. The red edges of cost 2
are omitted for clarity. The red edges of cost 1 are dashed, and the blue edges
are solid. (b) An optimal price function p on the blue edges that yields a revenue
of 9, an example MST is depicted in bold.

We illustrate such a construction in Fig. |1} We claim that (¢4, S) has a set cover
of size t if and only if there exists a price function p : B — {1,2, 00} for the blue
edges of G whose revenue is n +2m —t — 1.

(=) Suppose (U, S) has a set cover of size t. We construct p as follows: for every
blue edge e = u;S;, we set p(e) to be 1 if S; is in the set cover, and 2 otherwise.

We show that the revenue of p equals n+ 2m —¢ — 1 by running Kruskal’s MST
algorithm starting with an empty tree, T'. Because the blue edges of weight 1
are the lightest, we start with adding them one by one to T such that we add
an edge only if it doesn’t close a cycle in T'. After going over all blue edges of
weight 1, we are guaranteed that T is a tree that spans all the vertices u; for
every 1 = 1,...,n, and every vertex S; such that S is in the set cover. This is
because these vertices are connected through w, with only blue edges of weight
1. So the current weight of T is |T| — 1 = n + ¢t — 1. We next try to add the
red edges of weight 1, but every such edge connects two vertices, u; and wu;1,
already spanned by T and therefore closes a cycle, so we add none of them.
Next we add the blue edges of weight 2. For every S; not in the set cover, we
connect S; to T with one blue edge of weight 2 (the second one will close a cycle).
Therefore, after going over all the blue edges of weight 2, we added a weight of
2(m —t) to T. Furthermore, T spans the entire graph so there is no need to add
any red edges of weight 2. All the edges in T' are blue and the revenue of T is
m+t—1)4+2(m—t)=n+2m—1t—1.

(<) Suppose that there exists a price function p : B — {1,2,00} for the blue
edges of G whose revenue is n+2m —t — 1 for some ¢. By Lemmal[I] there exists
such a function p that is optimal. Choose then p : B — {1,2, 00} as an optimal
price function that minimizes the number of red edges in an MST T.

Assume first that T" contains only blue edges. Then every vertex u; is incident
to some blue edge in T with price 1. Thus the set S’ of those S;’s that are linked
to some blue edge in T with price 1 is a set cover of (i,S). On the other hand,
notice that any S; € S\ &' is a leaf of T, because if there were two blue edges
u; S5, ui4+¢S; in T' then none of them could have a price of 2 because of the cycle
Sjuitiy - . . uieSj. Therefore, the revenue of p equals (n+|S’|—1)+2(m—|S'|) =
n+ 2m — |S8’| — 1. As by hypothesis this is at least n + 2m — ¢t — 1, we deduce
that the set cover S’ has size at most ¢.

Suppose now that T contains some red edge e and denote by X; and X,
the two components of T' — e. There exists some blue edge f = u;5; in G
that connects X; and X5 because the graph (V, B) induced by the blue edges
is connected (because u, is linked with blue edges to every S;). By Lemma (3]
there exists a blue edge f’ = u;/Sjs distinct from f in the unique cycle C'in T+ f
such that c(e) < p(f") < p(f). In particular, we have c¢(e) = 1 and p(f’) = 2. By
an argument given in the preceding paragraph, S is a leaf of T', hence we have
j' = j. Also, every blue edge distinct from f and f’ in C has price 1. But then
the price function p’ obtained from p by setting the price of both f and f’ to 1
is also optimal and has a corresponding MST that uses less red edges than T,
namely T — e + f, a contradiction. This completes the proof. a

The reduction used in Theorem |1] implies a stronger hardness result.
Theorem 2. STACKMST is APX-hard even when c(e) € {1,2} for all e € R.

The above theorem is proved by showing that, for any ¢ > 0, a (1 — ¢)-
approximation for STACKMST implies a (1 4 8¢)-approximation for VERTEX-
COVER in graphs of maximum degree at most 3. The theorem then follows from
the APX-hardness of the latter problem [II13]. The formal details will appear in
the full version of this paper.

4 The Best-Out-Of-k Algorithm

As before, let k£ denote the number of distinct red costs, and let ¢; < cg < -+ < ¢
denote those costs. Without loss of generality, we assume that all weights are
positive (otherwise we contract all red edges of cost 0). Recall that the Best-out-
of-k algorithm is as follows. For each j between 1 and k, set p(e) = ¢; for all
blue edges e € B and compute an MST T}. Then pick j such that the revenue
of T is maximum and output the corresponding feasible solution. We analyze
the approximation ratio ensured by this algorithm.

