
Universal Hinge Patterns for Folding Strips
Efficiently into Any Grid Polyhedron

Nadia M. Benbernou1 ?, Erik D. Demaine2,
Martin L. Demaine2, and Anna Lubiw3

1 Google Inc., nbenbern@gmail.com.
2 MIT Computer Science and Artificial Intelligence Laboratory,

32 Vassar St., Cambridge, MA 02139, USA, {edemaine,mdemaine}@mit.edu
3 David R. Cheriton School of Computer Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada, alubiw@uwaterloo.ca

Abstract. We present two universal hinge patterns that enable a strip
of material to fold into any connected surface made up of unit squares on
the 3D cube grid—for example, the surface of any polycube. The folding
is efficient: for target surfaces topologically equivalent to a sphere, the
strip needs to have only twice the target surface area, and the folding
stacks at most two layers of material anywhere. These geometric results
offer a new way to build programmable matter that is substantially more
efficient than what is possible with a square N × N sheet of material,
which can fold into all polycubes only of surface area O(N) and may
stack Θ(N2) layers at one point. We also show how our strip foldings
can be executed by a rigid motion without collisions (albeit assuming
zero thickness), which is not possible in general with 2D sheet folding.

To achieve these results, we develop new approximation algorithms
for milling the surface of a grid polyhedron, which simultaneously give a
2-approximation in tour length and an 8/3-approximation in the number
of turns. Both length and turns consume area when folding a strip, so
we build on past approximation algorithms for these two objectives from
2D milling.

1 Introduction

In computational origami design, the goal is generally to develop an algorithm
that, given a desired shape or property, produces a crease pattern that folds into
an origami with that shape or property. Examples include folding any shape
[9], folding approximately any shape while being watertight [10], and optimally
folding a shape whose projection is a desired metric tree [14,15]. In all of these
results, every different shape or tree results in a completely different crease pat-
tern; two shapes rarely share many (or even any) creases.

The idea of a universal hinge pattern [6] is that a finite set of hinges (possible
creases) suffice to make exponentially many different shapes. The main result
along these lines is that an N×N “box-pleat” grid suffices to make any polycube

? Work performed while at MIT.

nbenbern@gmail.com
{edemaine,mdemaine}@mit.edu
alubiw@uwaterloo.ca

made of O(N) cubes [6]. The box-pleat grid is a square grid plus alternating
diagonals in the squares, also known as the “tetrakis tiling”. For each target
polycube, a subset of the hinges in the grid serve as the crease pattern for that
shape. Polycubes form a universal set of shapes in that they can arbitrarily
closely approximate (in the Hausdorff sense) any desired volume.

The motivation for universal hinge patterns is the implementation of pro-
grammable matter—material whose shape can be externally programmed. One
approach to programmable matter, developed by an MIT–Harvard collabora-
tion, is a self-folding sheet—a sheet of material that can fold itself into several
different origami designs, without manipulation by a human origamist [12,1].
For practicality, the sheet must consist of a fixed pattern of hinges, each with
an embedded actuator that can be programmed to fold or not. Thus for the
programmable matter to be able to form a universal set of shapes, we need a
universal hinge pattern.

The box-pleated polycube result [6], however, has some practical limitations
that prevent direct application to programmable matter. Specifically, using a
sheet of area Θ(N2) to fold N cubes means that all but a Θ(1/N) fraction of the
surface area is wasted. Unfortunately, this reduction in surface area is necessary
for a roughly square sheet, as folding a 1×1×N tube requires a sheet of diameter
Ω(N). Furthermore, a polycube made from N cubes can have surface area as
low as Θ(N2/3), resulting in further wastage of surface area in the worst case.
Given the factor-Ω(N) reduction in surface area, an average of Ω(N) layers of
material come together on the polycube surface. Indeed, the current approach
can have up to Θ(N2) layers coming together at a single point [6]. Real-world
robotic materials have significant thickness, given the embedded actuation and
electronics, meaning that only a few overlapping layers are really practical [12].

(a)

(b)

Fig. 1. Two universal
hinge patterns in strips.
(a) A canonical strip of
length 5. (b) A zig-zag
strip of length 6. The
dashed lines are hinges.

