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Abstract

We show how to realize a stacked 3D polytope (formed
by repeatedly stacking a tetrahedron onto a triangular
face) by a strictly convex embedding with its n vertices
on an integer grid of size O(n4)× O(n4)× O(n18). We
use a perturbation technique to construct an integral 2D
embedding that lifts to a small 3D polytope, all in linear
time. This result solves a question posed by Günter M.
Ziegler, and is the first nontrivial subexponential up-
per bound on the long-standing open question of the
grid size necessary to embed arbitrary convex polyhe-
dra, that is, about efficient versions of Steinitz’s 1916
theorem. An immediate consequence of our result is
that O(log n)-bit coordinates suffice for a greedy rout-
ing strategy in planar 3-trees.

1 Introduction

Steinitz’s Theorem [25, 33] states that the graphs of 3D
polytopes1 are exactly the planar 3-connected graphs.
In particular, every planar 3-connected graph can be
realized by a 3D polytope. The original proof is con-
structive, transforming the graph by a sequence of local
operations down to a tetrahedron. Unfortunately, the
resulting polytope construction requires exponentially
many bits of accuracy for each vertex coordinate. Stated
another way, this construction can place the n vertices
on an integer grid, but that grid may have dimensions
doubly exponential in n [15].

How large an integer grid do we need to embed a
given planar 3-connected graph as a polytope? This
question goes back at least fifteen years as Problem 4.16
in Günter M. Ziegler’s book [33]; he wrote that “it is
quite possible that there is a quadratic upper bound” on
the length of the maximum dimension. The best bound
so far is exponential in n, namely O(27.21n) [5, 18];
see below for the long history. The central question
is whether a polynomial grid suffices, that is, whether
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1A polytope is a convex polyhedron, and its graph (also known

as 1-skeleton) is formed by its vertices and edges.

Figure 1: A stacked polytope obtained by two stacking
operations.

Steinitz’s Theorem can be made efficient. For compari-
son, a planar graph can be embedded in the plane with
strictly convex faces using a polynomial-size grid [3]. In
this paper, we give the first nontrivial subexponential
upper bound for a large class of polytopes.

Stacked polytopes. A stacked polytope is a 3D
polytope that is constructed by a sequence of “stacking
operations” applied to a triangle. A stacking operation
glues a tetrahedron atop a triangular face f of the poly-
tope, by identifying f with a face of the tetrahedron,
while maintaining the convexity of the polytope. Thus
a stacking operation removes one face f and adds three
new faces having a new common vertex. We call this
new vertex stacked on f . Stacked polytopes seem a nat-
ural class to study, because the stacking operation is a
special case (perhaps the simplest) of the operations in
Steinitz’s proof. Thus our solution for stacked polytopes
has potential to be generalized to general 3D polytopes.
The graphs of stacked polytopes are the planar 3-trees,
that is, maximal planar graphs of treewidth 3.

Our results. We present an algorithm that real-
izes a stacked polytope on a grid whose dimensions are
polynomial in n. Our main result is the following:

Theorem 1. Every planar 3-tree G can be realized as
a stacked polytope whose coordinates are nonnegative
integers. The largest x and y coordinates are 10n4 and
all z coordinates are smaller than 224,000n18. The grid
embedding can be computed in linear time.

Geometric routing. One application of this em-
bedding is a geometric routing scheme that uses small
coordinates: O(log n) bits per vertex.

To send a message over a network, an easy strategy
is to send the message at each step to a node that is
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closer to the target than the current node. This strategy
is known as greedy or geometric routing. It suffices for
every node to know the coordinates of its neighbors and
the target. A greedy embedding of a graph guarantees
that geometric routing works, that is, messages always
eventually reach their destination.

In their seminal paper introducing geometric rout-
ing, Papadimitriou and Ratajczak [16] noticed that con-
vex 3D polytopes are greedy embeddings of planar 3-
connected graphs. Later Moitra and Leighton [14] found
a way to compute a 2D greedy embedding for such
graphs. Their embedding uses integer coordinates that
are exponential in the number n of nodes, and hence the
space to store the Θ(n)-bit coordinates for the neigh-
bors and the target node is likely too big to justify ge-
ometric routing via these embeddings. Goodrich and
Strash [10] extended the results of [14] and found a 2D
greedy embedding with succinct representation of its
coordinates. The 2D embeddings, however, have unde-
sirable features; for example, they may have crossings
and they are only determined by a spanning tree of the
graph. By using an embedding of the graph as a 3D
polytope, we obtain a more natural greedy embedding,
and using our results, the coordinates of each vertex can
be represented using O(log n) bits.

Related work. Several algorithms have been de-
veloped to realize a given graph as a 3D polytope. Most
of these algorithms are based on the following two-stage
approach. The first stage computes a plane 2D embed-
ding. To extend the 2D drawing to a 3D polytope, the
2D drawing must fulfill a criterion which can be phrased
as an “equilibrium stress condition”. Roughly speaking,
replacing every edge of the graph with a spring, the re-
sulting system of springs must be in a stable state for the
2D embedding. Plane drawings that fulfill this criterion
for the interior vertices can be computed as barycentric
embeddings, i.e., by Tutte’s method [28, 29]. The main
difficulty is to guarantee the equilibrium condition for
the boundary vertices as well, because in general this
goal is achievable only for certain locations of the outer
face. The second stage computes a 3D polytope by as-
signing every vertex a height expressed in terms of the
spring constants of the system of springs.

