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Abstract

We present two universal hinge patterns that enable a strip of material to fold into any
connected surface made up of unit squares on the 3D cube grid—for example, the surface of any
polycube. The folding is efficient: for target surfaces topologically equivalent to a sphere, the
strip needs to have only twice the target surface area, and the folding stacks at most two layers
of material anywhere. These geometric results offer a new way to build programmable matter
that is substantially more efficient than what is possible with a square N ×N sheet of material,
which can fold into all polycubes only of surface area O(N) and may stack Θ(N2) layers at one
point. We also show how our strip foldings can be executed by a rigid motion without collisions
(albeit assuming zero thickness), which is not possible in general with 2D sheet folding.

To achieve these results, we develop new approximation algorithms for milling the surface
of a grid polyhedron, which simultaneously give a 2-approximation in tour length and an 8/3-
approximation in the number of turns. Both length and turns consume area when folding a
strip, so we build on past approximation algorithms for these two objectives from 2D milling.

1 Introduction

In computational origami design, the goal is generally to develop an algorithm that, given a de-
sired shape or property, produces a crease pattern that folds into an origami with that shape or
property. Examples include folding any shape [DDM00], folding approximately any shape while
being watertight [DT17], and optimally folding a shape whose projection is a desired metric tree
[Lan96, LD06]. In all of these results, every different shape or tree results in a completely different
crease pattern; two shapes rarely share many (or even any) creases.

The idea of a universal hinge pattern [BDDO10] is that a finite set of hinges (possible creases)
suffice to make exponentially many different shapes. The main result along these lines is that an
N×N “box-pleat” grid suffices to make any polycube made ofO(N) cubes [BDDO10]. The box-pleat
grid is a square grid plus alternating diagonals in the squares, also known as the “tetrakis tiling”.
For each target polycube, a subset of the hinges in the grid serve as the crease pattern for that
shape. Polycubes form a universal set of shapes in that they can arbitrarily closely approximate
(in the sense of Hausdorff metric) any desired volume.

∗Google Inc., nbenbern@gmail.com. Work performed while at MIT.
†MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA,

{edemaine,mdemaine}@mit.edu
‡David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada,

alubiw@uwaterloo.ca

1

nbenbern@gmail.com
{edemaine,mdemaine}@mit.edu
alubiw@uwaterloo.ca


The motivation for universal hinge patterns is the implementation of programmable matter—
material whose shape can be externally programmed. One approach to programmable matter,
developed by an MIT–Harvard collaboration, is a self-folding sheet—a sheet of material that can fold
itself into several different origami designs, without manipulation by a human origamist [HAB+10,
ABDR11]. For practicality, the sheet must consist of a fixed pattern of hinges, each with an
embedded actuator that can be programmed to fold or not. Thus for the programmable matter to
be able to form a universal set of shapes, we need a universal hinge pattern.

The box-pleated polycube result [BDDO10], however, has some practical limitations that pre-
vent direct application to programmable matter. Specifically, using a sheet of area Θ(N2) to fold
N cubes means that all but a Θ(1/N) fraction of the surface area is wasted. Unfortunately, this
reduction in surface area is necessary for a roughly square sheet, as folding a 1 × 1 × N tube re-
quires a sheet of diameter Ω(N). Furthermore, a polycube made from N cubes can have surface
area as low as Θ(N2/3), resulting in further wastage of surface area in the worst case. Given the
factor-Ω(N) reduction in surface area, an average of Ω(N) layers of material come together on the
polycube surface. Indeed, the current approach can have up to Θ(N2) layers coming together at
a single point [BDDO10]. Real-world robotic materials have significant thickness, given the em-
bedded actuation and electronics, meaning that only a few overlapping layers are really practical
[HAB+10].

Our results: strip folding. In this paper, we introduce two new universal hinge patterns that
avoid these inefficiencies, by using sheets of material that are long only in one dimension (“strips”).
Specifically, Figure 1 shows the two hinge patterns: the canonical strip is a 1×N strip with hinges
at integer grid lines and same-oriented diagonals, while the zig-zag strip is an N -square zig-zag
with hinges at just integer grid lines. We show in Section 2 that any grid surface—any connected
surface made up of unit squares on the 3D cube grid—can be folded from either strip. The strip
length only needs to be a constant factor larger than the surface area, and the number of layers is
at most a constant throughout the folding. Most of our analysis concerns (genus-0) grid polyhedra,
that is, when the surface is topologically equivalent to a sphere (a manifold without boundary, so
that every edge is incident to exactly two grid squares, and without handles, unlike a torus). We
show in Section 4 that a grid polyhedron of surface area N can be folded from a canonical strip of
length 2N with at most two layers everywhere, or from a zig-zag strip of length 4N with at most
four layers everywhere.

The improved surface efficiency and reduced layering of these strip results seem more practical
for programmable matter. In addition, the panels of either strip (the facets delineated by hinges)
are connected acyclically into a path, making them potentially easier to control. One potential
drawback is that the reduced connectivity makes for a flimsier device; this issue can be mitigated
by adding tabs to the edges of the strips to make full two-dimensional contacts across seams and
thereby increase strength.

