
Symmetric Assembly Puzzles are Hard,

Beyond a Few Pieces

Erik D. Demainea, Matias Kormanb, Jason S. Kua, Joseph S. B. Mitchellc,
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Abstract

We study the complexity of symmetric assembly puzzles: given a collection of
simple polygons, can we translate, rotate, and possibly flip them so that their
interior-disjoint union is line symmetric? On the negative side, we show that
the problem is strongly NP-complete even if the pieces are all polyominos.
On the positive side, we show that the problem can be solved in polynomial
time if the number of pieces is a fixed constant.

Keywords: assembly puzzle, NP-complete, parameterized algorithms

1. Introduction

The goal of a 2D assembly puzzle is to arrange a given set of pieces so that
they do not overlap and form a target silhouette. The most famous example
is the Tangram puzzle, shown in Figure 1. Its earliest printed reference is
from 1813 in China, but by whom or exactly when it was invented remains a
mystery [1]. There are over 2,000 Tangram assembly puzzles [1], and many
more similar 2D assembly puzzles [2]. A recent trend in the puzzle world is
a relatively new type of 2D assembly puzzle that we call symmetric assembly
puzzles. In these puzzles the target shape is not specified. Instead, the
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objective is to arrange the pieces so that they form a symmetric silhouette
without overlap.

(1)

(2)
(3)

Q: Can you make a line symmetric 
     shape from these two pieces?
     (Two solutions)

Figure 1: [Left] The seven Tangram pieces (1) can be assembled into non-simple silhouettes
(2) and (3). [Right] A symmetric assembly puzzle invented by Hiroshi Yamamoto [3]:
given the two black pieces (right) from the classic T puzzle (left), make two different line
symmetric shapes. (Used with permission.)

The first symmetric assembly puzzle, “Symmetrix”, was designed in 2003
by Japanese puzzle designer Tadao Kitazawa and was distributed by Naoyuki
Iwase as his exchange puzzle at the 2004 International Puzzle Party (IPP)
in Tokyo [4]. The lack of a specified target shape makes these puzzles quite
difficult to solve. In this paper, we aim for arrangements that are line sym-
metric (reflection through a line), but other symmetries such as rotational
symmetry could also be considered. We also assume that the given pieces
are simple polygons, and that the line-symmetric assembly must be a simple
polygon (have no holes).

We study the computational complexity of this general form of symmetric
assembly puzzle. Precisely, we define a symmetric assembly puzzle, or SAP,
to be a set of k disjoint simple polygons P = {P1, P2, . . . , Pk}, with n =
|P1|+ · · ·+ |Pk| the total number of vertices in all pieces. By simple polygon
we mean a closed subset of R2 homeomorphic to a disk bounded by a closed
path of a finite number of straight line segments where nonadjacent edges and
vertices do not intersect. A symmetric assembly f : {p ∈ P | P ∈ P} → R2,
of a SAP P is a planar isometric embedding of the pieces ({f(p) | p ∈ P} for
each P ∈ P is a rigid transformation of P ), such that their mapped interiors
are disjoint and their mapped union forms a simple polygon that is line
symmetric. We abuse notation slightly by using f(P ) to denote {f(p) | p ∈
P} and f(P) to denote {f(p) | p ∈ P, P ∈ P}. We refer to SAP (symmetric
assembly puzzles) as the problem of deciding whether an instance P has a
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symmetric assembly f , and we study the computational complexity of SAP.
We allow pieces to flip over (reflect), but other variants of the puzzle may
disallow this. Given that humans have difficulty solving SAPs with even a
few low-complexity pieces, we consider two different generalizations: bounded
piece complexity (|Pi| = O(1)) and bounded piece number (k = O(1)). In
the former case, we prove strong NP-completeness, while in the latter case,
we solve the problem in polynomial time (the exponent is linear in k).

2. Many Pieces

First, we show that it is hard to solve symmetric assembly puzzles with
a large number of pieces, even if each piece has bounded complexity (|Pi| =
O(1)).

Theorem 1. Symmetric assembly puzzles are strongly NP-complete even if
each piece is a polyomino with at most six vertices with area upper-bounded
by a polynomial function of the number of pieces.