The two-stage approach finds application in a series
of algorithms [6, 8, 11, 15, 18, 19, 24]. The first result
that improves the induced grid embedding of Steinitz’s
construction is due to Onn and Sturmfels [15]; they

achieved a grid size of O(n160n
3

). Richter-Gebert’s

algorithm [19] uses a grid of size O(218n
2

) for general
polytopes, and a grid of size O(25.43n) if the graph
of the polytope contains at least one triangle. These
bounds were improved by Ribó [17] and later by Ribó,
Rote, and Schulz [18]. The last paper expresses an

upper bound for the grid size in terms of the number of
spanning trees of the graph. Using the recent bounds
of Buchin and Schulz [5] on the number of spanning
trees, this approach gives an upper bound on the grid
size of O(27.21n) for general polytopes and O(24.83n)
for polytopes with at least one triangular face. These
bounds are the best known to date.

Zickfeld showed in his PhD thesis [32] that it is
possible to embed very special cases of stacked polytopes
on a grid polynomial in n. First, if each stacking
operation takes place on one of the three faces that
were just created by the previous stacking operation
(what might be called serpentine), then there is an
embedding on the n × n × 3n4 grid. Second, if we
perform the stacking in rounds, and in every round we
stack on every face simultaneously (what we call the
balanced stacked polytope), then there is an embedding
on a 4

3n ×
4
3n × O(n2.47) grid. Zickfeld’s embedding

algorithm for balanced stacked polytopes constructs a
barycentric embedding. Because of the special structure
of the underlying graph the 2D embedding remarkably
fits on a small grid.

Every stacked polytope can be extended to a bal-
anced stacked polytope at the expense of adding an
exponential number of vertices. By doing so, Zick-
feld’s grid embedding for the balanced case induces
a O(23.91n) grid embedding for general stacked poly-
topes. From our experience, the most difficult-to-embed
stacked polytopes are “almost balanced”. To construct
such a polytope, we perform the stacking operations in
rounds. In each round, we stack a vertex on two of the
three faces that share a vertex that was introduced in
the previous round.

Little is known about the lower bound of the grid
size. An integral convex embedding of an n-gon in the
plane needs an area of Ω(n3) [1, 2, 27]. Therefore, real-
izing a 3D polytope with an (n− 1)-gonal face requires
at least one dimension of size Ω(n3/2). For simplicial
polytopes2 (and hence stacked polytopes), this lower-
bound argument does not apply. Because every orthog-
onal projection of a 3D polytope decomposes into two
noncrossing drawings, the projections into the xy and
yz plane have to contain a noncrossing drawing of at
least n/2 vertices. Thus we know that the coordinates
must be at least Ω(n).

The situation in higher dimensions is more com-
plicated. Already in dimension 4, there are polytopes
that cannot be realized with rational coordinates, and a
4-polytope that can be realized on the grid might re-
quire coordinates that are doubly exponential in the
number of its vertices [33]. Moreover, it is NP-hard

2A 3D polytope is simplicial if its faces are all triangles.



even to decide whether a lattice is a face lattice of a
4-polytope [19, 20].

Alternative approaches for realizing general poly-
topes come from the original proof of Steinitz’s the-
orem, as well as the Koebe–Andreev–Thurston circle-
packing theorem, which induces a particular polytope
realization called the canonical polytope [33]. Das and
Goodrich [7] essentially perform many inverse Steinitz
operations on many independent vertices in one step,
resulting in a singly exponential bound on the grid
size. The proof of the Koebe–Andreev–Thurston circle-
packing theorem relies on nonlinear methods and makes
the features of the 3D embedding obtained from a cir-
cle packing intractable; see [23] for an overview. Lo-
vasz [12] studied a method for realizing polytopes using
a vector of the nullspace of a “Colin de Verdière ma-
trix” of rank 3. It is easy to construct these matrices
for stacked polytopes; however, without additional re-
quirements, the computed grid embedding might again
need an exponential-size grid.

Our approach. At a high level, we follow the pop-
ular two-stage approach: we compute a 2D embedding
and then lift it to a 3D polytope. Usually in past work,
the 2D embedding comes from as a barycentric em-
bedding using Tutte’s method. This construction gives
the equilibrium condition for the interior vertices for
free. However, a barycentric embedding might require
an exponential-size grid. To overcome this difficulty,
we produce a special 2D embedding by mimicking the
stacking operation in the plane and maintaining an equi-
librium stress throughout the construction. The result-
ing embedding might require a large grid as well; how-
ever, we construct the triangulation G so that a small
perturbation preserves the noncrossing property of the
embedding. Moreover, the small perturbation changes
the equilibrium stress only by a small amount. In or-
der to make our approach work, we have to construct
the (original, not perturbed) 2D embedding so that the
smallest and largest equilibrium stresses are polynomi-
ally related.

To control the 2D embedding, we prescribe the ar-
eas of the faces. For a fixed outer face, these constraints
determine a drawing of a planar 3-tree in the plane
uniquely. Also the equilibrium stress can be expressed
in terms of the face areas. Initially, all face areas are set
to 1, but to prevent large stresses, we increase the areas
in some faces to get a more “balanced” 2D embedding.
To see which faces must be blown up, we make use of
a decomposition technique from data structural analy-
sis called heavy-light edge decomposition [26]. Based on
this decomposition, we subdivide G into a hierarchy of
simple stacked polytopes, which we use to define the
face areas.

2 Stacked Polytopes

Let G be the graph of a stacked polytope P . We denote
the vertex set of G by V = {v1, v2, . . . , vn} and its edge
set by E. Because G is planar and 3-connected, its faces
are uniquely determined [31]. We denote the triangle
with which we started the stacking as the outer face f0.
By convention, we label the vertices of f0 as v1, v2, v3.
During the construction of P , we may introduce a face
that will later vanish after some stacking operation; we
call such face a subface.