Theorem 3. Best-out-of-k is a p-approzimation, where

k
Ci— Ci1 cr— 1 Ck — Ch—1
=1 | oo BT
p +; - et

Proof. Consider a minimum cost red spanning tree, that is, an MST obtained
after setting the prices on all blue edges to oco. For j = 1,..., k, let m; denote the
number of red edges of cost ¢; in that tree. Similarly, denote by m;- the number
of red edges of cost ¢; in any MST the follower can select when all blue edges
are for free (i.e., have a price of 0). Then we can bound the optimal revenue as

follows:
k

k k
OPT < cim; — Y eomi =Y ci(m; —mj). (4)
i=1 i=1 =1

Let b; be the number of blue edges in 7}, the MST computed by Best-out-of-k
at step j, and set br1 = 0. Let also R; denote the red edges of cost at most c;.
For E' C E, we denote by G/E’ the graph obtained from G after contraction of
every edge in E’. Because the number of edges in a set F' C E inducing a forest
in G equals |G| — |G/F| (where |H| denotes the number of vertices of graph H),
we obtain

m; = |G/Rj_1| — |G/Rj|,
m; = |G/(Rj—1 UB)| - |G/(R; UB)|,
bj =|G/Rj_1| — |G/(R;-1 U B)|,
and so we deduce
mj —mj =b;j —bji1. (5)

Thus the revenue given by T}, which we denote g;, is exactly

k k
a; = ¢jbj = Y _¢j(bi = biya) = Y _e;(mi —mj).
i=j i=j
Then (5] implies:
mj_m;.:@—qj—“ for1<j<k-—1 and mk—mﬁczqfk.
Cj Cj+1 Ck

Therefore we can rewrite our upper bound on OPT given in in terms of the
gj’s:

Zci(mi_m;) = (Ch_q2>+c2<q2—q3)+'“+cqu
=1 C1 C2 Co C3 Ck
Cop — C Cr — Cl—1
= @+t Q-
C2 Ck

Now consider the index j such that ¢; is maximum. The above equation and
together imply:

OPT ko cilm; —m! — —Cp_
SZz_l imi—mi) a1 c2—a g Ch=Ch1 G (6)
q; q; q; C2 qj Ck qj
Ccy — ¢ Cl — Cl—
<1+ 2 1+...+M:p
C2 Ck

So Best-out-of-k is a p-approximation algorithm. (The last inequality follows
from the maximality of g;.) O

Observe that the above proof shows that Best-out-of-k can be implemented
to run within the same time complexity as an MST algorithm. Indeed, when the
price of all blue edges is set to ¢;, the resulting revenue is Zf: ; ¢i(m;—m;). Thus
we can find which ¢; would maximize the revenue simply by computing the m;’s
and m/’s, which can be done by computing an MST of (V, R) and (V,RU B),
respectively (where the edges in B have price 0).

Note also that if the costs are exactly 1, 2, ..., k, then p equals the kth
harmonic number H, =1+ 1/2 +--- 4+ 1/k. In general, p — 1 can be regarded
as a Riemann (under-)approximation of the integral fccl" % dt. So we have

Ckl
p§1+/ Zdt:1+lnck—ln01:1+an,

C1

where W = ¢ /c1. We also have p < k, because p is the sum of k terms, all
not exceeding 1. Moreover, as we now prove, Equation @ implies the following
result leading to the conclusion that Best-out-of-k is, in particular, a min{k, 3 +
2In|BJ), 1+ In(:)} - approximation.

Proposition 1. Best-out-of-k is a (3 + 21lnb)-approzimation, where b is the
number of blue edges.

Proof. Recall g; is the revenue of the ith tree computed by Best-out-of-k, and g¢;
is their maximum. Let ¢y = 0 and £ be the index where ¢, < 75 and ¢, > 75.
Without loss of generality, we assume g # 0 (otherwise we focus on the last ¢;
that is non-zero) so we have ¢; < ¢ < ¢;. We then deduce

qi§0i~m<%’;bg%foreverylgigf—l. (7)

Equation @ in the proof of Theorem (3| and Equation together imply:

-1 k
PT i1 s i1 O
O Szcz czlg+zcz Ci—1 Qi
q; =1 G 49 G g5
e N S
<y gy ases
= = G
-1
1 1
< —+1+ / —dt
i=1 b ce t

<0b+1+nE <0/b+1+(b%) =£/b+ 1+ 2Inb.
ce

To complete the proof we describe a procedure to simplify the STACKMST
instance in order to ensure ¢/b < 2. First, as long as some vertex v of the graph
has no blue edge incident to it, we contract the cheapest edge in §(v) = {e €
E : v € e}. Next, we remove the most expensive edge in every red cycle in the
graph, until the red edges form a spanning tree. As is easily verified, the resulting
STACKMST instance is equivalent to the original one. That is, the set of blue
edges does not change and the revenue of every price function is the same for
both instances. So for the analysis we can assume that every vertex has some
blue edge incident to it and the red edges form a spanning tree. Therefore, we
have b > n/2 > (k+1)/2 > £/2 and Best-out-of-k is a (342 1n b)-approximation.