We also show in Section 5 an important practical result for our strip foldings: assuming a
small lower bound on feature size, we give an algorithm for actually folding the strip into the
desired shape, while keeping the panels rigid (flat) and avoiding self-intersection throughout the
motion. Such a rigid folding process is important given current fabrication materials, which put
flexibility only in the creases between panels [HAB+10]. An important limitation, however, is that
we assume zero thickness of the material, which would need to be avoided before this method
becomes practical.
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(a) (b)

Figure 1: Two universal hinge patterns in strips. (a) A canonical strip of length 5. (b) A zig-zag
strip of length 6. The dashed lines are hinges.

Our approach is also related to the 1D chain robots of [CDBG11], but based on thin material
instead of thick solid chains. Most notably, working with thin material enables us to use a few
overlapping layers to make any desired surface without scaling, and still with high efficiency. Es-
sentially, folding long thin strips of sheet material is like a fusion between 1D chains of [CDBG11]
and the square sheet folding of [BDDO10, HAB+10, ABDR11].

Milling tours. At the core of our efficient strip foldings are efficient approximation algorithms
for milling a grid polyhedron. Motivated by rapid-fabrication CNC milling/cutting tools, milling
problems are typically stated in terms of a 2D region called a “pocket” and a cutting tool called a
“cutter”, with the goal being to find a path or tour for the cutter that covers the entire pocket. In
our situation, the “pocket” is the surface of the grid polyhedron, and the “cutter” is a unit square
constrained to move from one grid square of the surface to an (intrinsically) adjacent grid square.

The typical goals in milling problems are to minimize the length of the tour [AFM00] or to
minimize the number of turns in the tour [ABD+05]. Both versions are known to be strongly
NP-hard, even when the pocket is an integral orthogonal polygon and the cutter is a unit square.
We conjecture that the minimum-turn problem remains strongly NP-hard when the pocket is a
grid polyhedron, but the minimum-length problem turns out to be polynomial: the dual graph is
planar and 4-connected and thus Hamiltonian [BL06], so there is an ideal tour visiting each square
exactly once, which can be found in linear time [CN89]. (This result also implies a 2-approximation
for the metric of length plus turns.)

In our situation, both length and number of turns are important, as both influence the required
length of a strip to cover the surface. Thus we develop one algorithm that simultaneously approx-
imates both measures. Such results have also been achieved for 2D pockets [ABD+05]; our results
are the first we know for surfaces in 3D. Specifically, we develop in Section 3 an approximation al-
gorithm for computing a milling tour of a given grid polyhedron, achieving both a 2-approximation
in length and an 8/3-approximation in number of turns.

Fonts. To illustrate the power of strip folding, we designed a typeface, representing each letter of
the alphabet by a folding of a 1× x strip for some x, as shown in Figure 2. The individual-letters
typeface consists of two fonts: the unfolded font is a puzzle to figure out each letter, while the
folded font is easy to read. These crease patterns adhere to an integer grid with orthogonal and/or
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Figure 2: Strip folding of individual letters typeface, A–Z and 0–9: unfolded font (top) and folded
font (bottom), where the face incident to the bottom edge remains face-up.

diagonal creases, but are not necessarily subpatterns of the canonical hinge pattern. This extra
flexibility gives us control to produce folded half-squares as desired, increasing the font’s fidelity.

We have developed a web app that visualizes the font,1 and chains letters together into one
long strip folding. Figure 3, and Figure 18 at the end of the paper, show some examples.

2 Universality

In this section, we prove that both the canonical strip and zig-zag strip of Figure 1, of sufficient
length, can fold into any grid surface. We begin with milling tours which provide an abstract plan
for routing the strip, and then turn to the details of how to manipulate each type of strip.

1http://erikdemaine.org/fonts/strip/
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Figure 3: The paper title rendered with our web app, http://erikdemaine.org/fonts/strip/.

Dual graph. Recall that a grid surface consists of one or more grid squares—that is, squares of
the 3D cube grid—glued edge-to-edge to form a connected surface (ignoring vertex connections).
Define the dual graph to have a dual vertex for each such grid square, and a dual edge between the
two dual vertices corresponding to any two grid squares sharing an edge. Our assumption of the
grid surface being connected is equivalent to the dual graph being connected.

Milling tours. A milling tour is a (not necessarily simple) spanning cycle in the dual graph, that
is, a cycle that visits every dual vertex at least once (but possibly more than once). Equivalently,
we can think of a milling tour as the path traced by the center of a moving square that must cover
the entire surface while remaining on the surface, and return to its starting point. Milling tours
always exist: for example, we can double a spanning tree of the dual graph to obtain a milling tour
of length less than double the given surface area.

At each grid square, we can characterize a milling tour as going straight, turning, or U-turning—
intrinsically on the surface—according to which two sides of the grid square the tour enters and
exits. If the sides are opposite, the tour is straight ; if the sides are incident, the tour turns; and
if the sides are the same, the tour U-turns. Intuitively, we can imagine unfolding the surface and
developing the tour into the plane, and measuring the resulting planar turn angle at the center of
the grid square.

