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Abstract

We introducestaged self-assemblyof Wang tiles, where tiles can be added dynamically in sequence and
where intermediate constructions can be stored for later mixing. This model and its various constraints and
performance measures are motivated by a practical nanofabrication scenario through protein-based bioengi-
neering. Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding the
shape in the staging algorithm instead of the tiles. All of our results are based on the practical assumption that
only a constant number of glues, and thus only a constant number of tiles, can be engineered, as each new
glue type requires significant biochemical research and experiments. Under this assumption, traditional tile
self-assembly cannot even manufacture ann × n square; in contrast, we show how staged assembly enables
manufacture of arbitrary orthogonal shapes in a variety of precise formulations of the model.

1 Introduction

Self-assemblyis the process by which an organized structure can form spontaneously from simple parts. It
describes the assembly of diverse natural structures such as crystals, DNA helices, and microtubules. In nanofab-
rication, the idea is to co-opt natural self-assembly processes to build desired structures, such as a sieve for
removing viruses from serum, a drug-delivery device for targeted chemotherapy or brachytherapy, a magnetic
device for medical imaging, a catalyst for enzymatic reactions, or a biological computer. Self-assembly of ar-
tificial structures has promising applications to nanofabrication and biological computing. The general goal is
to design and manufacture nanoscale pieces (e.g., strands of DNA) that self-assemble uniquely into a desired
macroscale object (e.g., a computer).

Our work is motivated and guided by an ongoing collaboration with the Sackler School of Graduate Biomed-
ical Sciences that aims to nanomanufacture sieves, catalysts, and drug-delivery and medical-imaging devices,
using protein self-assembly. Specifically, the Goldberg Laboratory is currently developing technology to bio-
engineer (many copies of) rigid struts of varying lengths, made of several proteins, which can join collinearly to
each other at compatible ends. These struts occur naturally as the “legs” of theT4 bacteriophage, a virus that
infects bacteria by injecting DNA. In contrast to nanoscale self-assembly based on DNA [WLWS98, MLRS00,
RPW04, BRW05, See98, SQJ04, Rot06], which is inherently floppy, these nanorod structures are extremely rigid
and should therefore scale up to the manufacture of macroscale objects.

The traditional, leading theoretical model for self-assembly is the two-dimensionaltile assembly modelin-
troduced by Winfree in his Ph.d. thesis [Win98] and first appearing at STOC 2000 [RW00]. The basic building
blocks in this model areWang tiles[Wan61], unrotatable square tiles with a specified glue on each side, where
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equal glues have affinity and may stick. Tiles then self-assemble into supertiles: two (super)tiles nondetermin-
istically join if the sum of the glue affinities along the attachment is at least some thresholdτ , calledtempera-
ture. This basic model has been generalized and extended in many ways [Adl00, ACGH01, ACG+02, SW04,
ACG+05, RW00, KS06]. The model should be practical because Wang tiles can easily simulate the practical
scenario in which tiles are allowed to rotate, glues come in pairs, and glues have affinity only for their unique
mates. In particular, we can implement such tiles using two unit-length nanorods joined at right angles at their
midpoints to form a plus sign.

Most theoretical research in self-assembly considers the minimum number of distinct tiles—thetile com-
plexity t—required to assemble a shape uniquely. In particular, if we allow the desired shape to be scaled by
a possibly very large factor, then in most models the minimum possible tile complexity (the smallest “tile pro-
gram”) isΘ(K/ lg K) whereK is the Kolmogorov complexity of the shape [SW04]. In practice, the limiting
factor is the number of distinct glues—theglue complexityg—as each new glue type requires significant bio-
chemical research and experiments. For example, a set of DNA-based glues requires experiments to test whether
a collection of codewords have a “conflict” (a pair of noncomplementary base sequences that attach to each other),
while a set of protein-based glues requires finding pairs of proteins with compatible geometries and amino-acid
placements that bind (and no other pairs of which accidentally bind). Of course, tile and glue complexities are
related:g ≤ t ≤ g4.