O

A natural generalization of STACKMST to matroids is as follows. Given a
matroid (S,Z) with Z partitioned into two sets R and B, and nonnegative costs
on the elements of R, assign prices on the elements of B in such a way that
the revenue given by a minimum weight basis of (S,7) is maximized. We men-
tion that the analysis of Best-out-of-k given in the proof of Theorem [3] extends
swiftly to the case of matroids, yielding a p-approximation algorithm in this
more general setting.

5 Linear Programming Relaxation

In this section, we give an integer programming formulation for the problem
and study its linear programming relaxation. In this section, all costs c¢; are

assumed to be positive. For each j = 1,...,k, and each blue edge e € B we
define a variable x;.. The interpretation of these variables is as follows: think
of a feasible solution p : B — {c1,c¢a,...,cx} and a minimum spanning tree T’

with respect to p. Then z; . = 1 means that the blue edge e appears in T, with
a price p(e) of at least Cj.

We let ¢g = 0 and denote by R; the set of red edges of cost at most ¢;. For ¢
pairwise disjoint sets of vertices C1,...,Cy, we denote by dg(Cy : Cy : -+ : Cy)
the set of blue edges that are in the cut defined by these sets. The integer

programming formulation then reads:

(IP) max Z (¢ —¢j—1)Tje

e€EB
1<j<k

s.t. o omje<t—1 Vi>1, (8)

¢€95(C1:Cax:C) VC1, ...,Cy components of (V, Rj_1);

> we+ap<|PNB| Vf=abe BVj>2, (9)
eepbnB VP ab-path in (BUR;_1) — f;
Tie>Tge> - >ape >0 Vee B (10)
zje € {0,1} Vj,Ve € B. (11)

Proposition 2. The integer program above is a formulation of STACKMST.

As already noted, 25:1 cj(mj —m/) is an upper bound on OPT (see Sec-
tion . The rest of this section is devoted to the LP relaxation of the above IP,

obtained by dropping constraint (11)). We will show that the LP is tractable and

that it provides an upper bound on OPT at least as good as Zf:l cj(mj — m;)
On the other hand, its integrality gap turns out to be k on instances with &k dis-
tinct costs, thus matching the guarantee given by the Best-out-of-k algorithm.
(Let us recall that the integrality gap of the LP on a specified set of instances is

defined as the supremum of the ratio (LP)/(IP) over these instances.)
Proposition 3. The LP can be separated in polynomial time.

Proposition 4. We have (IP) < (LP) < Zf:l cj(mj —mf).

Proposition 5. The integrality gap of the LP is k on instances with k distinct
costs.

Proof. We already know from Proposition 4| that the integrality gap is at most
k on instances with k distinct costs. In order to show that it is also at least k,
we define an instance of STACKMST as follows:

— choose an integer a > 2;

— the graph has a*~! 4+ 1 vertices, the set of whose is denoted V
{U()’ U1y - .- ,'Uak—l};

— the set of blue edges is a spanning star with vy as center, i.e. B = {vgu;|1
i<afl)

— the ith red cost is ¢; = a* 1, for 1 < i < k;

— the components of the graph (V,R;), where R; is the
set of red edges of cost at most ¢ (and Ry 0), are
{1)1, ce ,’Uai}, {UaiJrlv . ,’Uzai}, ey {U(ak—ifl)ai+17 ce ,Uak—iaq‘,}, for
1<i<k-—1,;

— the unique component of (V, Ry) is V.

IN

10

We didn’t define explicitely the set of red edges in the above description. This
is because, as shown by the IP formulation, it is sufficient to give the components
of the graph (V, R;) for i = 1,2,..., k. (Notice for instance that we may always
‘realize’ these components with a set of red edges inducing a path.)