Strip folding. To prove universality, it suffices to show that a canonical strip or zig-zag strip can
follow any milling tour and thus make any grid polyhedron. In particular, it suffices to show how
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(a) (b)

Figure 4: (a) Left and (b) right turn with a canonical strip.

Figure 5: Going straight with a zig-zag strip requires at most two unit squares per grid square.
Left and right crease patterns show two possible different parities along the strip.

the strip can go straight, turn left, turn right, and U-turn. Then, in 3D, the strip would be further
folded at each traversed edge of the grid surface, to stay on the surface. Indeed, U-turns can be
viewed as folding onto the opposite side of the same surface, and thus are intrinsically equivalent
to going straight; hence we can focus on going straight and making left/right turns.

Canonical strip. Figure 4 shows how a canonical strip can turn left or right; it goes straight
without any folding. Each turn adds 1 to the length of the strip, and adds 2 layers to part of the
grid square where the turn is made. Therefore a milling tour of length L with t turns of a grid
surface can be followed by a canonical strip of length L+ t. Furthermore, if the milling tour visits
each grid square at most c times, then the strip folding has at most 3c layers covering any point of
the surface.

Zig-zag strip. Figure 5 shows how to fold a zig-zag strip in order to go straight. In this straight
portion, each square of the surface is covered by two squares of the strip. Figure 6 shows left
and right turns. Observe that turns require either one or three squares of the strip. Therefore a
milling tour of length L with t turns can be followed by a zig-zag strip of length at most 2L + t.
Furthermore, if the milling tour visits each grid square at most c times, then the strip folding has
at most 3c layers covering any point of the surface.

Proposition 1. Every grid surface of area N can be folded from a canonical strip of length 4N ,
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(a) (b)

Figure 6: Turning with a zig-zag strip has two cases because of parity. (a) Turning left at an odd
position requires three grid squares, whereas turning right requires one grid square. (b) Turning
left at an even position requires one grid square, whereas turning right requires three grid squares.

with at most eight layers stacked anywhere, and from a zig-zag strip of length 6N , with at most
twelve layers stacked anywhere.

Proof. The doubled-spanning-tree milling tour has length L < 2N , and in the worst case turns
at every square visited, i.e., t < 2N (counting U-turns at the leaves of the spanning tree). Each
square gets visited by the tour at most four times (once per side). The bounds then follow from
the analysis above.

The goal in the rest of this paper is to achieve better bounds for grid polyhedra, using more
carefully chosen milling tours. For comparison, the best approximation algorithm for milling tours
in polygons (not grid surfaces) [AFM00] achieves a bound of L ≤ 1.325N which, combined with
the trivial t ≤ L bound, achieves a canonical-strip bound of t + L ≤ 2.65N . We will beat this
bound for grid surfaces, reducing to 2N .

3 Milling Tour Approximation

This section presents a constant-factor approximation algorithm for milling a (genus-0) grid poly-
hedron P with respect to both length and turns. Specifically, our algorithm is a 2-approximation
in length and an 8/3-approximation in turns. Our milling tours also have special properties that
make them more amenable to strip folding.
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Our approach is to reduce the milling problem to vertex cover in a tripartite graph. Then
it follows that our algorithm is a 2α-approximation in turns, where α is the best approximation
factor for vertex cover in tripartite graphs. The best known bounds on α are 34/33 ≤ α ≤ 4/3.
Clementi et al. [CCR99] proved that minimum vertex cover in tripartite graphs is not approximable
within a factor smaller than 34/33 = 1.03 unless P = NP. Theorem 1 of [Hoc83] implies a 4/3-
approximation for minimum weighted vertex cover for tripartite graphs (assuming we are given
the 3-partition of the vertex set, which we know in our case). Thus we use α = 4/3 below. An
improved approximation ratio α would improve our approximation ratios, but may also affect the
stated running times, which currently assume use of [Hoc83].

3.1 Bands

The basis for our approximation algorithms is the notion of “bands” for a grid polyhedron P ; refer
to Figure 7. Let xmin and xmax respectively be the minimum and maximum x coordinates of P ;
define ymin, ymax, zmin, zmax analogously. These minima and maxima have integer values because
the vertices of P lie on the integer grid. Define the ith x-slab Sx(i) to be the slab bounded by
parallel planes x = xmin + i and x = xmin + i + 1, for each i ∈ {0, 1, . . . , xmax − xmin − 1}. The
intersection of P with the ith x-slab Sx(i) (assuming i is in the specified range) is either a single
band (i.e., a simple cycle of grid squares in that slab), or a collection of such bands, which we refer
to as x-bands. Define y-bands and z-bands analogously.