Our results: strip folding. In this paper, we in-
troduce two new universal hinge patterns that avoid
these inefficiencies, by using sheets of material that
are long only in one dimension (“strips”). Specifically,
Fig. 1 shows the two hinge patterns: the canonical
strip is a 1×N strip with hinges at integer grid lines
and same-oriented diagonals, while the zig-zag strip
is an N -square zig-zag with hinges at just integer grid
lines. We show in Section 2 that any grid surface—
any connected surface made up of unit squares on the
3D cube grid—can be folded from either strip. The
strip length only needs to be a constant factor larger
than the surface area, and the number of layers is
at most a constant throughout the folding. Most of
our analysis concerns (genus-0) grid polyhedra, that
is, when the surface is topologically equivalent to a
sphere (a manifold without boundary, so that every
edge is incident to exactly two grid squares, and with-
out handles, unlike a torus). We show in Section 4 that a grid polyhedron of

surface area N can be folded from a canonical strip of length 2N with at most
two layers everywhere, or from a zig-zag strip of length 4N with at most four
layers everywhere.

The improved surface efficiency and reduced layering of these strip results
seem more practical for programmable matter. In addition, the panels of either
strip (the facets delineated by hinges) are connected acyclically into a path,
making them potentially easier to control. One potential drawback is that the
reduced connectivity makes for a flimsier device; this issue can be mitigated by
adding tabs to the edges of the strips to make full two-dimensional contacts
across seams and thereby increase strength.

We also show in Section 5 an important practical result for our strip foldings:
under a small assumption about feature size, we give an algorithm for actually
folding the strip into the desired shape, while keeping the panels rigid (flat) and
avoiding self-intersection throughout the motion. Such a rigid folding process
is important given current fabrication materials, which put flexibility only in
the creases between panels [12]. An important limitation, however, is that we
assume zero thickness of the material, which would need to be avoided before
this method becomes practical.

Our approach is also related to the 1D chain robots of [7], but based on thin
material instead of thick solid chains. Most notably, working with thin material
enables us to use a few overlapping layers to make any desired surface without
scaling, and still with high efficiency. Essentially, folding long thin strips of sheet
material is like a fusion between 1D chains of [7] and the square sheet folding of
[6,12,1].

Milling tours. At the core of our efficient strip foldings are efficient approxi-
mation algorithms for milling a grid polyhedron. Motivated by rapid-fabrication
CNC milling/cutting tools, milling problems are typically stated in terms of a
2D region called a “pocket” and a cutting tool called a “cutter”, with the goal
being to find a path or tour for the cutter that covers the entire pocket. In our
situation, the “pocket” is the surface of the grid polyhedron, and the “cutter”
is a unit square constrained to move from one grid square of the surface to an
(intrinsically) adjacent grid square.

The typical goals in milling problems are to minimize the length of the tour
[3] or to minimize the number of turns in the tour [2]. Both versions are known
to be strongly NP-hard, even when the pocket is an integral orthogonal polygon
and the cutter is a unit square. We conjecture that the problem remains strongly
NP-hard when the pocket is a grid polyhedron, but this is not obvious.

In our situation, both length and number of turns are important, as both
influence the required length of a strip to cover the surface. Thus we develop
one algorithm that simultaneously approximates both measures. Such results
have also been achieved for 2D pockets [2]; our results are the first we know for
surfaces in 3D. Specifically, we develop in Section 3 an approximation algorithm
for computing a milling tour of a given grid polyhedron, achieving both a 2-
approximation in length and an 8/3-approximation in number of turns.

Fig. 2. Strip folding of individual letters typeface, A–Z and 0–9: unfolded font (top)
and folded font (bottom), where the face incident to the bottom edge remains face-up.

Fonts. To illustrate the power of strip folding, we designed a typeface, rep-
resenting each letter of the alphabet by a folding of a 1 × x strip for some x,
as shown in Fig. 2. The individual-letters typeface consists of two fonts: the un-
folded font is a puzzle to figure out each letter, while the folded font is easy to
read. These crease patterns adhere to an integer grid with orthogonal and/or
diagonal creases, but are not necessarily subpatterns of the canonical hinge pat-
tern. This extra flexibility gives us control to produce folded half-squares as
desired, increasing the font’s fidelity.

We have developed a web app that visualizes the font.4 Currently in devel-
opment is the ability to chain letters together into one long strip folding; Fig. 9
at the end of the paper shows one example.

The full version of this paper [5] contains details omitted from this extended
abstract.