2.1 Tree representation. We associate every pla-
nar 3-tree G with a rooted ternary tree T (G) that en-
codes the sequence of stacking operations that led to G.
The internal nodes of T (G) represent the subfaces of G,
and the leaves of T (G) the faces of G. See Figure 2 for
an example. The three children of an internal node rep-
resent the three (sub)faces obtained by stacking a vertex
on that subface. Every subtree of T (G) corresponds to
a subgraph of G that is also a planar 3-tree. Notice
that a tree T (G) does not specify G uniquely. A unique
specification can be achieved by ordering the tree edges
such that the left/middle/right child is associated with
a unique (sub)face. However, for the scope of this pa-
per, a bijection between G and T (G) is not necessary,
because we use T (G) as a simplified description of the
structure of G.

f1
f2 f3

f1

f2 f3

f5

f4

f6

f7 f8

f9
f10

f11

f9 f11

f4

f10

f5 f6

f7 f8

Figure 2: The graph G of a stacked polytope (on the
left) and its associated ternary tree T (G) (on the right).

2.2 2D drawings of planar 3-trees. Let w : F →
R+ be a function that assigns a positive integer to
every face of G. We aim at constructing a 2D drawing
such that every face f of G is realized with area w(f).
We extend the notion of w to the subfaces s of G by
w(s) :=

∑
{w(f) | leaf f is in the subtree rooted at s}.

A planar straight-line drawing is described by a function
p that assigns 2D coordinates to every vertex. For
simplicity, we write p(vi) =: pi = (xi, yi). The following



lemma also appears in [4], including an analysis of the
induced resolution.

Lemma 1. Let G be a planar 3-tree and w a weight
function for its faces. Then G admits a 2D drawing
such that every face in G has area w(f). The embedding
can be computed in linear time.

Proof. We construct the 2D drawing by first drawing
the outer face and then performing the stacking oper-
ations step by step. During the construction we guar-
antee the invariant that every subface s, realized so far,
has area w(s). Each stacking operation inserts a vertex
v inside the subface s and creates three new (sub)faces.
We can always locate v inside s such that w(s) will
be partitioned as described by the weights of the new
(sub)faces. The feasible location can be expressed in
terms of barycentric coordinates and hence be computed
in O(1) time per stacked vertex. 2

2.3 Lifting a stacked polytope. Once we obtain
a 2D drawing p of G, we can assign every vertex vi
a suitable height hi. The function h : V → R that
assigns every vertex vi the height hi := h(vi) is called
a lifting. By construction, the vertices of the outer face
will always remain in the z = 0 plane.

To study the space of liftings, we introduce the
concept of “equilibrium stress”:

Definition 1. An assignment ω : E → R of scalars
(denoted by ω(i, j) = ωij = ωji) to the edges of G is
called a stress. The stress ω is an equilibrium stress
for an embedding p if, for every vertex vi, we have∑

j:(i,j)∈E

ωij(pi − pj) = 0.(2.1)

In the 19th century, James Clerk Maxwell observed
that there is a bijection between 2D drawings with
equilibrium stress and projections of 3D polytopes [13],
also known as the Maxwell–Cremona correspondence.

Theorem 2. (Maxwell, Whiteley) Let G be a pla-
nar 3-connected graph with 2D drawing p and designated
outer face f0. There exists a one-to-one correspondence
between

A) equilibrium stresses ω for G at p; and

B) liftings in R3, where face f0 remains in the z = 0
plane.

The proof that A induces B (which is the important di-
rection for our purpose) is due to Walter Whiteley [30].
An easy way to compute the lifting from the stressed
graph can be found in Richter-Gebert’s book [19, Chap-
ter 13]. We review this method in Appendix A.

Every height assignment results in some spatial
polyhedral surface on the lifted points, but only special
heights lift p to a convex surface. However, we can
characterize all stresses that lift to a convex surface by
their sign patterns.

Lemma 2. Let G be a planar 3-connected graph with
noncrossing straight-line embedding p that has an equi-
librium stress ω. If ωij > 0 for every interior edge (i, j),
then the lifting from the Maxwell–Cremona correspon-
dence yields a convex 3D polytope.

A proof can be found in [19].
Now let us study the space of equilibrium stresses

for stacked polytopes with embedding p. The smallest
(full-dimensional) 3D stacked polytope is the tetrahe-
dron. Its graph is K4, the complete graph on four ver-
tices. For a fixed 2D drawing of K4 (with boundary
face v1, v2, v3), we can assign the vertex v4 any positive
height to describe a convex lifting. Thus the space of
liftings is 1-dimensional. As a consequence the equilib-
rium stresses for an embedding of K4 are unique up to
a multiplication with a positive scalar. The equilibrium
stresses can be described in terms of the areas of the
faces in the 2D drawing of K4. Let [i, j, k] denote twice
the (signed) area of the triangle pi,pj ,pk:

[i, j, k] := det

xi xj xk
yi yj yk
1 1 1

 .

The following definition follows the presentation
of [21] with slight modifications:

Definition 2. Let pi, pj, pk, pl be four points in the
plane in general position. Let G4 be the complete graph
realized on these points. For an edge (i, j), we define
the atomic equilibrium stress for the drawing of G4 by

ωkl
ij := [i, k, l] [j, k, l],

for {k, l} = {1, 2, 3, 4} \ {i, j}.

The atomic equilibrium stress is positive on the interior
edges and negative on the boundary edges.