Proof. If a SAP has a solution, the location and orientation of each piece
within a symmetric assembly is a solution certificate of polynomial size check-
able in polynomial time, so symmetric assembly puzzles are in NP. We re-
duce from the Rectangle Packing Puzzle problem (in short the RPP
problem), known to be strongly NP-hard [5]. Specifically, it is (strongly)
NP-complete to decide whether k given rectangular pieces—sized 1× x1, 1×
x2, . . . , 1× xk, where the xi’s are positive integers bounded above by a poly-
nomial in k—can be exactly packed into a specified rectangular box with
given width w and height h and area x1 + x2 + · · ·+ xk = wh.

Let I = (x1, . . . , xk, w, h) be a rectangle packing puzzle. Without loss
of generality, we assume that w ≥ h. Now let I ′ = (P1, . . . , Pk, F ) be the
SAP where Pi is the 1 × xi rectangle for each i ∈ {1, . . . , k}, and F is the
polyomino in Figure 2. We call F the frame piece of I ′. We show that I has
a rectangle packing if and only if I ′ has a symmetric assembly.

Clearly, if I has a rectangle packing, then the pieces P1, . . . , Pk can be
packed into the w×h hole in the frame piece creating a line symmetric W×H
rectangle, solving the SAP. Now we show the reverse implication. Assume
that I ′ has a symmetric assembly, and let O∗ be a line symmetric polygon
formed by the pieces {P1, . . . , Pk, F}. We claim that O∗ must be a W ×H
rectangle, which will imply that I is a yes-instance of RPP. Fix a placement
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H = 3w

W = 4w

w

h (≤ w)

F ∩ F

α

F F

αL

αR

βL

βR

Figure 2: [Left] The frame piece F . [Middle] If ` and `B form an angle of π/4, then F ∩F `

is contained in a rectangle in an H × H and thus O∗ cannot be line symmetric. [Right]
The angles αL, βL, αR, and βR.

of the pieces of I ′ that forms O∗, and let ` be one of its lines of symmetry.
Assume, without loss of generality, that ` is a vertical line. Let F ` be the
reflection of F about `.

Observation 1. area(F ∩ F `) ≥ WH − 2wh ≥ 10w2

Proof. Because O∗ contains F ` and F , it holds that area(F `\F ) ≤ area(O∗\
F ) = wh. Because F ∪ F ` is mirror-symmetric, area(F ` \ F ) = area(F \ F `).
Hence, it follows that area(F ∩F `) = area(F )− area(F \F `) ≥ WH−2wh ≥
10w2. 2

Observation 1 implies that ` passes through an interior point of F . Let
`B be the line containing the segment of F with length 4w. Let c be the
center of the frame piece’s bounding box.

Lemma 2. `B is either parallel to ` or orthogonal to `.

Proof. Suppose, for contradiction, that `B is neither parallel nor orthogonal
to `. Let α be the smaller angle made by `B and `. We partition the edges of
F crossed by ` into two at their intersection points. Let FL and FR be the sets
of segments on the left and right portions of F , respectively. Consider the
set of counter-clockwise angles between ` and the lines containing segments
of FL. The assumptions that `B and ` are neither parallel nor orthogonal,
and that F is a polyomino together imply that the set contains exactly two
angles αL and βL, where αL ≤ βL and αL + π/2 = βL. Similarly, let αR and
βR be the clockwise angles between ` and the lines containing segments of
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F ∩ F F ∩ F
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w

h
w

h

Figure 3: [Left] When ` passes to the left of c, the portion of F to the left of ` is too small.
If it passes to the right, the right portion would be too small. [Right] If ` passes through
c, and is either orthogonal or parallel to `B , the symmetric assembly puzzle can only be
completed into a rectangle.

FR, where αR ≤ βR and αR + π/2 = βR. Because αL + βR = π, it holds that
αL + αR = π/2. Note that α ∈ {αL, αR}.

Two distinct pieces of I ′ are connected if the fixed placement of the two
pieces to form O∗ have a non-degenerate line segment on their edges in com-
mon. Let P be the subset of {P1, . . . , Pk, F} such that each Pi ∈ P can be
reached from F by repeatedly following connected pieces in O∗.