2 Universality

In this section, we prove that both the canonical strip and zig-zag strip of Fig. 1,
of sufficient length, can fold into any grid surface. We begin with milling tours

4 http://erikdemaine.org/fonts/strip/

http://erikdemaine.org/fonts/strip/

(a) (b)

Fig. 3. (a) Left and (b) right turn with a canonical strip.

which provide an abstract plan for routing the strip, and then turn to the details
of how to manipulate each type of strip.

Dual graph. Recall that a grid surface consists of one or more grid squares—
that is, squares of the 3D cube grid—glued edge-to-edge to form a connected
surface (ignoring vertex connections). Define the dual graph to have a dual vertex
for each such grid square, and any two grid squares sharing an edge define a dual
edge between the two corresponding dual vertices. Our assumption of the grid
surface being connected is equivalent to the dual graph being connected.

Milling tours. A milling tour is a (not necessarily simple) spanning cycle
in the dual graph, that is, a cycle that visits every dual vertex at least once (but
possibly more than once). Equivalently, we can think of a milling tour as the
path traced by the center of a moving square that must cover the entire surface
while remaining on the surface, and return to its starting point. Milling tours
always exist: for example, we can double a spanning tree of the dual graph to
obtain a milling tour of length less than double the given surface area.

At each grid square, we can characterize a milling tour as going straight,
turning, or U-turning—intrinsically on the surface—according to which two sides
of the grid square the tour enters and exits. If the sides are opposite, the tour is
straight ; if the sides are incident, the tour turns; and if the sides are the same, the
tour U-turns. Intuitively, we can imagine unfolding the surface and developing
the tour into the plane, and measuring the resulting planar turn angle at the
center of the grid square.

Strip folding. To prove universality, it suffices to show that a canonical strip
or zig-zag strip can follow any milling tour and thus make any grid polyhedron. In
particular, it suffices to show how the strip can go straight, turn left, turn right,
and U-turn. Then, in 3D, the strip would be further folded at each traversed
edge of the grid surface, to stay on the surface. Indeed, U-turns can be viewed
as folding onto the opposite side of the same surface, and thus are intrinsically
equivalent to going straight; hence we can focus on going straight and making
left/right turns.

Canonical strip. Fig. 3 shows how a canonical strip can turn left or right;
it goes straight without any folding. Each turn adds 1 to the length of the strip,
and adds 2 layers to part of the grid square where the turn is made. Therefore
a milling tour of length L with t turns of a grid surface can be followed by a
canonical strip of length L+ t. Furthermore, if the milling tour visits each grid
square at most c times, then the strip folding has at most 3c layers covering any
point of the surface.

Fig. 4. Going straight with a zig-zag strip requires at most two unit squares per grid
square. Left and right crease patterns show two different parities along the strip.

(a) (b)

Fig. 5. Turning with a zig-zag strip has two cases because of parity. (a) Turning left
at an odd position requires three grid squares, whereas turning right requires one grid
square. (b) Turning left at an even position requires one grid square, whereas turning
right requires three grid squares.

Zig-zag strip. Fig. 4 shows how to fold a zig-zag strip in order to go straight.
In this straight portion, each square of the surface is covered by two squares of
the strip. Fig. 5 shows left and right turns. Observe that turns require either one
or three squares of the strip. Therefore a milling tour of length L with t turns
can be followed by a zig-zag strip of length at most 2L+ t. Furthermore, if the
milling tour visits each grid square at most c times, then the strip folding has
at most 3c layers covering any point of the surface.

Proposition 1. Every grid surface of area N can be folded from a canonical
strip of length 4N , with at most eight layers stacked anywhere, and from a zig-
zag strip of length 6N , with at most twelve layers stacked anywhere.

The goal in the rest of this paper is to achieve better bounds for grid poly-
hedra, using more carefully chosen milling tours.

3 Milling Tour Approximation

This section presents a constant-factor approximation algorithm for milling a
(genus-0) grid polyhedron P with respect to both length and turns. Specifically,
our algorithm is a 2-approximation in length and an 8/3-approximation in turns.
Our milling tours also have special properties that make them more amenable
to strip folding.