Consider an optimal solution of the STACKMST problem for the instance
defined above, and let T" be a corresponding MST. Look at any blue edge e in T,
of price ¢;, and let C, be the unique component of (V —wvg, R;_1) that contains an
endpoint of e. No other blue edge of T has an endpoint in C¢, because otherwise
T has not minimum weight. Thus, if e and f are two distinct blue edges of T,
then C. N Cy = (. Noticing that the price given to e is ¢; = a'~! = |C,|, we
deduce that the revenue given by T is

Z |Ce| < a*1L.

ecBNT

Moreover, a revenue of a*~! is easily achieved, set for instance all blue edges to
the same price ¢; for some i € {1,...,k}. Hence, (IP) = a*~1.

We now define a feasible solution z* for the LP. The point * will have the
property that z7 . = a7 ; for 1 <7 <k and all e, f € B. We thus let y; = 27, for
e € B. The constraints on the y;’s imposed by the LP are then:

a "ty <1 for 1< i<k
y1+y <1 for 2 <i < k;
Y1 2y2 > >y = 0.

Set y1 = (a —1)/a and y; = 1/a’~! for 2 < i < k, which satisfies the above
constraints. The value of the objective function of the LP for the point x* is

LP(z*) = Z (ci —cim1)zj,

eeB
1<i<k

p—1 [a—1 Z 1 k—1 k—2
=a + (ai_l — ai_Q)F =ka — ka .
2<i<k

Therefore, the ratio LP(z*)/(IP) tends to k as a — oo, which implies the claim.
O

To conclude this section, let us mention that we know of additional families

of valid inequalities that cut the fractional point used in the above proof. We
leave the study of those for future research.

Acknowledgments

We thank Martine Labbé and Gilles Savard for preliminary discussions con-
cerning the Stackelberg minimum spanning tree problem. We also thank Martin
Hoefer for his comments which led us to prove Proposition

11

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. The-
oret. Comput. Sci., 237(1-2):123-134, 2000.

E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter. A survey on
networking games in telecommunications. Computers and Operations Research,
33(2):286-311, 2006.

J. Cardinal, M. Labbé, S. Langerman, and B. Palop. Pricing of geometric trans-
portation networks. In Proc. Canadian Conference on Computational Geometry
(CCCG), pages 92-96, 2005.

R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous
selfish users. In Proc. Symposium on Theory of Computing (STOC), pages 521-530,
2003.

K. Dhamdhere, R. Ravi, and M. Singh. On two-stage stochastic minimum spanning
trees. In Proc. Integer Programming and Combinatorial Optimization (IPCO),
volume 3509 of Lecture Notes in Computer Science, pages 321-334. Springer, 2005.
D. Eppstein. Setting parameters by example. SIAM Journal on Computing,
32(3):643-653, 2003.

D. Ferndndez-Baca, G. Slutzki, and D. Eppstein. Using sparsification for paramet-
ric minimum spanning tree problems. Nordic J. Computing, 3(4):352-366, 1996.
D. Granot and G. Huberman. Minimum cost spanning tree games. Mathematical
Programming, 21(1):1-18, 1981.

A. Grigoriev, S. van Hoesel, A. van der Kraaij, M. Uetz, and M. Bouhtou. Pricing
network edges to cross a river. In Proc. Workshop on Approzimation and Online
Algorithms (WAOA), number 3351 in Lecture Notes in Computer Science, pages
140-153, 2005.

J. D. Hartline and V. Koltun. Near-optimal pricing in near-linear time. In Proc.
Workshop on Algorithms and Data Structures (WADS), pages 422-431, 2005.

A. Karlin, D. Kempe, and T. Tamir. Beyond VCG: Frugality of truthful mech-
anisms. In Proc. 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 615-626, 2005.

M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its appli-
cation to optimal highway pricing. Management Science, 44(12):1608-1622, 1998.
C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. System Sci., 43(3):425-440, 1991.

S. Roch, G. Savard, and P. Marcotte. An approximation algorithm for Stackelberg
network pricing. Networks, 46(1):57-67, 2005.

T. Roughgarden. Stackelberg scheduling strategies. SIAM Journal on Computing,
33(2):332-350, 2004.

C. Swamy. The effectiveness of Stackelberg strategies and tolls for network con-
gestion games. In Proc. Symposium on Discrete Algorithms (SODA), 2007. to
appear.

S. van Hoesel. An overview of Stackelberg pricing in networks. Research Memo-
randa 042, Maastricht : METEOR, Maastricht Research School of Economics of
Technology and Organization, 2006.

H. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Ver-
lag von Julius Springer, Vienna, 1934.

12

	The Stackelberg Minimum Spanning Tree Game
	Jean Cardinal 1, Erik D. Demaine 1, Samuel Fiorini 1, Gwenaël Joret 1, Stefan Langerman 1, Ilan Newman 1, Oren Weimann