Two bands overlap if there is a grid square contained in both bands. Each grid square of P is
contained in precisely two bands (e.g., if a grid square’s outward normal were in the +z-direction,
then it would be contained in one x-band and one y-band). Two bands B1 and B2 are adjacent if
they do not overlap, and a grid square of B1 shares an edge with a grid square of B2. A band cover
for P is a collection of x-, y-, and z-bands that collectively cover the entire surface of P . The size
of a band cover is the number of its bands.

3.2 Cover Bands

The starting point for the milling approximation algorithm is to find an approximately minimum
band cover, as the minimum band cover is a lower bound on the number of turns in any milling
tour:

Proposition 2. [ABD+05, Lemma 4.9] The size of a minimum band cover of a grid polyhedron P
is a lower bound on the number of turns in any milling tour of P .

Proof. Consider a milling tour of P with t turns. Extend the edges of the tour of P into bands.
This yields a band cover of size at most t.

Next we describe how to find a near-optimal band cover. Consider the graph GP with one
vertex per band of a grid polyhedron P , connecting two vertices by an edge if their corresponding
bands overlap. It turns out that an (approximately minimum) vertex cover in GP will give us an
(approximately minimum) band cover in P :

Proposition 3. A vertex cover for GP induces a band cover of the same size and vice versa.

Proof. Because the vertices of GP correspond to bands, it suffices to show that a set of bands S
covers all the grid squares of P if and only if the corresponding vertex set VS covers all the edges
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(a) A grid polyhedron from [CDBG11] (b) x-bands

(c) y-bands (d) z-bands

Figure 7: Illustration of bands.

of GP . First suppose that VS covers the edges of GP . Observe that a grid square is contained in
two bands and those bands overlap, so there is a corresponding edge in GP . Because VS covers the
edge in GP , S must cover the grid square.

Conversely, suppose S covers all the grid squares of P . Any edge of GP corresponds to two
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overlapping bands, which overlap in a grid square (in fact, they overlap in at least two grid squares
because P has genus 0). Because the grid square is in exactly two bands, and S covers the grid
square, then VS covers the corresponding edge in GP .

Because the bands fall into three classes (x-, y-, and z-), with no overlapping bands within a
single class, GP is tripartite. Hence we can use an α-approximation algorithm for vertex cover in
tripartite graphs to find an α-approximate vertex cover in GP and thus an α-approximate band
cover of P .

3.3 Connected Bands

Our next goal will be to efficiently tour the bands in the cover. Given a band cover S for a grid
polyhedron P , define the band graph GS to be the subgraph of GP induced by the subset of vertices
corresponding to S. We will construct a tour of the bands S based on a spanning tree of GS . Our
first step is thus to show that GS is connected (Lemma 5 below). We do so by showing that adjacent
bands (as defined in Section 3.1) are in the same connected component of GS , using the following
lemma of Genc [Gen08]:

Lemma 4. [Gen08]2 For any band B in a grid polyhedron P , let NB be the bands of P overlap-
ping B. (Equivalently, NB is the set of neighbors of B in GP ). Then the subgraph of GP induced
by NB is connected.

Lemma 5. If S is a band cover for a grid polyhedron P , then the graph GS is connected.

Proof. First define an auxiliary graph HS which has edges between adjacent bands in addition to
edges between overlapping bands. Because the surface of P is connected, HS is connected, because
there is an (orthogonal) path on the surface of P between any two bands and this path induces
a sequence of edges in HS . We will argue that GS has the same connectivity as HS , and thus is
connected.

Now consider any pair of adjacent bands B1 and B2 in S, forming an edge in HS but not GS .
Refer to Figure 8. Because B1 and B2 are adjacent, there exists grid squares g1 ∈ B1 and g2 ∈ B2

which share an edge e. Let B3 be the band through grid squares g1 and g2. If B3 is in the band
cover, then the vertices corresponding to B1 and B2 are in the same connected component of GS

because B3 overlaps both B1 and B2. Thus suppose that B3 is not in S. Then each of the bands
overlapping B3 (excluding B3 itself) must be in S; otherwise there would be an uncovered grid
square of B3. Let N3 denote this set of bands. By Lemma 4, the subgraph GP [N3] of GP induced
by N3 is connected. Now because GP [N3] is also a subgraph of GS , we have that the vertices
corresponding to B1 and B2 are in the same connected component of GS .

3.4 Band Tour

Now we can present our algorithm for transforming a band cover into an efficient milling tour.

2Genc [Gen08] uses somewhat different terminology to state this lemma: “straight cycles in the dual graph” are
our bands, and “crossing” is our overlapping. The induced subgraph is also defined directly, instead of as an induced
subgraph of GP .
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B1

B2

B3

Figure 8: Bands B1, B2, and B3 in the proof of Lemma 5.

Theorem 6. Let P be a grid polyhedron with N grid squares. In O(N2 logN) time, we can find a
milling tour of P that is a 2-approximation in length and an 8/3-approximation (or more generally,
a 2α-approximation) in turns.