As before, consider the angles formed by ` and the lines containing seg-
ments in the left and right parts of P . Because all pieces are polyominoes,
these lines cannot make angles other than αL, βL, αR, and βR with `. Further
note that the subset O′ of O∗ covered by P must be mirror-symmetric with
respect to `, or else O∗ would not be. This implies that αL = αR. Because
αL + αR = π/2, the only solution in which ` is not parallel or orthogonal
to `B is when αL = αR = π/4 and α = π/4. However, if α = π/4, then
F ∩ F ` is a subset of an H × H rectangle (see Figure 2), whose area is at
most H2 = 9w2, contradicting Observation 1. 2

So ` is either parallel or orthogonal to `B. Further, it passes through
c (see Figure 3). In either case, F ∪ F ` is a W × H rectangle, and thus
O∗ = F ∪F `. This implies that O∗ \F is a w×h rectangle that must contain
the remaining pieces of I ′. In particular, we have that this placement packing
of P1, . . . , Pk gives a solution to the instance I of RPP, completing the proof
of Theorem 1. 2

We extend the above proof to show that the problem remains strongly
NP-complete even when each piece is a convex quadrilateral.

Theorem 3. Symmetric assembly puzzles are strongly NP-complete even if
each piece is a convex quadrilateral and area upper bounded by a polynomial
function of the number of pieces.
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Figure 4: Splitting the frame piece into two
convex quadrilateral pieces.
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Figure 5: Matching α to δ and β to γ.

Proof. We note that the only piece that is not a convex quadrilateral is the
frame piece F . Hence, we split this into two convex quadrilateral pieces as
shown in Figure 4. We note that due to the dimensions of H and W , the four
angles α, β, γ, and δ are all unique. Furthermore, only α + δ and β + γ do
not sum up to multiples of π/2. If we show that any line symmetric solution
aligns these four angles as in Figure 4, Theorem 1 completes the proof.

Assume the angles are not matched as in Figure 4. We first show that ex-
tending γ or δ by a multiple of π/2 is not useful. We focus on γ, but the same
argument holds for δ. If we extend γ using a right angle of the other frame
piece, it creates an imbalance resulting from the implied line of symmetry
cannot be overcome using only the remaining rectangles of combined area
wh (see Figure 6). Extending γ using the rectangles also does not lead to
a line symmetric polygon, because placing the other frame piece afterwards
still leads to an imbalanced shape.

Because the four angles are all unique and the symmetry line can pass
through at most two corners of a simple polygon, at least two of these angles
have to meet in a point. If α is matched to δ or if β is matched to γ, we note
that the created angle is not a multiple of π/2 and thus we still have three
unique angles. This implies that in this case, both α is matched to δ and β
is matched to γ (see Figure 5).

We first show that the difference between α + δ and β + γ cannot be a
multiple of π/2, which implies that the line of symmetry still needs to pass
through both of these angles. We prove this by contradiction, so assume
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Figure 6: The four cases when extending γ using the other frame piece.

that the difference is a multiple of π/2. We observe from Figure 4 that
α + δ + β + γ = 2π, β = γ + π/2, α = δ + π/2, and γ < δ. Hence, we need
to consider only the case where α + δ = β + γ + π/2, which implies that
δ = γ + π/4. Because δ + γ = π/2, it follows that γ = π/8 and that tan γ =√

2 − 1. However, from Figure 4 we also observe that tan γ = (H − h)/3w,
where 2w ≤ H − h < 3w, which implies that tan γ ≥ 2/3, contradicting that
γ is π/8. Thus, the difference between α + δ and β + γ also cannot be a
multiple of π/2.

Because neither α + δ nor β + γ is a multiple of π/2 and the difference
between α + δ and β + γ also cannot be a multiple of π/2, the only way to
construct a line symmetric solution is for the symmetry line to pass through
both created angles. However, this implies that in order to make a line
symmetric shape, we need to at least add one region of area 3w2 − wh and
one of area 3wh. Hence, the total area required is at least 3w2 + 2wh, which
is more than the wh combined area of the rectangles. Therefore, the four
angles have to be aligned as in Figure 4. 2

This result raises the question of what the simplest shape is for which the
problem is strongly NP-complete. We conjecture that the problem is still
strongly NP-complete even when each piece is a right triangle.

Conjecture 4. Symmetric assembly puzzles are strongly NP-complete even
if each piece is a right triangle with area upper-bounded by a polynomial
function of the number of pieces.

While we do not have a proof of this conjecture, we do sketch an approach
to a possible proof based on a reduction from the 3-Partition problem: It is

7



α

αβ

β

γ

γ

δ

δ

Figure 7: The frame and its splitting
lines. The hole for the 3-Partition in-
stance is shown in gray.

Figure 8: Splitting an almost square.

(strongly) NP-complete to decide whether a given set of 3k positive integers
(each integer is bounded from above by a polynomial in k) can be partitioned
into k triples, such the sum of the integers in each triple is the same.