Our approach is to reduce the milling problem to vertex cover in a tripartite
graph. Then it follows that our algorithm is a 2α-approximation in turns, where
α is the best approximation factor for vertex cover in tripartite graphs. The
best known bounds on α are 34/33 ≤ α ≤ 4/3. Clementi et al. [8] proved
that minimum vertex cover in tripartite graphs is not approximable within a
factor smaller than 34/33 = 1.03 unless P = NP. Theorem 1 of [13] implies
a 4/3-approximation for minimum weighted vertex cover for tripartite graphs
(assuming we are given the 3-partition of the vertex set, which we know in our
case). Thus we use α = 4/3 below. An improved approximation ratio α would
improve our approximation ratios, but may also affect the stated running times,
which currently assume use of [13].

3.1 Bands

The basis for our approximation algorithms is the notion of “bands” for a grid
polyhedron P . Let xmin and xmax respectively be the minimum and maximum
x coordinates of P ; define ymin, ymax, zmin, zmax analogously. These minima and
maxima have integer values because the vertices of P lie on the integer grid.
Define the ith x-slab Sx(i) to be the slab bounded by parallel planes x = xmin+i
and x = xmin + i+ 1, for each i ∈ {0, 1, . . . , xmax−xmin− 1}. The intersection of
P with the ith x-slab Sx(i) (assuming i is in the specified range) is either a single
band (i.e., a simple cycle of grid squares in that slab), or a collection of such
bands, which we refer to as x-bands. Define y-bands and z-bands analogously.

Two bands overlap if there is a grid square contained in both bands. Each grid
square of P is contained in precisely two bands (e.g., if a grid square’s outward
normal were in the +z-direction, then it would be contained in one x-band and
one y-band). Two bands B1 and B2 are adjacent if they do not overlap, and a
grid square of B1 shares an edge with a grid square of B2. A band cover for P is
a collection of x-, y-, and z-bands that collectively cover the entire surface of P .
The size of a band cover is the number of its bands.

3.2 Cover Bands

The starting point for the milling approximation algorithm is to find an approx-
imately minimum band cover, as the minimum band cover is a lower bound on
the number of turns in any milling tour:

Proposition 2. [2, Lemma 4.9] The size of a minimum band cover of a grid
polyhedron P is a lower bound on the number of turns in any milling tour of P .

Next we describe how to find a near-optimal band cover. Consider the graph
GP with one vertex per band of a grid polyhedron P , connecting two vertices by
an edge if their corresponding bands overlap. It turns out that an (approximately
minimum) vertex cover in GP will give us an (approximately minimum) band
cover in P :

Proposition 3. A vertex cover for GP induces a band cover of the same size
and vice versa.

Because the bands fall into three classes (x-, y-, and z-), with no over-
lapping bands within a single class, GP is tripartite. Hence we can use an
α-approximation algorithm for vertex cover in tripartite graphs to find an α-
approximate vertex cover in GP and thus an α-approximate band cover of P .

3.3 Connected Bands

Our next goal will be to efficiently tour the bands in the cover. Given a band
cover S for a grid polyhedron P , define the band graph GS to be the subgraph
of GP induced by the subset of vertices corresponding to S. We will construct
a tour of the bands S based on a spanning tree of GS . Our first step is thus to
show that GS is connected (Lemma 5 below). We do so by showing that adjacent
bands (as defined in Section 3.1) are in the same connected component of GS ,
using the following lemma of Genc [11]:

Lemma 4. [11]5 For any band B in a grid polyhedron P , let Nb be the bands of
P overlapping B. (Equivalently, Nb is the set of neighbors of B in GP). Then
the subgraph of GP induced by NB is connected.

Lemma 5. If S is a band cover for a grid polyhedron P , then the graph GS is
connected.

3.4 Band Tour

Now we can present our algorithm for transforming a band cover into an efficient
milling tour.

Theorem 6. Let P be a grid polyhedron with N grid squares. In O(N2 logN)
time, we can find a milling tour of P that is a 2-approximation in length and an
8/3-approximation (or more generally, a 2α-approximation) in turns.

We now state some additional properties of any milling tour produced by the
approximation algorithm of Theorem 6, which will be useful for later applications
to strip folding in Section 4.

5 Genc [11] uses somewhat different terminology to state this lemma: “straight cycles
in the dual graph” are our bands, and “crossing” is our overlapping. The induced
subgraph is also defined directly, instead of as an induced subgraph of GP .