Proof. We start with an α-approximation to the minimum vertex cover of GP , such as the α = 4/3
algorithm of [Hoc83]. Then we convert this vertex cover into a band cover S. By Proposition 3,
S is an α-approximation for the minimum band cover for P . Construct the band graph GS , and
construct a spanning tree T of GS , which exists as GS is connected by Lemma 5. We now describe
how to obtain a milling tour by touring T . (Note that we will use “nodes of the tree” and “bands
of S” interchangeably.)

Consider the band r which is the root of T . Pick an arbitrary starting grid square pr on r, as
well as a starting direction along band r. Now order the children of r based on the order in which
they are first encountered as we walk along r starting at pr. We will visit the children of r in this
order when we follow the tour. Let the ordered children of r be denoted by u1, . . . , uk. Walking
along r, when we hit a child ui (say at grid square pi) which has not yet been visited, we turn right
(or left, it doesn’t matter) onto band ui and recursively visit the children of ui as we are walking,
until we eventually return back to r which requires an additional turn (in the opposite direction of
the turn onto ui) to get back onto r and resume walking along r. Because turns only ever occur
between parent and child pairs, we can bound the number of turns in terms of the number of edges
of T . In particular, there are two turns per edge of T , one turn from the parent band onto the
child band, and one turn from the child band back onto the parent band. Thus the total number
of turns is

2 |E(T )| = 2 · (|S| − 1) ≤ 2α ·OPTBC ,

where OPTBC is the size of the minimum band cover for P . Now by Proposition 2, OPTBC is a
lower bound on the number of turns necessary, so this yields a 2α-approximation in turns.

Next we argue that each grid square is visited at most twice, implying a 2-approximation in
length. Each grid square is contained in exactly two bands of P , at least one of which must be in
S because S is a band cover. Let g be a grid square of P . If g is contained in just one band of S,
then it is visited only once, namely when that band is traversed by the milling tour. Thus suppose
g is contained in two bands, S1 and S2, of S. There are two cases to consider. In the first case,
neither band is a parent of the other band. So g will be visited exactly two times, once when S1 is
traversed, and a second time when S2 is traversed. (We call such a g a straight junction due to the
way in which it is traversed, as Figure 9(a) depicts.) The second case to consider is when one of the
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Figure 9: (a) A straight junction, and (b) a turn junction.

bands is a parent of the other band. Without loss of generality, assume S1 is a parent of S2. Then g
will be visited twice, once when turning from S1 onto S2, and a second time when turning from S2
back onto S1. (We call g a turn junction in this case, as Figure 9(b) depicts. Notice that the turn
from S1 onto S2 is in the opposite direction of the turn from S2 onto S1. This fact will be useful
when we explore applications of this algorithm to strip folding, although it is not immediately of
use.) Hence each grid square is visited at most twice.

Finally we analyze the running time of this algorithm. The time to compute an α-approximation
for the minimum band cover of P is the same as the time to compute an α-approximation for the
minimum vertex cover for GP . Because each grid square corresponds to an edge of GP and each
edge of GP corresponds to two unique grid squares, the number of edges |E(GP )| = N/2. The
number of vertices |V (GP )| is the number of unit bands of P , which is at most N . By Theorem 1
of [Hoc83], the time to compute a 4/3-approximation for the minimum vertex cover for GP is
O(|V (GP )||E(GP )| log |V (GP )|), which is thus O(N2 log N). This term is dominant in the running
time for computing the milling tour, establishing the theorem.

We now state some additional properties of any milling tour produced by the approximation
algorithm of Theorem 6, which will be useful for later applications to strip folding in Section 4.

Proposition 7. Let P be a grid polyhedron, and consider a milling tour of P obtained from the
approximation algorithm of Theorem 6. Then the following properties hold:

1. A grid square of P is either visited once, in which case it is visited by a straight part of the
tour; or it is visited twice, in one of the two configurations of Figure 9 (a straight junction or
a turn junction—in particular, never a U-turn).

2. In the case of a turn junction, the length of the milling tour between the two visits to the grid
square (counting only one of the two visits to the grid square in the length measurement) is
even.

3. The tour can be modified to alternate between left and right turns (without changing its length
or the number of turns).
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Proof. Property (1) has already been established in the proof of Theorem 6 (see the paragraph on
the length calculation which bounds the number of times each grid square is visited and how a grid
square can be visited).

The proof of Property (2) follows by induction on the number of bands in the spanning tree
from which the milling tour was constructed. The base case of one band is trivial as a band has an
even number of grid squares. Thus suppose Property (2) holds for all such trees with fewer than
k bands for some k > 1. Assume we have a tree T with k bands. Consider a leaf of T . Let B2

be the band corresponding to the leaf, and let B1 be the band corresponding to the parent of B2.
If we remove B2 from T we get a tree T ′ with k − 1 bands, so by induction Property (2) holds.
Adding B2 back, the length of the milling tour between the two visits to a grid square will either be
unaffected (in the case where the subtree rooted at the child band corresponding to the grid square
does not contain B2) or it will increase by |B2| (i.e., the number of grid squares in B2) which is
even. Thus Property (2) still holds.