Every equilibrium stress on a 2D drawing of G
can be expressed as a linear combination of the atomic
stresses of several K4’s. In fact, a stacking operation can
be viewed as adding a K4 with a scaled atomic stress to
an already existing graph with equilibrium stress. More
formally, we consider

ωij =
∑

{i,j,k,l}∈S

αijkl ω
kl
ij ,(2.2)

where S lists the indices of the 4-tuples that occurred
in the stacking operations during the construction of G.



The parameters αijkl are the coefficients of the linear
combination and define the equilibrium stress uniquely.
Throughout this paper, we consider only positive values
for these coefficients.

For an interior edge (i, j), ωij receives one positive
charge from one atomic stress; all other atomic stresses
contribute a negative charge. In order to define a stress
that corresponds to a lifted convex polytope, we have to
adjust the coefficients α so that the stress ω is positive
on the interior edges.

3 The Embedding Algorithm

The embedding algorithm follows the following high-
level approach. First we draw G with a noncrossing
straight-line drawing. As a preprocessing step, we
prescribe the desired face areas of the 2D drawing
in order to get a “balanced” drawing and derive the
coefficients α that specify the right equilibrium stress
for the drawing. We then compute a second 2D
embedding by carefully rounding the coordinates. The
rounding will affect the atomic stresses, but not by
much. Thus, after computing the induced lifting, we
obtain a stacked polytope with small integer x and y
coordinates. However, the heights are not yet integral.
After scaling the coefficients α with a sufficiently large
common factor, we round them to integers. This induces
an integral equilibrium stress, and therefore integer
heights in the lifting. It remains to show that the
convexity along the lifted edges is preserved.

3.1 Balancing. The crucial step in the embedding
algorithm is the preprocessing where we define the the
face areas w(f) of the 2D embedding, but also obtain
the coefficients α that will determine the lifting.

We use a tree decomposition of T (G) to define both
face areas and α coefficients. Consider an interior node
ni in T (G). Let nk be the child of ni whose subtree has
the largest number of leaves (compared to the subtrees
of the other children), breaking ties arbitrarily. We call
the edge (i, k) a heavy edge, and the edges to the other
two children of ni light edges. The heavy edges induce
a decomposition of T (G) into paths, also called heavy
paths; see Figure 3 on the left.

We extend each heavy path by re-attaching its child
light edges, resulting in a graph known as a caterpillar.
If a node of a caterpillar lies on a heavy path, we call
it a spine node; otherwise, it is tree node. The root of
the caterpillar is the spine node with shortest distance
in T (G) to the root of T (G). We label the spine nodes
s1, s2, . . . , s⊥ starting from the root of the caterpillar.
We denote the tree nodes adjacent to si by ti+1 and t′i+1.
(It does not matter which of the two children gets which
label.) The “last“ spine node s⊥ has no adjacent tree

nodes. We store in every tree node t a pointer link(t)
to the caterpillar rooted at t. We call the described
tree decomposition the heavy caterpillar decomposition
of T (G). Figure 3 shows an example on the right.

Figure 3: The tree T (G) and its heavy edges (drawn
bold) on the left. On the right we depicted the induced
heavy caterpillar decomposition

Every caterpillar C in the heavy caterpillar decom-
position is a rooted ternary tree, which is a subgraph
of T (G). A 2D drawing of C is a drawing of a stacked
polytope as a triangulation whose tree representation
coincides with C, and whose combinatorial structure re-
spects the face structure of G restricted to the subfaces
of C. Furthermore, the drawing of C must respect the
face areas specified by w. The level of a caterpillar is
the number of light edges traversed by walking in T (G)
from the caterpillar’s root to the root of T (G). The
level of a caterpillar is at most lg n.

The tree nodes of the caterpillars define rooted
subtrees of T (G). Every node in T (G) corresponds to
a (sub)face f . The face areas of the 2D drawing are
computed with the help of the tree decomposition. With
each node ni in T (G), we associate a weight w(ni) that
corresponds to the weight of the subface represented
by ni. By definition, w(si−1) = w(si) + w(ti) + w(t′i),
and w(si) ≥ w(ti), w(t′i). For each spine node ns,
we store the α coefficient that corresponds to the K4

that was inserted by stacking a vertex on the subface
represented by ns.

To simplify further constructions, we show how to
adjust the weights w such that, for all tree vertices, we
have w(ti) = w(t′i). We call this process balancing. We
start by assigning all faces ofG a weight of 1, and update
the accumulated weights of the subfaces appropriately.
We then update the weights recursively. Assume that
we process caterpillar C and w(ti) = w(t′i) holds for
all caterpillars “below” C. For every pair of tree nodes
ti, t
′
i in C, we increase the weight of the smaller tree,

say ti, such that both weights are equal. To maintain
consistency, we have to increase the weight in one of
the (sub)faces of link(ti). To avoid recursive updates,



we pick the face s⊥ in link(ti) and increase its weight.
We also have to update the weight of the tree node t
with link(t) = C. Further updating is not necessary
because we process level by level.

Algorithm 1 gives pseudocode for this algorithm.
To compute the weights w, we execute BALANCE(C0),
where C0 is the caterpillar at level 0.

Algorithm 1 BALANCE(C).

Input: A caterpillar C from the heavy caterpillar de-
composition of T (G).