We present thestaged tile assembly model, a generalization of the tile assembly model that captures the tem-
poral aspect of the laboratory experiment, and enables substantially more flexibility in the design and fabrication
of complex shapes using a small tile and glue complexity. In its simplest form, staged assembly enables the
gradual addition of specific tiles in a sequence of stages. In addition, any tiles that have not yet attached as part
of a supertile can be washed away and removed (in practice, using a weight-based filter, for example). More
generally, we can have any number ofbins (in reality, batches of liquid solution stored in separate containers),
each containing tiles and/or supertiles that self-assemble as in the standard tile assembly model. During a stage,
we can perform any collection of operations of two types: (1) add (arbitrarily many copies of) a new tile to an
existing bin; and (2) pour one bin into another bin, mixing the contents of the former bin into the latter bin, and
keeping the former bin intact. In both cases, any pieces that do not assemble into larger structures are washed
away and removed. These operations let us build intermediate supertiles in isolation and then combine different
supertiles as whole structures. Now we have two new complexity measures in addition to tile and glue complex-
ity: the number of stages—orstage complexitys—measures the time required by the operator of the experiment,
while the number of bins—orbin complexityb—measures the space required for the experiment.1 (When both
of these complexities are1, we obtain the regular tile assembly model.)

Our results. We show that staged assembly enables substantially more efficient manufacture in terms of tile
and glue complexity, without sacrificing much in stage and bin complexity. All of our results assume the practical
constraint of having only a small constant number of glues and hence a constant number of tiles. In contrast, an
information-theoretic argument shows that this assumption would limit the traditional tile assembly model to
constructing shapes of constant Kolmogorov complexity.

For example, we develop a method for self-assembling ann×n square for arbitraryn > 0, using16 glues and
thusO(1) tiles (independent ofn), and using onlyO(log log n) stages,O(

√
log n) bins, and temperatureτ = 2

(Section 4.2). Alternatively, with the minimum possible temperatureτ = 1, we can self-assemble ann×n square
using9 glues,O(1) tiles and bins, andO(log n) stages (Section 4.1). In contrast, the best possible self-assembly
of an n × n square in the traditional tile assembly model has tile complexityΘ(log n/ log log n) [ACGH01,
RW00], orΘ(

√
log n) in a rather extreme generalization of allowable pairwise glue affinities [ACG+05].

More generally, we show how to self-assemble arbitrary shapes made up ofn unit squares in a variety of pre-
cise formulations of the problem. Our simplest construction builds the shape using2 glues,16 tiles,O(diameter)
stages, andO(1) bins, but it only glues tiles together according to a spanning tree, which is what we call the
partial connectivity model(Section 5.1). All other constructions havefull connectivity: any two adjacent unit
squares are built by tiles with matching glues along their shared edge. In particular, if we scale an arbitrary hole-
free shape larger by a factor of2, then we can self-assemble with full connectivity using8 glues,O(1) tiles, and

1Here we view the mixing time required in each stage (and the volume of each bin) as a constant, mainly because it is difficult to
analyze precisely from a thermodynamic perspective, as pointed out in [Adl00]. In our constructions, we believe that a suitable design of
the relative concentrations of tiles (a feature not captured by the model) leads to reasonable mixing times.
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n × n square Glues Tiles Bins Stages τ Scale Conn. Planar
Previous work [ACGH01, RW00] Θ( log n

log log n ) 1 1 2 1 full yes
Jigsaw technique (§4.1) 9 O(1) O(1) O(log n) 1 1 full yes
Crazy mixing (§4.2) 16 O(1) B O

(⌈
log n
B2

⌉
log B

)
2 1 full yes

Crazy mixing,B =
√

log n 16 O(1)
√

log n O(log log n) 2 1 full yes

General shape withn tiles Glues Tiles Bins Stages τ Scale Conn. Planar
Previous work [SW04] Θ(K/ log K) 1 1 2 unboundedpartial no
Arbitrary shape withn tiles (§5.1) 2 16 O(log n) O(diameter) 1 1 partial no
Hole-free shape withn tiles (§5.2) 8 O(1) O(n) O(n) 1 2 full no
Simulation of1-stage tilesT (§5.3) 3 O(1) O(|T |) O(log log |T |) 1 O(log |T |) partial no
Monotone shapes withn tiles (omitted) 9 O(1) O(n) O(log n) 1 1 full yes

Table 1: Summary of the glue, tile, bin, and stage complexities, the temperatureτ , the scale factor, the connectivity, and
the planarity of our staged assemblies and the relevant previous work.