Property (3) follows by the way we constructed the milling tour as a tour of a spanning tree
of bands. We had the freedom to choose whether to turn left or right from a parent band onto
a child band, and then the turn direction from the child back onto the parent was forced to be
the opposite turn direction. Hence we can choose the turn directions from parent bands onto child
bands in such a way that maintains alternation between left and right turns.

3.5 Polynomial Time

The algorithm described above is polynomial in the surface area N of the grid polyhedron, or
equivalently, polynomial in the number of unit cubes making up the polyomino solid. For our
application to strip folding, this is polynomial in the length of the strip, and thus sufficient for
most purposes. On the other hand, polyhedra are often encoded as a collection of n vertices and
faces, with faces possibly much larger than a unit square. In this case, the algorithm runs in
pseudopolynomial time.

Although we do not detail the approach here, our algorithm can be modified to run in polynomial
time. To achieve this result, we can no longer afford to deal with unit bands directly, because their
number is polynomially related to the number N of grid squares, not the number n of vertices. To
achieve polynomial time in n, we concisely encode the output milling tour using “fat” bands rather
than unit bands, which can then be easily decoded into a tour of unit bands. By making each
band as wide as possible, their number is polynomially related to n instead of N . Details of an
O(n3 log n)-time milling approximation algorithm (with the same approximation bounds as above)
can be found in [Ben11].

4 Strip Foldings of Grid Polyhedra

In this section, we show how we can use the milling tours from Section 3 to fold a canonical strip
or zig-zag strip efficiently into a given (genus-0) grid polyhedron. For both strip types, define the
length of a strip to be the number of grid squares it contains; refer to Figure 1. For a strip folding
of a polyhedron P , define the number of layers covering a point q on P to be the number of interior
points of the strip that map to q in the folding, excluding crease points, that is, points lying on a
hinge that gets folded by a nonzero angle. (This definition may undercount the number of layers
along one-dimensional creases, but counts correctly at the remaining two-dimensional subset of P .)
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We will give bounds on the length of the strip and also on the maximum number of layers of the
strip covering any point of the polyhedron.

4.1 Canonical Strips

The main idea for canonical strips is that Properties (1) and (3) of Proposition 7 allow us to make
turns as shown in Figure 10, so that we do not waste an extra square of the strip per turn.

Theorem 8. If a grid polyhedron P has a milling tour T of length L with t turns, and T satisfies
Properties (1) and (3) of Proposition 7, then P can be covered by a folding of a canonical strip of
length L with at most two layers covering any point of P . Furthermore, the number of hinges folded
by 180◦ is t.

Proof. Because T alternates between left and right turns (Property (3)), the canonical strip can
follow T by making a single diagonal fold by 180◦ at each turn (instead of the more complicated
folds given by Figure 4). (It is the fact that the canonical strip has all the diagonal hinges in the
same direction that forces alternation between left and right turns from folding only at diagonal
hinges.) Furthermore, by Property (1), if T turns at a grid square, then the grid square is visited
twice and must correspond to a turn junction as shown in Figure 9(b). Thus we can cover turn
junctions with the canonical strip as shown in Figure 10. Notice that one grid square of the strip
is used per turn, and there are only two layers of the strip covering a turn junction.

By Property (1), if T goes straight at a grid square, then it is visited at most twice by T (and
in the case of being visited twice, it is a straight junction as shown in Figure 9(a)). Going straight
along T uses just one grid square of the strip, so a straight junction is covered by two layers of
the strip. The total length of the strip used is thus L, and there are at most two layers of the
strip covering each point of P . The number of hinges folded by 180◦ is exactly one turn in the
milling tour, which is t; all folds made for the strip to follow the surface are by 90◦ because, by
Property (1), the tour has no U-turns.

Corollary 9. Let P be a grid polyhedron, and let N be the number of grid squares of P . Then P
can be covered by a folding of a canonical strip of length 2N , and with at most two layers covering
any point of P .

4.2 Zig-Zag Strips

For zig-zag strips, we instead use Properties (1) and (2) of Proposition 7:

Theorem 10. If a grid polyhedron P has a milling tour T of length L with t turns, and T satisfies
properties (1) and (2) of Proposition 7, then P can be covered by a folding of a zig-zag strip of
length 2L with at most four layers covering any point of P . Furthermore, the number of hinges
folded by 180◦ is L.

Proof. By Property (1), T has no U-turns. If we follow the tour with a zig-zag strip using the turn
gadgets in Figure 6, then, at even positions, left turns require one unit square of the strip and right
turns require three unit squares, while at odd positions, left turns require three unit squares and
right turns require one unit square. Hence the positions along T alternate between left turns being
“easy” or being “hard” for the zig-zag strip, and similarly for right turns.
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Figure 10: A turn junction for a canonical strip. The parent band is vertical and the child band is
horizontal. The canonical strip starts out traveling upwards, turns right onto the child, visits the
child and its subtree, and returns from the child by turning left back onto the parent band. Notice
that each turn uses just one grid square of the canonical strip, and there are only two layers of
paper covering the turn junction grid square.