Output: Weights for the nodes of T (G).
1: for all ti, t

′
i in C do

2: BALANCE(link(ti))
3: BALANCE(link(t′i))
4: if w(ti) > w(t′i) then
5: relabel ti ↔ t′i
6: end if
7: w(ti) = w(t′i)
8: add (w(t′i)−w(ti)) to the weight of s⊥ in link(ti)

9: add (w(t′i)− w(ti)) to the weight of link−1(C)
10: end for

How much does calling BALANCE(C0) increase the
weight of the outer face? Let C be a caterpillar of level l
and assume we have balanced all caterpillars with larger
level. By adjusting the weights in C, we at most double
the current weight of the caterpillar. The caterpillars in
each level behave independently. Hence, for every level,
the sum of the weights at most doubles. Therefore the
total increased weight is

(3.3) w(f0) < 2 · 2 · · · · · 2︸ ︷︷ ︸
lgn times

n = n2.

For convenience, we increase the weight of s⊥ in the
topmost caterpillar such that w(f0) is exactly n2.

The coefficients α are defined as follows. Let vi be
the vertex that is stacked on the face vjvkvl. We have to
specify the coefficient αijkl that describes the amount
of the stress on the K4 realized by these four vertices.
Let su represent the spine node of the subface vjvkvl in
the caterpillar C. We define

αijkl :=
1

w(tu)
=

1

w(t′u)
, for tu, t

′
u in C.

3.2 A quantitative analysis of the stress. We
show in this subsection that the stress ω defined by
our choice of coefficients α and 2D drawing is positive
on every interior edge and hence induces a lifting to a
convex polytope. More importantly, we show that the
stresses are within a polynomial range.

The stress on an interior edge (i, j) consists of a
positive part ω+

ij and a negative part ω−ij := ωij − ω+
ij .

The positive part comes from a single (weighted) atomic
stress; the negative part might be a sum of several
atomic stresses. We assume by symmetry that the
vertex vi was stacked after vj . The positive part ω+

ij

comes from an atomic stress defined from by stacking
vi inside a subface that contains vj .

Lemma 3. Let vi be introduced by stacking vi to the
subface f spanned by vj, vx, and vy. Then

ω+
ij ≥ w(f).

Proof. The stacking of vi is recorded in some caterpil-
lar, say Ci, in the heavy caterpillar decomposition of
T (G). Let vi be the common vertex of subfaces rep-
resented by sk, tk, t

′
k in Ci. We call an edge in the 2D

drawing of a caterpillar a spine edge if its two incident
faces are represented as tree nodes in the caterpillar.

Case 1: (i, j) is a spine edge in Ci. In this case

ω+
ij = αijxy ω

xy
ij = αijxy [i, x, y] [j, x, y]

=
w(sk)w(sk−1)

w(tk)
≥ w(sk−1) = w(f).

Case 2: (i, j) is a not spine edge in Ci. In this case

ω+
ij = αijxy ω

xy
ij = αijxy [i, x, y] [j, x, y]

=
w(sk−1)w(tk)

w(tk)
= w(sk−1) = w(f).

2

The next lemma bounds the influence of all atomic
stresses that are defined by stacking operations within
a subface.

Lemma 4. Let f be a subface in G with boundary
vertices vi, vj , vk. Let ωf

ij be the (negative) stress on the
boundary edge (i, j) induced by the linear combination of
the atomic equilibrium stresses within f . Further let f−

be the face contained in f with w(f−) minimal. Then

−ωf
ij < w(f)− w(f−).

Proof. Every atomic stress “within” f that contributes
a negative charge is defined by a K4 that contains vi,
vj , and two other vertices. Because the 2D drawing of
G is planar, the K4’s defining these charges are nested;
see Figure 4. We name two remaining vertices of the K4

that appears in the lth position of the nesting vkl
and

vkl+1
such that vk1

= vk. To determine ωf
ij , we have to

sum up all αijklkl+1
ω
kl,kl+1

ij . Let αijxyω
xy
ij be one of the

summands (x = kl, y = kl+1). By Definition 2,

ωxy
ij = [i, x, y] [j, x, y].



vi

vj

vk1

vk2

vk3vk4

Figure 4: The part of G that contributes to ωf
ij , drawn

as dark edges.

The value of αijxy depends on the heavy caterpillar
decomposition. We know that the stacking of vy is
recorded in some caterpillar C, which also defines the
corresponding coefficient α. In particular, C has a spine
node, say sq−1, that represents the subface spanned
by vi, vj , vx. The other three faces of the K4 are
represented in C by tq, t

′
q, and sq, but we do not know

which face belongs to which node in C. We distinguish
three cases; refer to Figure 5.

Case 1: sq represents the face spanned by
vi, vj , vy. In this case we have that αijxy = |1/[ixy]|,
and therefore αijxyω

ky
ij = −|[jky]|.

Case 2: sq represents the face spanned by
vi, vx, vy. In this case we have that αijxy = |1/[jxy]|,
and therefore αijxyω

ky
ij = −|[ixy]|.

Case 3: sq represents the face spanned by
vj , vx, vy. In this case we have that αijxy = |1/[ixy]|,
and therefore αijxyω

ky
ij = −|[jxy]|.

In all three cases, the negative charge equals the
area of some subface in the 2D drawing. Because the
K4’s are nested, the interior of all subfaces defining
these charges are disjoint. Hence, in total, we cannot
exceed [i, j, k]. Moreover, at least two faces are missing

in the sum and thus −ωf
ij < w(f)− w(f−). 2

We can now combine the results of Lemmas 3 and 4:

Lemma 5. Let ω be the equilibrium stress for G defined
for our choice of the 2D drawing and coefficients α.
Further let f− be the face in G with w(f−) minimal.