O(n) stages and bins (Section 5.2). We also show how to simulate a traditional tile assembly construction witht
tiles by a staged assembly using3 glues,O(1) tiles,O(log log t) stages,O(t) bins, and a scale factor ofO(log t)
(Section 5.3). If the shape happens to be monotone in one direction, then we can avoid scaling and still obtain
full connectivity, using9 glues,O(1) tiles,O(log n) stages, andO(n) bins (details omitted in this version).

Table 1 summarizes our results in more detail, in particular elaborating on possible trade-offs between the
complexities. The table captures one additional aspect of our constructions: Planarity. Consider two jigsaw
puzzle pieces with complex borders lying on a flat surface. It may not be possible to slide the two pieces together
while both remain on the table. Rather, one piece must be lifted off the table and dropped into position. Our
current model of assembly intuitively permits supertiles to be placed into position from the third dimension,
despite the fact that it may not be possible to assemble within the plane. Aplanar construction guarantees
assembly of the final target shape even if we restrict assembly of supertiles to remain completely within the
plane. This feature seems desirable, though it may not be essential in two dimensions because reality will always
have some thickness in the third dimension (2.5D). However, the planarity constraint (orspatiality constraint
in 3D) becomes more crucial in 3D assemblies, so this feature gives an indication of which methods should
generalize to 3D; see Section 6.

Related Work There are a handful of existing works in the field of DNA self-assembly that have proposed
very basic multiple stage assembly procedures. John Reif introduced a step-wise assembly model for local
parallel biomolecular computing [Rei99]. In more recent work Park et. al. have considered a simple hierarchical
assembly technique for the assembly of DNA lattices [PPA+06]. Somei et. al. have considered a microfluidic
device for stepwise assembly of DNA tiles [SKFM05]. While all of these works use some form of stepwise or
staged assembly, they do not study the complexity of staged assembly to the depth that we do here. Further, none
consider the concept of bin complexity.

2 The Staged Assembly Model

In this section, we present basic definitions common to most assembly models, then we describe the staged
assembly model, and finally we define various metrics to measure the efficiency of a staged assembly system.

Tiles and tile systems. A (Wang) tilet is a unit square defined by the ordered quadruple〈north(t), east(t),
south(t),west(t)〉 of glues on the four edges of the tile. Eachglue is taken from a finite alphabetΣ, which
includes a special “null” glue denotednull. For simplicity of bounds, we do not count thenull glue in theglue
complexityg = |Σ| − 1.

A tile systemis an ordered triple〈T,G, τ〉 consisting of thetilesetT (a set of distinct tiles), theglue function
G : Σ2 → {0, 1, . . . , τ}, and thetemperatureτ (a positive integer). It is assumed thatG(x, y) = G(y, x) for
all x, y ∈ Σ and thatG(null, x) = 0 for all x ∈ Σ. Indeed, in all of our constructions, as in the original model
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of Adleman [Adl00],G(x, y) = 0 for all x 6= y2, and eachG(x, x) ∈ {1, 2, . . . , τ}. The tile complexityof the
system is|T |.

Configurations. Define aconfigurationto be a functionC : Z2 → T ∪ {empty}, whereempty is a special
tile that has thenull glue on each of its four edges. Theshapeof a configurationC is the set of positions(i, j)
that do not map to theempty tile. The shape of a configuration can be disconnected, corresponding to several
distinct supertiles.

Adjacency graph and supertiles. Define theadjacency graphGC of a configurationC as follows. The vertices
are coordinates(i, j) such thatC(i, j) 6= empty. There is an edge between two vertices(x1, y1) and(x2, y2) if
and only if |x1 − x2|+ |y1 − y2| = 1. A supertileis a maximal connected subsetG′ of GC , i.e.,G′ ⊆ GC such
that, for every connected subsetH, if G′ ⊆ H ⊆ GC , thenH = G′. For a supertileS, let |S| denote the number
of nonempty positions (tiles) in the supertile. Throughout this paper, we will informally refer to (lone) tiles as a
special case of supertiles.