Proposition 7. Let P be a grid polyhedron, and consider a milling tour of P
obtained from the approximation algorithm of Theorem 6. Then the following
properties hold:

1. A grid square of P is either visited once, in which case it is visited by a
straight part of the tour; or it is visited twice, by two straight junctions or
by two turn junctions.

2. In the case of a turn junction, the length of the milling tour between the
two visits to the grid square (counting only one of the two visits to the grid
square in the length measurement) is even.

3. The tour can be modified to alternate between left and right turns (without
changing its length or the number of turns).

3.5 Polynomial Time

The algorithm described above is polynomial in the surface area N of the grid
polyhedron, or equivalently, polynomial in the number of unit cubes making
up the polyomino solid. For our application to strip folding, this is polynomial
in the length of the strip, and thus sufficient for most purposes. On the other
hand, polyhedra are often encoded as a collection of n vertices and faces, with
faces possibly much larger than a unit square. In this case, the algorithm runs
in pseudopolynomial time.

Although we do not detail the approach here, our algorithm can be modified
to run in polynomial time. To achieve this result, we can no longer afford to deal
with unit bands directly, because their number is polynomially related to the
number N of grid squares, not the number n of vertices. To achieve polynomial
time in n, we concisely encode the output milling tour using “fat” bands rather
than unit bands, which can then be easily decoded into a tour of unit bands. By
making each band as wide as possible, their number is polynomially related to
n instead of N . Details of an O(n3 log n)-time milling approximation algorithm
(with the same approximation bounds as above) can be found in [4].

4 Strip Foldings of Grid Polyhedra

In this section, we show how we can use the milling tours from Section 3 to fold a
canonical strip or zig-zag strip efficiently into a given (genus-0) grid polyhedron.
For both strip types, define the length of a strip to be the number of grid squares
it contains; refer to Fig. 1. For a strip folding of a polyhedron P , define the
number of layers covering a point q on P to be the number of interior points of
the strip that map to q in the folding, excluding crease points, that is, points lying
on a hinge that gets folded by a nonzero angle. (This definition may undercount
the number of layers along one-dimensional creases, but counts correctly at the
remaining two-dimensional subset of P .) We will give bounds on the length of
the strip and also on the maximum number of layers of the strip covering any
point of the polyhedron.

Fig. 6. A turn
junction for a
canonical strip.

The main idea for canonical strips is that Properties (1)
and (3) of Proposition 7 allow us to make turns as shown in
Fig. 6, so that we do not waste an extra square of the strip
per turn.

Theorem 8. Let P be a grid polyhedron, and let N be the
number of grid squares of P . Then P can be covered by a
folding of a canonical strip of length 2N , and with at most two layers covering
any point of P .

For zig-zag strips, we instead use Properties (1) and (2) of Proposition 7:

Theorem 9. Let P be a grid polyhedron, and let N be the number of grid squares
of P . Then P can be covered by a folding of a zig-zag strip of length 4N , and
with at most four layers covering any point of P .

By coloring the two sides of the zig-zag strip differently, we can also bicolor
the surface of P in any pattern we wish, as long as each grid square is assigned
a uniform color. We do not prove this result formally here, but mention that
the bounds in length would become somewhat worse, and the rigid motions
presented in Section 5 do not work in this setting.

5 Rigid Motion Avoiding Collision

So far we have focused on just specifying a final folded state for the strip, and
ignored the issue of how to continuously move the strip into that folded state.
In this section, we show how to achieve this using a rigid folding motion, that is,
a continuous motion that keeps all polygonal faces between hinges rigid/planar,
bending only at the hinges, and avoids collisions throughout the motion. Rigid
folding motions are important for applications to real-world programmable mat-
ter made out of stiff material except at the hinges. Our approach may still suffer
from practical issues, as it requires a large (temporary) accumulation of many
layers in an accordion form.

(a) (b)

Fig. 7. Accordion for (a)
canonical strip and (b)
zig-zag strip, with hinges
drawn thick for increased
visibility.

We prove that, if the grid polyhedron P has fea-
ture size at least 2, then we can construct a rigid mo-
tion of the strip folding without collision. (By feature
size at least 2, we mean that every exterior voxel of P
is contained in some empty 2×2×2 box.) If the grid
polyhedron we wish to fold has feature size 1, then
one solution is to scale the polyhedron by a factor
of 2, and then the results here apply.