1. For every interior edge (i, j), we have that w(f0) >
ωij > 3w(f−).

2. For every boundary edge (i, j), we have that −ωij <
w(f0).

Proof. To get an estimate for ωij on an interior edge
(i, j), we add ω+

ij + ω−ij . Assume by symmetry that

vi

vj

vx

vy

vi

vj

vx

vy

vi

vj

vx

vy

sq

sq

sq

case 1 case 2

case 3

Figure 5: The three cases discussed in the proof of
Lemma 4. The shaded area indicates the negative
charge contributed to ωf

ij .

we stacked vi after vj , and created the subfaces f1,
f2, and f3 by stacking vi. By Lemma 3, ω+

ij is larger
than w(f1) + w(f2) + w(f3). Suppose that f1 and f2
are incident to (i, j). All faces contained in f1, f2 that
are incident to (i, j) contribute something to ω−ij . By

Lemma 4, −ω−ij < w(f1)+w(f2)−2w(f−) and therefore

ωij > 2w(f−) + w(f3) ≥ 3w(f−). By Lemma 3, no
stress on an interior edge is larger than w(f0). Lemma 4
induces a bound on the stress on the boundary, namely
w(f0). 2

3.3 Perturbation.

3.3.1 The general idea. Let us pause to recap
what we have achieved so far. We defined an area
assignment and an equilibrium stress. The prescribed
areas uniquely define a 2D embedding once we fix the
location of the boundary face. The equilibrium stress
is independent of our choice of the boundary face.
Lemma 5 showed two properties. (1) The stress is not
too small on the interior edges. This implies that the
“creasing” is not too small, so the edges in the lifting
remain convex after a small perturbation. (2) The
absolute stress on the boundary is not too large, so the
dihedral angle between the outer face and its adjacent
interior face is small. This indicates that the lifting has
small heights.

For convenience, we multiply all prescribed face
areas by 1/2. Suppose we realize the boundary face



at p1 = (0, 0), p2 = (n, 0), and p3 = (0, n). Thus the
area of the boundary face has the right area, namely
n2/2. The smallest face has area at least 1/2. Therefore,
the triangular faces in the 2D embedding are not too
skinny. In particular, the longest edge is at most

√
2n,

and thus the smallest height in a triangular face is at
most 1/(

√
2n). As a consequence, a small perturbation

(i.e., adding a sufficiently small polynomially related
vector to each point) cannot make cause faces to “flip
over”, and hence such a perturbation will introduce no
crossings. Moreover, the triangle areas will change only
by a small polynomial, which implies that the atomic
stresses change also only by a small polynomial. Instead
of rounding to a fine grid, we select an appropriately
large boundary face (including scaling the prescribed
face areas) and then round to integer grid points.

So far we have obtained integer 2D coordinates but
not necessarily integer heights in the lifting. We use
the following idea to construct integer heights. The
coefficients α are rational numbers between 0 and 1. All
atomic stresses are a product of two integers, if the 2D
coordinates are integers. If furthermore the coefficients
α are integral, then the induced equilibrium stress is
integral as well. An integral equilibrium stress with
integer grid embedding yields integer heights, because
the computation of the heights boils down to adding
and multiplying integers (see Appendix A). Our plan
is to round the coefficients α. In order to preserve
the properties of the induced equilibrium stress, we
have to scale all coefficients αijkl by a common factor.
For every interior edge (i, j), only one atomic stress is
positive on (i, j); all other atomic stresses are negative.
However, the positive part dominates the negative part.
By scaling the coefficients α and rounding them down,
we might decrease the positive atomic stress. By picking
a sufficiently large scaling factor, the decrement will not
affect the properties of the lifting, and preserve the sign
pattern of the induced equilibrium stress.

3.3.2 Perturbation by rounding in detail. We
locate the outer face at p1 = (0, 0), p2 = (10n4, 0),
and p3 = (0, 10n4). Thus the outer face has area
w(f0) = 50n8. This implies that we have scaled the
original area assignment by a factor of 50n6. As a
consequence, the smallest face f− has area at least
w(f−) = 50n6. On the other hand, the longest edge in
the drawing is at most `max := 10

√
2n4. From now on

we refer to our particular choice of the (scaled) drawing
as p.

To obtain small coordinates, we round every vertex
down. Thus we obtain a new drawing r, defined by
ri := (bxic, byic). The new drawing changes the areas of
all subfaces and hence the atomic equilibrium stresses.

As a consequence, the stress ω defined by the coefficients
α will change as well. Let ω̄ denote the modified stress
(defined by the same coefficients α).

Lemma 6. Let ∆ be a triangle with area A and longest
side length at most `. Suppose we perturb each corner
of ∆, by adding a vector whose Euclidean norm is at
most 1. For the area A′ of the perturbed triangle, we
have

|A−A′| ≤ 3
2 (`+ 1).

Proof. Let p1,p2,p3 be the corners of ∆, with `
realized between p1,p2. We perturb the points one
after another. Let hi be the height of pi relative to
its opposing triangle edge gi. By perturbing only one
point pi, we change hi by at most ±1, while leaving gi
unaltered. Hence the new area Ã is bounded by

A− `

2
≤ A− gi

2
≤ Ã ≤ A+

gi
2
≤ A+

`

2
.

Now consider the effect of perturbing all three
points. First we perturb p3 and increase or decrease the
area A by at most `/2. Perturbing p3 will also change
g2 and g3, but only by an absolute value of at most 1 (by
the triangle inequality). As a consequence, the longest
triangle edge length after perturbing the first vertex is
at most ` + 1. The perturbation of p2 causes then an
absolute change of the area by at most (`+1)/2. Finally
we perturb p1. The longest edge after perturbing the
second vertex is at most ` + 2. Hence, the absolute
change of the area is at most (` + 2)/2, and the total
change of A is bounded by

A′ = A± `

2
± `+ 1

2
± `+ 2

2
= A± 3

2
(`+ 1).