If every two adjacent tiles in a supertile share a positive strength glue type on abutting edges, the supertile is
fully connected.

Two-handed assembly and bins. Informally, in the two-handed assembly model, any two supertiles may come
together (without rotation or flipping) and attach if their strength of attachment, from the glue function, meets or
exceeds a given temperature parameterτ .

Formally, for any two supertilesX andY , thecombinationsetCτ
(X,Y ) of X andY is defined to be the set

of all supertiles obtainable by placingX andY adjacent to each other (without overlapping) such that, if we list
each newly coincident edgeei with edge strengthsi, then

∑
si ≥ τ .

We define the assembly process in terms of bins. Intuitively, a bin consists of an initial collection of supertiles
that self-assemble at temperatureτ to produce a new set of supertilesP . Formally, with respect to a given set of
tile-typesT , abin is a pair(S, τ) whereS is a set of initial supertiles whose tile-types are contained inT , andτ is
a temperature parameter. For a bin(S, τ), the set ofproducedsupertilesP ′

(S,τ) is defined recursively as follows:
(1) S ⊆ P ′

(S,τ) and (2) for anyX, Y ∈ P ′
(S,τ), C

τ
(X,Y ) ⊆ P ′

(S,τ). The set ofterminallyproduced supertiles of a bin
(S, τ) is P(S,τ) = {X ∈ P ′ | Y ∈ P ′, Cτ

(X,Y ) = ∅}. We say the set of supertilesP is uniquelyproduced by bin
(S, τ) if each supertile inP ′ is of finite size. Put another way, unique production implies that every producible
supertile can grow into a supertile inP .

Intuitively, P ′ represents the set of all possible supertiles that can self-assemble from the initial setS, whereas
P represents only the set of supertiles that cannot grow any further. In the case of unique assembly ofP , the
latter thus represents the eventual, final state of the self-assembly bin. Our goal is therefore to produce bins that
yield desired supertiles in the uniquely produced setP .

Given a collection of bins, we model the process of mixing bins together in arbitrarily specified patterns in
a sequence of distinct stages. In particular, we permit the following actions: We cancreatea bin of a single
tile type t ∈ T , we canmergemultiple bins together into a single bin, and we cansplit the contents of a given
bin into multiple new bins. In particular, when splitting the contents of a bin, we assume the ability to extract
only the unique terminally produced set of supertilesP , while filtering out additional partial assemblies inP ′.
Intuitively, given enough time for assembly and a large enough volume of tiles, a bin that uniquely producesP
should consist of almost entirely the terminally produced setP . We formally model the concept of mixing bins
in a sequence of stages with themix graph.

Mix graphs. An r-stageb-bin mix graphM consists ofrb + 1 vertices,m∗ andmi,j for 1 ≤ i ≤ r and
1 ≤ j ≤ b, and an arbitrary collection of edges of the form(mr,j ,m∗) or (mi,j ,mi+1,k) for somei, j, k.

Staged assembly systems.A staged assembly systemis a3-tuple〈Mr,b, {Ti,j}, {τi,j}〉whereMr,b is anr-stage
b-bin mix graph, eachTi,j is a set of tile types, and eachτi,j is an integer temperature parameter. Given a staged
assembly system, for each1 ≤ i ≤ r, 1 ≤ j ≤ b, we define a corresponding bin(Ri,j , τi,j) whereRi,j is defined
as follows:

1. R1,j = T1,j (this is a bin in the first stage);

2With a typical implementation in DNA, glues actually attach to unique complements rather than to themselves. However, this
depiction of the glue function is standard in the literature and does not affect the power of the model.
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a b

b c

c a T1,1= {xa,b , xb,c}
T1,2= {xa,b , xc,a}

T2,1= {}
T2,2= {}

T3,1= {xb,c}
T3,2= {xc,a}

m1,1 m1,2

m2,2m2,1

m3,1 m3,2

m*

Tile types:

Xc,a :

Xa,b :

Xb,c :

Tile Sets: Mix Graph:

a b b c a bc a a b b c a bc ab c c a

Uniquely produced supertile:

Figure 1: A sample staged assembly system that uniquely
assembles a1 × 10 line. The temperature isτ = 1, and
each gluea, b, c has strength1. The tile complexity is3,
the stage complexity is3, and the bin complexity is2.