Our approach is to keep the yet-unused portion of the strip folded up into an
accordion and then to unfold only what is needed for the current move: straight,
left, or right. Fig. 7 shows the accordion state for the canonical strip and for
the zig-zag strip. We will perform the strip folding in such a way that the strip
never penetrates the interior of the polyhedron P , and it never weaves under

(a)

(b)

Fig. 8. Canonical strip, face-up cases. (a) Straight. (b) Turn where e23 is flat.

previous portions of the strip. Thus, we could wrap the strip around P ’s surface
even if P ’s interior were already a filled solid. This restriction helps us think
about folding the strip locally, because some of P ’s surface may have already
been folded (and it thus should not be penetrated) by earlier parts of the strip.

It suffices to show, regardless of the local geometry of the polyhedron at the
grid square where the milling tour either goes straight or turns, and regardless of
whether the accordion faces up or down relative to the grid square it is covering,
that we can maneuver the accordion in a way that allows us to unroll as many
squares as necessary to perform the milling-tour move. Fig. 8 shows two key
cases for unrolling part of the accordion of a canonical strip. See [5] for details.

Acknowledgments. We thank ByoungKwon An and Daniela Rus for several
helpful discussions about programmable matter that motivated this work.

References

1. B. An, N. Benbernou, E. D. Demaine, and D. Rus. Planning to fold multiple
objects from a single self-folding sheet. Robotica, 29(1):87–102, 2011. Special issue
on Robotic Self-X Systems.

2. E. M. Arkin, M. A. Bender, E. D. Demaine, S. P. Fekete, J. S. B. Mitchell, and
S. Sethia. Optimal covering tours with turn costs. SIAM Journal on Computing,
35(3):531–566, 2005.

3. E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for
lawn mowing and milling. Computational Geometry: Theory and Applications,
17(1–2):25–50, 2000.

4. N. M. Benbernou. Geometric Algorithms for Reconfigurable Structures. PhD thesis,
Massachusetts Institute of Technology, September 2011.

5. N. M. Benbernou, E. D. Demaine, M. L. Demaine, and A. Lubiw. Universal hinge
patterns for folding strips efficiently into any grid polyhedron. arXiv:1611.03187,
2016. https://arXiv.org/abs/1611.03187.

6. N. M. Benbernou, E. D. Demaine, M. L. Demaine, and A. Ovadya. Universal
hinge patterns to fold orthogonal shapes. In Origami5: Proceedings of the 5th In-
ternational Conference on Origami in Science, Mathematics and Education, pages
405–420. A K Peters, Singapore, 2010.

7. K. C. Cheung, E. D. Demaine, J. Bachrach, and S. Griffith. Programmable assem-
bly with universally foldable strings (moteins). IEEE Transactions on Robotics,
27(4):718–729, 2011.

8. A. E. F. Clementi, P. Crescenzi, and G. Rossi. On the complexity of approximating
colored-graph problems. In Proceedings of the 5th Annual International Conference
on Computing and Combinatorics, volume 1627 of Lecture Notes in Computer
Science, pages 281–290, 1999.

9. E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell. Folding flat silhouettes and
wrapping polyhedral packages: New results in computational origami. Computa-
tional Geometry: Theory and Applications, 16(1):3–21, 2000.

10. E. D. Demaine and T. Tachi. Origamizer: A practical algorithm for folding any
polyhedron. Manuscript, 2017.

11. B. Genc. Reconstruction of Orthogonal Polyhedra. PhD thesis, University of Wa-
terloo, 2008.

12. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus,
and R. J. Wood. Programmable matter by folding. Proceedings of the National
Academy of Sciences of the United States of America, 107(28):12441–12445, 2010.

13. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6(3):243–254, 1983.

14. R. J. Lang. A computational algorithm for origami design. In Proceedings of
the 12th Annual ACM Symposium on Computational Geometry, pages 98–105,
Philadelphia, PA, May 1996.

15. R. J. Lang and E. D. Demaine. Facet ordering and crease assignment in uniaxial
bases. In Origami4: Proceedings of the 4th International Conference on Origami
in Science, Mathematics, and Education, pages 189–205, Pasadena, California,
September 2006. A K Peters.

Fig. 9. An example of joining together a few letters from our typeface in Fig. 2. Un-
folding (bottom) not to scale with folding (top).

https://arXiv.org/abs/1611.03187

	Universal Hinge Patterns for Folding Strips Efficiently into Any Grid Polyhedron