2

A direct implication of Lemma 6 is the following:

Lemma 7. The drawing r of G is crossing-free.

Proof. In order to introduce a crossing, one of the
triangles would have to flip over. Such a flip could
happen only if there were a perturbation, by vectors of
Euclidean length less than 1, such that the area of one
triangle becomes zero. The area of the smallest triangle
is 50n6, which is (for n ≥ 1) larger than the “loss of
area” caused by the perturbation, by Lemma 6. 2

Lemma 8. Let ω̄ be the stress obtained by the atomic
equilibrium stresses on r and the coefficients α. For
every interior edge, we have that

ω̄ij > 14n6.



Proof. Let us first compute the “relative error” intro-
duced by the rounding for the triangle areas. Let A be
the area of a triangle in the drawing p, and A′ be the
area of the same triangle in r. Define

q :=
3

7n2
.(3.4)

For any n ≥ 3, we have q > 3(`max+1)
2w(f−) , and hence by

Lemma 6,

(1− q)A ≤ A′ ≤ (1 + q)A.

The rounding of p affects the atomic equilibrium
stresses. Let ω̄kl

ij denote the stress ωkl
ij after rounding.

Because every atomic stress is a product of two triangle
areas, we obtain the estimate

(1− q)2 ωkl
ij ≤ ω̄kl

ij ≤ (1 + q)
2
ωkl
ij .

The stress ω is defined with help of the coefficients α and
the atomic stresses. We mimic the proof of Lemma 5
and express the stress ωij as ω+

ij + ω−ij and do the same

for ω̄kl
ij . Recall that w(f−) ≥ 50n6. We use the notation

of Lemma 5 and denote by f1 and f2 the two subfaces
incident to (i, j) that were introduced by stacking vi.
The value of ω̄ij is bounded by

ω̄+
ij + ω̄−ij > (1− q)2ω+

ij + (1 + q)2ω−ij

> (1− q)2 (w(f1) + w(f2))

− (1 + q)2
(
w(f1) + w(f2)− 2w(f−)

)
= −4q (w(f1) + w(f2)) + (1 + q)22w(f−)

> −4q w(f0) + 2w(f−)

> −85.8n6 + 100n6

> 14n6.

2

Because we have integer 2D coordinates, the atomic
stresses are integral. Hence, integral coefficients α yield
integer heights in the lifting. The coefficients α are
by definition between 0 and 1. Therefore rounding
the coefficients is not possible. However, when scaling
all coefficients by a common scalar Y , we make the
contributions from the atomic stresses big enough to
afford a small perturbation of the coefficients.

Lemma 9. Let ω̇ be defined by the atomic stresses ω̄xy
ij

as
ω̇ij =

∑
{i,j,k,l}∈S

bY αijklc ω̄kl
ij ,

with S defined as for (2.2), and let Y := 4n2. Then the
stress ω̇ is a positive integer on every interior edge of G
in r.

Proof. Let (i, j) be an interior edge of G in r. The
stress ω̄ij is a linear combination of atomic stresses.
One of the summands of the linear combination is
positive, and the others are negative. Let αijxy ω̄

xy
ij be

the positive summand. By rounding the coefficients α
down, we decrease αijxy ω̄

xy
ij . The effect for the negative

atomic stresses can be ignored because these stresses
will be altered in our favor. Thus we can estimate

ω̇ij ≥ (Y αijxy − 1) ω̄xy
ij +

∑
{i,j,k,l}∈S
{k,l}6={x,y}

Y αijklω̄
kl
ij = Y ω̄ij − ω̄xy

ij .

For n ≥ 3, we have by Lemma 5(1) that

ω̄xy
ij ≤ (1 + q)2ωxy

ij ≤ (1 + q)2w(f0) ≤ 56n8,(3.5)

with q defined as in (3.4). Hence we have to pick Y such
that Y ω̄ij > 56n8 holds. Because ω̄ij (after rounding for
r) is larger than 14n6 (by Lemma 8) it suffices to pick
Y = 4n2. 2

We are now ready to prove the main theorem.

Proof of Theorem 1: The coordinates of the
2D drawing are nonzero integers and by construction
smaller than 10n4. We compute the lifting induced by ω̇
following the method presented in Appendix A. Because
−ω̄12 ≤ −(1 + q)2w(f0) < −56n8, which follows from
(3.5) and Lemma 5(2), we have

−ω̇12 < −4n2ω̄12 < 224n10.

Let f1 be the face incident to (v1, v2) that is not the
outer face and let qi be the homogenized point for ri.
The face f1 is contained in a plane H1 that sandwiches
the lifting with the z = 0 plane. We describe H1 by a
function g1 that assigns every homogenized 2D point t
its height on H1. The function g1 is given as

g1(t) = 〈a1, t〉 = ω̇12 〈q1 × q2, t〉.

By our choice of the boundary face, we have q1 × q2 =
(y1 − y2, x2 − x1, 0). The largest z coordinate of the
lifting is smaller than g1(q3), which is

g1(q3) = ω̇12 · 10n4 · 10n4 < 224,000n18.