(a) (b)

Figure 2: (a) The shifting problem encountered when com-
bining rectangle supertiles. (b) The jigsaw solution: two su-
pertiles that combine uniquely into a fully connected square
supertile.

2. Fori ≥ 2, Ri,j =
( ⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
∪ Ti,j .

3. R∗ =
⋃

k: (mr,k,m∗)∈Mr,b

P(R(r,k),τr,k)).

Thus, thejth bin in theith stage takes its initial set of seed supertiles to be the terminally produced supertiles
from a collection of bins from the previous stage, the exact collection specified byMr,b, in addition to a set of
added tile typesTi,j . Intuitively, the mix graph specifies how each collection of bins should be mixed together
when transitioning from one stage to the next. We define the set of terminally produced supertiles for a staged
assembly system to beP(R∗,τ∗). In this paper, we are interested in staged assembly systems for which each bin
yields unique assembly of terminal supertiles. In this case we say a staged assembly system uniquely produces
the set of supertilesP(R∗,τ∗).

Throughout this paper, we assume that, for alli, j, τi,j = τ for some fixed global temperatureτ , and we
denote a staged assembly system as〈Mr,b, {Ti,j}, τ〉.

3 Assembly of1 × n Lines

As a warmup, we develop a staged assembly for the1× n rectangle (“line”) using only three glues andO(log n)
stages. The assembly uses a divide-and-conquer approach to split the shape into a constant number of recursive
pieces. Before we turn to the simple divide-and-conquer required here, we describe the general case, which will
be useful later. This approach requires the pieces to be combinable in a unique way, forcing the creation of the
desired shape. We consider thedecomposition treeformed by the recursion, where sibling nodes should uniquely
assemble to their parent. The staging proceeds bottom-up in this tree. The height of this tree corresponds to the
stage complexity, and the maximum number of distinct nodes at any level corresponds to the bin complexity. The
idea is to assign glues to the pieces in the decomposition tree to guarantee unique assemblage while using few
glues.

Theorem 1. There is a planar temperature-1 staged assembly system that uniquely produces a (fully connected)
1× 2k line using3 glues,6 tiles,6 bins, andO(k) stages.

Proof. The decomposition tree simply splits a1 × 2k line into two1 × 2k−1 lines. All tiles have thenull glue
on their top and bottom edges. If the1 × 2k line has gluea on its left edge, and glueb on its right edge, then
the left and right1 × 2k−1 inherit these glues on their left and right edges, respectively. We label the remaining
two inner edges—the right edge of the left piece and the left edge of the right piece—with a third gluec, distinct
from a andb. Becausea 6= b, the left and right piece uniquely attach at the inner edges with common gluec.
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This recursion also maintains the invariant thata 6= b, so three glues suffice overall. Thus there are only
(
3
2

)
= 6

possible1× 2k lines of interest, and we only need to store these six at any time, using six bins. At the base case
of k = 0, we just create the nine possible single tiles. The number of stages beyond that creation is exactlyk.

Corollary 1. There is a planar temperature-1 staged assembly system that uniquely produces a (fully connected)
1× n line using3 glues,6 tiles,10 bins, andO(log n) stages.

Proof. We augment the construction of Theorem 1 applied tok = blog nc. When we build the1 × 2i lines for
somei, if the binary representation ofn has a1 bit in theith position, then we add that line to a new output bin.
Thus, in the output bin, we accumulate powers of2 that sum ton. As in the proof of Theorem 1, three glues
suffice to guarantee unique assemblage in the output bin. The number of stages remainsO(log n).