Consider a grid square g corresponding to a turn junction of T . Then g is visited twice by the
tour, with the first visit and second visit having opposite turn directions (i.e., if the first visit is a
left turn, the second visit will be a right turn, and vice versa). Now by Property (2), the length of
the milling tour between the first and second visit to g (counting g itself only once) is even, and
so the second visit to g has the same parity as the first visit to g. Now because the turns are in
opposite directions, one of the turns costs one grid square of the zig-zag strip, while the other turn
costs three grid squares of the zig-zag strip as explained above. Hence turn junctions are covered
by four grid squares of the zig-zag strip.

By Property (1), the only other types of grid squares to consider are a straight junction, or a
grid square which is visited exactly once by going straight. Figure 5 illustrates that going straight
at a grid square requires at most two squares of the zig-zag strip. And because a straight junction
is visited twice, at most four squares of the zig-zag strip cover a straight junction. Combining this
with the turn junction coverage of four, we have at most four layers of the strip covering any point
of P .

Now we are ready to measure the total length of the zig-zag strip used. The length of T spent
going straight is L − t; thus we use ≤ 2(L − t) grid squares of the strip for going straight. The
length of T spent on turns is t, and half of the turns cost 1 grid square while the other half cost
3 grid squares, so we spend ≤ t/2 + 3t/2 = 2t grid squares of the strip for turns. Thus the total
number of grid squares of the strip used is at most 2(L− t) + 2t = 2L.
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Figure 11: For both strip types, we can fold the unused portion of the strip (initially, all of it) into
an accordion to avoid collision during the folding motion. (a) Canonical strip. (b) Zig-zag strip,
with hinges drawn thick for increased visibility.

Finally we bound the number of 180◦ folds of the strip. At portions of the tour going straight,
we use one 180◦ fold per unit of length, and thus L− t such folds are dedicated to going straight.
For turns, half of the turns require two 180◦ folds, whereas the other half require no 180◦ folds.
Hence we obtain a total of L− t+ 2(t/2) = L 180◦ folds.

Corollary 11. Let P be a grid polyhedron, and let N be the number of grid squares of P . Then
P can be covered by a folding of a zig-zag strip of length 4N , and with at most four layers covering
any point of P .

By coloring the two sides of the zig-zag strip differently, we can also bicolor the surface of P in
any pattern we wish, as long as each grid square is assigned a uniform color. We do not prove this
result formally here, but mention that the bounds in length would become somewhat worse, and
the rigid motions presented in Section 5 do not work in this setting.

5 Rigid Motion Avoiding Collision

So far we have focused on just specifying a final folded state for the strip, and ignored the issue of
how to continuously move the strip into that folded state. In this section, we show how to achieve
this using a rigid folding motion, that is, a continuous motion that keeps all polygonal faces between
hinges rigid/planar, bending only at the hinges, and avoids collisions throughout the motion. Rigid
folding motions are important for applications to real-world programmable matter made out of stiff
material except at the hinges. Our approach may still suffer from practical issues, as it requires a
large (temporary) accumulation of many layers in an accordion form.

We prove that, if the grid polyhedron P has feature size at least 2, then we can construct a rigid
motion of the strip folding without collision. (By feature size at least 2, we mean that every exterior
voxel of P is contained in some 2×2×2 box with empty interior. For example, Figure 7(a) does not
have this property because of the voxels between adjacent legs and ears.) If the grid polyhedron
we wish to fold does not have this property, then one solution is to scale the polyhedron by a factor
of 2, and then the results here apply.

5.1 Approach

Our approach is to keep the yet-unused portion of the strip folded up into an accordion and then
to unfold only what is needed for the current move: straight, left, or right. Figure 11 shows the
accordion state for the canonical strip and for the zig-zag strip. We will perform the strip folding
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Figure 12: The accordion covering grid square g2 (a) face up, and (b) face down.

in such a way that the strip never penetrates the interior of the polyhedron P , and it never weaves
under previous portions of the strip. Thus, we could wrap the strip around P ’s surface even if P ’s
interior were already a filled solid. This restriction helps us think about folding the strip locally,
because some of P ’s surface may have already been folded (and it thus should not be penetrated)
by earlier parts of the strip.

It suffices to show, regardless of the local geometry of the polyhedron at the grid square where
the milling tour either goes straight or turns, and regardless of whether the accordion faces up or
down relative to the grid square it is covering (see Figure 12), that we can maneuver the accordion
in a way that allows us to unroll as many squares as necessary to perform the milling-tour move. A
näıve enumeration of the combinations of local geometry, accordion facing up or down, tour move
(left turn, right turn, or straight), and the type of strip being folded, would lead to a large number
of cases, but fortunately we can narrow this space down to a small number of essential cases.