2

4 Outlook

Let us briefly review some possible directions for further
research. Our main theorem shows that a nontrivial
class of 3D polytopes can be realized on a polynomial-
size grid. It would be interesting to see whether the
same is true for a larger class of polytopes. The most
interesting class are the simplicial polytopes. These



polytopes have the property that a small perturbation
of any geometric realization preserves the combinatorial
structure of the polytope. (The same is not true for
general polytopes.) Hence, it seems plausible that an
algorithm that first realizes the polytope, and then
rounds to grid points, could lead to an embedding
algorithm with small coordinates. Notice that several
aspects in our approach are more difficult for simplicial
polytopes. First of all, it is in general not possible to
create a 2D embedding that respects a given assignment
of face areas; see, for example, [4]. Moreover, the space
of equilibrium stresses is more complicated for general
triangulations. However, if we could find a way to
construct a 2D embedding, whose triangles are not too
skinny, and whose minimum and maximum stresses are
polynomially related, our perturbation approach should
be applicable. It would also be interesting to see how
the treewidth of G and the necessary grid size for the
polytope embedding are related.

Another direction for further research addresses the
problem of whether higher-dimensional stacked poly-
topes admit an embedding on a grid of polynomial vol-
ume. Unfortunately, the Maxwell–Cremona correspon-
dence has no easy equivalence in higher dimensions [22].
On the other hand, our approach does not rely on the
Maxwell–Cremona correspondence. To avoid the con-
cept of equilibrium stresses, we could try to keep track
of the creasing during the stacking operations more di-
rectly. This approach, however, makes the analysis more
complicated. We have not checked whether such an
analysis works out and whether it can be generalized
to higher dimensions.

Our goal in this paper was to show that stacked
polytopes can be embedded on a polynomial-size grid,
preferring a simple presentation over the best possible
grid size. By constructing integral coefficients α, we
could easily show that the heights in the lifting are inte-
gers. However, a rounding scheme similar to the one we
applied for the 2D drawing yields smaller coordinates.
The analysis that the smaller perturbation along the z
axis preserves convexity is more tedious. We also leave
it for further study to exploit the dependencies between
the size of the three different coordinate axes in the grid
embedding.
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[3] I. Bárány and G. Rote. Strictly convex drawings of
planar graphs. Documenta Math., 11:369–391, 2006.

[4] T. C. Biedl and L. E. R. Velázquez. Drawing planar
3-trees with given face-areas. In Eppstein and Gansner
[9], pages 316–322.

[5] K. Buchin and A. Schulz. On the number of spanning
trees a planar graph can have. In M. de Berg and
U. Meyer, editors, ESA (1), volume 6346 of Lecture
Notes in Computer Science, pages 110–121. Springer,
2010.

[6] M. Chrobak, M. T. Goodrich, and R. Tamassia. Con-
vex drawings of graphs in two and three dimensions
(preliminary version). In 12th Symposium on Compu-
tational Geometry, pages 319–328, 1996.

[7] G. Das and M. T. Goodrich. On the complexity of opti-
mization problems for 3-dimensional convex polyhedra
and decision trees. Computational Geometry: Theory
and Applications, 8(3):123–137, 1997.

[8] P. Eades and P. Garvan. Drawing stressed planar
graphs in three dimensions. In F.-J. Brandenburg,
editor, Graph Drawing, volume 1027 of Lecture Notes
in Computer Science, pages 212–223. Springer, 1995.

[9] D. Eppstein and E. R. Gansner, editors. Graph
Drawing, 17th International Symposium, GD 2009,
Chicago, IL, USA, September 22-25, 2009. Revised
Papers, volume 5849 of Lecture Notes in Computer
Science. Springer, 2010.

[10] M. T. Goodrich and D. Strash. Succinct greedy geo-
metric routing in the euclidean plane. In ISAAC ’09:
Proceedings of the 20th International Symposium on
Algorithms and Computation, pages 781–791, Berlin,
Heidelberg, 2009. Springer-Verlag.

[11] J. E. Hopcroft and P. J. Kahn. A paradigm for
robust geometric algorithms. Algorithmica, 7(4):339–
380, 1992.

[12] L. Lovasz. Steinitz representations of polyhedra and
the colin de verdière number. J. Comb. Theory, Ser.
B, 82:223–236, 2000.

[13] J. C. Maxwell. On reciprocal figures and diagrams of
forces. Phil. Mag. Ser., 27:250–261, 1864.

[14] A. Moitra and T. Leighton. Some results on greedy
embeddings in metric spaces. In FOCS, pages 337–346.
IEEE Computer Society, 2008.

[15] S. Onn and B. Sturmfels. A quantitative Steinitz’
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Appendix A: Computing a Lifting from an
Equilibrium Stress

Let G be a 3-connected planar graph with equilibrium
stress ω. We follow the presentation of [19] and describe
the induced lifting by defining a plane Hi for every
face fi. We define the homogenized coordinates for
pi by qi := (xi, yi, 1)T . The plane Hi is specified
by the function g(t) that assigns a height to every
(homogenized) 2D point. Hence we can compute the
height of a vertex vi lying on face fl by hi := gl(qi).
We define gi as an inner product with a vector ai in R3:

gi : t 7→ 〈t,ai〉.

The parameters ai can be computed by the follow-
ing iterative method. We set a0 = (0, 0, 0)T . Then we
compute the remaining parameters face by face. This
is achieved by selecting a face fl that is adjacent to a
face fr for which we have already determined ar. Let
(i, j) be the common edge of fl and fr. Assume that, in
the 2D drawing, the face fl lies left of the directed edge
ij, and fr lies right of it. The parameter for gl can be
computed by

al = ωij(qi × qj) + ar.

If the scalars ωij define an equilibrium stress, the
definition of the functions gi is consistent. Furthermore,
gr(qi) = gl(qi) if vi is incident to the faces fl and
fr. A proof can be found in Richter-Gebert’s book [19,
Chapter 13].
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