4 Assembly ofn × n Squares

Figure 2(a) illustrates the challenge with generalizing the decomposition-tree technique from1×n lines ton×n
squares. Namely, the naı̈ve decomposition of a square into twon × n/2 rectangles cannot lead to a unique
assembly usingO(1) glues with temperature1 and full connectivity: by the pigeon-hole principle, some glue
must be used more than once along the shared side of lengthn, and the lower instance of the left piece may
glue to the higher instance of the right piece. Even though this incorrect alignment may make two unequal glues
adjacent, in the temperature-1 model, a single matching pair of glues is enough for a possible assembly.

4.1 Jigsaw Technique

To overcome this shifting problem, we introduce thejigsaw technique, a powerful tool used throughout this
paper. This technique ensures that the two supertiles glue together uniquely based on geometry instead of glues.
Figure 2(b) shows how to cut a square supertile into two supertiles with three different glues that force unique
combination while preserving full connectivity.

Theorem 2. There is a planar temperature-1 staged assembly of a fully connectedn × n square using9 glues,
O(1) tiles,O(1) bins, andO(log n) stages.

Proof. We build a decomposition tree by first decomposing then × n square by vertical cuts, until we obtain
tall, thin supertiles; then we similarly decompose these tall, thin supertiles by horizontal cuts, until we obtain
constant-size supertiles. Table 2 describes the general algorithm. Figure 3 shows the decomposition tree for an
8× 8 square. The height of the decomposition tree, and hence the stage complexity, isO(log n).

Algorithm DecomposeVertically (supertileS):
— HereS is a supertile withn rows andm columns;S is not necessarily a rectangle.

1. Stop vertical partitioning when width is small enough:
If m ≤ 3, DecomposeHorizontally(S) and return.

2. Find the column along which the supertile is to be partitioned:
Let i := b(m + 1)/2c.
Divide supertileS along theith column into a left supertileS1 and right supertileS2 such that
tiles at position(1, i) and(n, i) belong toS1 and the rest of theith column belongs toS2.

3. Now decompose recursively:
DecomposeVertically(S1)
DecomposeVertically(S2)

Table 2: Algorithm for vertical decomposition. (Horizontal decomposition is symmetric.)

We assign glue types to the boundaries of the supertiles to guarantee unique assemblage based on the jigsaw
technique. The assignment algorithm is similar to the1× n line, but we use three glues on each edge instead of
one, for a total of nine glues instead of three.

It remains to show that the bin complexity isO(1). We start by considering the vertical decomposition. At
each level of the decomposition tree, there are three types of intermediate products: leftmost supertile, rightmost
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Middle 
supertiles

Leftmost 
supertile

Rightmost 
supertile

Figure 3: Decomposition tree for8 × 8 square in the jigsaw technique.

supertile and middle supertiles. The leftmost and rightmost supertiles are always in different bins. The important
thing to observe is that the middle supertiles always have the same shape, though it is possible to have two
different sizes—the number of columns can differ by one. In one of these sizes, the number of columns is even
and, in the other, the number is odd. Thus we need to separate bins for the even- and odd-columned middle
supertiles. For each of the even- or odd-columned supertiles, each of left and right boundaries of the supertile
can have three choices for the glue types. Therefore, there is a constant number of different types of middle
supertiles at each level of the decomposition tree. Thus, for vertical decomposition, we needO(1) bins. Each
of the supertiles at the end of vertical decomposition undergoes horizontal decomposition. A similar argument
applies to the horizontal decomposition as well. Therefore, the number of bins required isO(1).

4.2 Crazy Mixing

For each stage of a mix graph onB bins, there are up toΘ(B2) edges that can be included in the mix graph. By
picking which of these edges are included in each stage,Θ(B2) bits of information can be encoded into the mix
graph per stage. The large amount of information that can be encoded in the mixing pattern of a stage permits a
very efficient trade-off between bin complexity and stage complexity. In this section, we consider the complexity
of this trade-off in the context of buildingn× n squares.

It is possible to view a tile system as a compressed encoding of the shape it assembles. Thus, information
theoretic lower bounds for the descriptional or Kolmogorov complexity of the shape assembled can be applied to
aspects of the tile system. From this we obtain the following lower bound:

Theorem 3. Any staged assembly system with a fixed temperature and bin complexityB that uniquely assembles
ann× n square withO(1) tile complexity must have stage complexityΩ( log n

B2 ) for almost alln.