We use the following notation to describe such a local case. Let g1, g2, and g3 denote the grid
square previously visited by the strip, the current grid square, and the next grid square the strip
will visit, respectively. Let e12 refer to the edge shared by g1 and g2, and let e23 refer to the edge
shared by g2 and g3. The local geometry of P at g2 is determined entirely by the position of e12
relative to e23 (if they are adjacent edges of g2, then we have a turn, and if they opposite edges,
then we have a straight) and whether each of those edges is reflex (270◦ dihedral angle), flat (180◦

dihedral angle), or convex (90◦ dihedral angle), respectively.
Next we reduce the number of cases we need to consider. First, left and right turns are sym-

metric, so we consider only right turns. Second, when the accordion is facing up, going straight or
turning is relatively straightforward. Figure 13 shows the moves for a canonical strip going straight
(an extrinsic rotation of some multiple of 90◦), and one case of turning (when e23 is flat or convex);
we omit the remaining turning case (when e23 is reflex) as it is similar to the F–R turn case below.
The same strategy for going straight can be applied to the zig-zag strip, unfolding the appropriate
crease to go left, straight, or right. Thus we focus our case analysis on cases where the accordion is
facing down. Maneuvering the strip is more difficult in this case, because the accordion naturally
wants to unfold into the interior of P , which we forbid (and which could be a real problem because
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Figure 13: Continuous folding motion within a 1× 1× 2 box for canonical strip, face-up cases. (a)
Straight. (b) Turn where e23 is flat.

the surface of P may have already been covered by previous portions of the strip).

5.2 Canonical Strip

For the canonical strip, there are two turn cases and one straight case.

Turns. In the F–R turn case, e12 is a flat edge and e23 is a reflex edge, as illustrated in Fig-
ure 14(a). The moves we present for this case also work for any combination of e12 being convex
or flat and e23 being reflex, flat, or convex. Hence these moves cover all turn cases except for the
R–R case where e12 and e23 are both reflex; see Figure 15(a).

Figures 14(b) and 15(b) illustrate the moves for the F–R and R–R turn cases, respectively.
The F–R turn case does not exploit feature size, which is why the moves here still work for any
combination of e12 being convex or flat and e23 being reflex, flat, or convex. The R–R turn case
uses that the dashed voxel in Figure 15 one unit away from g1 must be empty because we assumed
feature size at least 2, and so the moves here rely on the specific position of g1 relative to g2 (i.e.,
they rely on e12 being a reflex edge).
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Figure 14: Continuous folding motion for canonical strip, F–R turn case. (a) Local geometry. (b)
Moves within a 1× 1× 2 box for a face-down canonical accordion.
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Figure 15: Continuous folding motion for canonical strip, R–R turn case. (a) Local geometry. The
dashed voxel beginning one unit away from g1 must be empty because we assumed feature size at
least 2. (b) Moves within a 1× 1× 2 box for a face-down canonical accordion.

Straight. In the R–C straight case, e12 is a reflex edge and e23 is a convex edge; see Figure 16(a).
Figure 16(b) shows the moves for this straight case where the canonical accordion lies face-down
on g2. The moves for this case can be modified for any straight case (i.e., any combination of
edge types for e12 and e23) except the R–R case when both e12 and e23 are reflex, but this case is
impossible while having the exterior voxel adjacent to g2 in an empty 2× 2× 2 box.

5.3 Zig-Zag Strip

The analysis for the zig-zag strip accordion moves is slightly more complicated because we now also
have to consider whether a turn costs 1 unit or 3 units, as the moves can be different depending
upon which turn-cost case we are in.
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Figure 16: Continuous folding motion for canonical strip, R–C straight case. (a) Local geometry.
(b) Moves within a 1× 1× 2 box for a face-down canonical accordion.

Turns. There are four turn cases for the zig-zag gadget that need to be considered:

F–R–1: e12 is flat, e23 is reflex, and the turn costs 1;

R–F–∗: e12 is reflex, e23 is flat, and the turn costs 1 or 3 (the moves work regardless of the turn
cost);

R–R–1: e12 and e23 are reflex, and the turn costs 1; and

R–R–3: e12 and e23 are reflex, and the turn costs 3.

We explain briefly why these are the only turn cases that need to be considered. The moves
for case F–R–1 also work when e12 is convex and e23 is reflex with turn cost 1. The moves for case
R–F–∗ also work for any combination of edge types for e12 and e23 where e23 is not reflex. The
moves for case R–R–3 work when e12 is flat or convex and e23 is reflex with turn cost 3. Thus these
cases collectively cover all possible cases we need to consider for the zig-zag strip.

For brevity, we show the moves for just one of the turn cases, R–F–∗. Figure 17 illustrates turn
case R–F–1. The same moves also work for turn cost 3.

Straight. As with the canonical strip, it suffices to consider the R–C straight case where e12 is a
reflex edge and e23 is a convex edge. The moves for this case with the zig-zag strip are analogous
to those in Figure 16 presented for the canonical strip, so we do not repeat them.
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Figure 17: Continuous folding motion for zig-zag strip, R–F–1 turn case. (a) Local geometry. (b)
Moves within a 1×1×2 box for a face-down zig-zag accordion where the turn costs 1. These moves
also work for turn cost 3, and for any combination of edge types for e12 and e23 not having e23
reflex.
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