Our upper bound achieves a stage complexity that is within aO(log B) factor of this lower bound:

Theorem 4. For anyn andB, there is a temperature-2 fully connected staged assembly of ann×n square using
16 glues,O(1) tiles,B bins, andO( log n

B2 log B + log B) stages.

In the interest of space, the proofs of these two theorems are omitted in this version.
We conjecture that this stage complexity bound can be achieved by a temperature-1 assembly by judicious

use of the jigsaw technique.
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5 Assembly of General Shapes

In this section, we describe a variety of techniques for manufacturing arbitrary shapes using staged assembly
with O(1) glues and tiles.

5.1 Spanning-Tree Technique

Thespanning-tree techniqueis a general tool for making an arbitrary shape with the connectivity of a tree. We
start with a sequential version of the assembly:

Theorem 5. Any shapeS with n tiles has a partially connected temperature-1 staged assembly using2 glues, at
most24 tiles,O(log n) bins, andO(diameter(S)) stages.

Proof. Take a breadth-first spanning tree of the adjacency graph of the shapeS. The depth of this tree is
O(diameter(S)). Root the tree at an arbitrary leaf. Thus, each vertex in the tree has at most three children.
Color the vertices with two colors, black and white, alternating per level. For each edge between a white parent
and a black child, we assign a white glue to the corresponding tiles’ shared edge. For each edge between a black
parent and a white child, we assign a black glue to the corresponding tiles’ shared edge. All other tile edges
receive thenull glue. Now a tile has at most three edges of its color connecting to its children, and at most one
edge of the opposite color connecting to its parent.

To obtain the sequential assembly, we perform a particular postorder traversal of the tree: at nodev, visit
its child subtrees in decreasing order of size. To combine at nodev, we mix the recursively computed bins
for the child subtrees together with the tile corresponding to nodev. The bichromatic labeling ensures unique
assemblage. The number of intermediate products we need to store isO(log n), because when we recurse into a
second child, its subtree must have size at most2/3 of the parent’s subtree.

5.2 Scale Factor2

Although the spanning-tree technique is general, it probably manufactures structurally unsound assemblies. Next
we show how to obtain full connectivity of general shapes, while still using only a constant number of glues and
tiles.

Theorem 6. Any simply connected shape has a staged assembly using a scale factor of2, 8 glues,O(1) tiles,
O(n) stages, andO(n) bins. The construction maintains full connectivity.

Proof. Slice the target shape with horizontal lines to divide the shape into1 × k strips for various values ofk,
which scale to2 × 2k strips. These strips can overlap along horizontal edges but not vertical edges. Define the
strip graphto have a vertex for each strip and an edge between two strips that overlap along a horizontal edge.
Because the shape is simply connected, the strip graph is a tree. Root this tree at an arbitrary strip, defining a
parent relation.

A recursive algorithm builds the subtree of the strip graph rooted at an arbitrary strips. As shown in Fig-
ure 4(a), the strips may attach to the rest of the shape at zero or more places on its top or bottom edge. One of
these connections corresponds to the parent ofs (unlesss is the overall root). As shown in Figure 4(b), our goal
is to form each of these attachments using a jigsaw tab/pocket combination, where bottom edges have tabs and
top edges have pockets, extending from the rightmost square up to but not including the leftmost square.

The horizontal edges of each tab or pocket uses a pair of glues. The unit-length upper horizontal edge uses
one glue, and the possibly longer lower horizontal edge uses the other glue. The pockets at the top of strips use a
different glue pair from the tabs at the bottom of strips. Furthermore, the pocket or tab connectings to its parent
uses a different glue pair from all other pockets and tabs. Thus, there are four different glue pairs (for a total of
eight glues). If the depth ofs in the rooted tree of the strip graph is even, then we use the first glue pair for the
top pockets, the second glue pair for the bottom tabs, except for the connection to the parent which uses either
the third or fourth glue pair depending on whether the connection is a top pocket or a bottom tab. If the depth of
s is odd, then we reverse the roles of the first two glue pairs with the last two glue pairs. All vertical edges of
tabs and pockets use the same glue,8.

To construct the strips augmented by tabs and pockets, we proceed sequentially from left to right, as shown
in Figure 4(c). The construction uses two bins. At thekth step, the primary bin contains the firstk − 1 columns
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(a) (b)

(c)

Figure 4: Constructing a horizontal strip in a factor-2 scaled shape (a), augmented by jigsaw tabs and pockets to attach to
adjacent pieces (b), proceeding column-by-column (c).

of the augmented strip. In the secondary bin, we construct thekth column by brute force in one stage using 1–3
tiles and 0–2 distinct internal glues plus the desired glues on the boundary. Because the column specifies only
two glues for horizontal edges, at the top and bottom, we can use any two other glues for the internal glues. All
of the vertical edges of the column use different glues. Ifk is odd, the left edges use glues1–3 and the right
edges uses glues4–6, according toy coordinate; ifk is even, the roles are reversed. (In particular, these glues do
not conflict with glue8 in the tabs and pockets.) The only exception is the first and last columns, which have no
glues on their left and right sides, respectively. Now we can add the secondary bin to the primary bin, and the
kth column will uniquely attach to the right side of the firstk − 1 columns. In the end, we obtain the augmented
strip.

During the building of the strip, we attach children subproblems. Specifically, once we assemble the rightmost
column of an attachment to one or two children strips, we recursively assemble those one or two children subtrees
in separate bins, and then mix them intos’s primary bin. Because the glues on the top and bottom sides ofs
differ, as do the glues ofs’s parent, and because of the jigsaw approach, each child we add has a unique place to
attach. Therefore we uniquely assembles’s subtree. Applying this construction to the root of the tree, we obtain
a unique assembly of the entire shape.

5.3 Simulation of One-Stage Assembly with Logarithmic Scale Factor

In this section, we show how to use a small number of stages to combine a constant number of tile types into a
collection of supertiles that can simulate the assembly of an arbitrary set of tiles at temperatureτ = 1, given that
these tiles only assemble fully connected shapes. In the interest of space, the details of this proof are omitted.
Extending this simulation to temperature-2 one-stage systems is an open problem.

Theorem 7. Consider an arbitrary single stage, single bin tile system with tile setT , all glues of strength at
most1, and that assembles a class of fully connected shapes. There is a temperature-1 staged assembly system
that simulates the one-stage assembly ofT up to anO(log |T |) size scale factor using3 glues,O(1) tiles,O(|T |)
bins, andO(log log |T |) stages. At the cost of increasing temperature toτ = 2, the construction achieves full
connectivity.

6 Future Directions

There are several open research questions stemming from this work.
One direction is to relax the assumption that, at each stage, all supertiles self-assemble to completion. In

practice, it is likely that at least some tiles will fail to reach their terminal assembly before the start of the next
stage. Can a staged assembly be robust against such errors, or at least detect these errors by some filtering, or can
we bound the error propagation in some probabilistic model?

Another direction is to develop a model of the assembly time required by a mixing operation involving two
bins of tiles. Such models exist for (one-stage)seeded self-assembly—which starts with a seed tile and places
singleton tiles one at a time—but this model fails to capture the more parallel nature of two-handed assembly
in which large supertiles can bond together without a seed. Another interesting direction would be to consider
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nondeterministic assembly in which a tile system is capable of building a large class of distinct shapes. Is it
possible to design the system so that certain shapes are assembled with high probability?

Finally, we have focused on two-dimensional constructions in this paper. This focus provides a more direct
comparison with previous models, and it is also a case of practical interest, e.g., for manufacturing sieves. Many
of our results also generalize to 3D (or any constant dimension), at the cost of increasing the number of glues and
tiles. For example, the spanning-tree model generalizes trivially, and a modification to the jigsaw idea enables
many of the other results to carry over. So far, we have not worked out the exact performance measures for these
3D analogs, but we do not expect this to be difficult.

Acknowledgments. We thank M. S. AtKisson and Edward Goldberg for extensive discussions about the bio-
engineering application.
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