Let {a1, ..., a3k} be the given set of integers in increasing order. We first
transform these integers into almost squares of size 1× 1 + εi, such that the
1 + εi sides of each triple sum to the same length: When we want to ensure
that εi is at most 1/1000 for each square, we transform each ai into an almost
square of size 1× 1 + ai

1000a3k
. Note that this does not change triples nor the

solvability of the 3-Partition instance.

Next, we create a big square frame that has a hole of size k×3+
∑3k

i=1 ai/k

1000a3k
.

Note that the area of this hole is equal to the total area of the almost squares.
We split the frame into right triangles as shown in Figure 7, while ensuring
that any combination of non-right angles is unique.

Finally, we split the 3k almost squares into 24k right triangles. The
general idea behind the splits is the same as for the frame: for each almost
square, we pick four points close to the middle of its sides and split the square
as shown in Figure 8. More precisely, when s is the length of a side, we pick
a point p ∈ { s

2
+ is

2k20
: i ∈ {1, 2, . . . , k19}}and split along the line connecting

the two points on the vertical sides, along the lines from the points on the
horizontal sides perpendicular to the previous splitting line, and along the
lines defined by points on consecutive sides (see Figure 8). Note that p is
at most s/2k away from the middle of the side. Again, we require that any
combination of non-right angles is unique.
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This uniqueness of angles should ensure that the triangles can only be
combined to the desired frame and almost squares. Proving this formally,
however, turns out to be rather intricate; thus, we leave the full proof of the
above conjecture for future research.

3. Constant Number of Pieces

Next we analyze symmetric assembly puzzles with a constant number of
pieces but many vertices, and show they can be solved in polynomial time.

Theorem 5. Given a symmetric assembly puzzle with a constant number
of pieces k containing at most n vertices in total, deciding whether it has a
symmetric assembly can be decided in time that is polynomial in n.

To prove this theorem, we present a brute force algorithm for solving
a SAP that runs in polynomial time for constant k. We say two pieces in
a symmetric assembly are connected to each other if their intersection in
the symmetric assembly contains a non-degenerate line segment, and let the
connection between two connected pieces be their intersection not including
isolated points. We will call two pieces fully connected if their connection is
exactly an edge of one of the pieces, and partially connected otherwise; note
that two pieces may be partially connected along more than one edge. Call
a piece a leaf if it connects to at most one piece, and a branch otherwise.
Given a leaf, let its parent be the piece connected to it (if it exists), and
let its siblings be all other pieces connected to its parent. An illustration
demonstrating these terms can be found in Figure 9.

In addition, we will need to construct simple polygons from provided
simple polygons by laying them next to each other along an edge. Let EP

denote the set of directed edges (pi, pj) from a vertex pi to an adjacent vertex
pj of some simple polygon P .

Given an edge e ∈ EP , we denote its length by λ(e). Let eP = (p1, p2) be a
directed edge of a polygon P , let eQ = (q1, q2) be a directed edge of a polygon
Q, and let d be a (non-negative) length strictly less than λ(eP ). Orient P
and Q such that eP exists in a clockwise traversal of P , eQ exists in a counter
clockwise traversal of Q, eQ is collinear and in the same direction as eP , and
the distance between p1 and q1 is distance d. Call these transformations the
mapping g : {p ∈ P ∪ Q | P,Q ∈ P} → R2, where {g(p) | p ∈ P ∪ Q}
for each P,Q ∈ P is a rigid transformation of P and Q. Then we define
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join(eP , eQ, d) to be g(P )∪ g(Q) when g(P )∪ g(Q) is a simple polygon, and
otherwise the empty set. See Figure 9.

Figure 9: [Left] Example symmetric assembly P showing its connection graph. Pieces a
and d are fully connected to piece b, and c is partially connected to b. Pieces b, c, and
d are branches. Piece a is a leaf, with b its parent and c and d the siblings of a. [Right]
Visualization of a join operation.

If a SAP has a symmetric assembly, let its connection graph be a graph
on the pieces with an edge connecting two pieces if they are connected in
the symmetric assembly. Because a symmetric assembly is a simple polygon
by definition, its connection graph is connected and has a spanning tree; we
can then construct the assembly using a concatenation of join procedures in
breadth-first-search order from an arbitrary root. Because parameter d is not
discrete, the total solution space of simple polygons that are constructible
from the pieces of a SAP may be uncountable. However, we will exploit the
structure of symmetric assemblies to search only a finite set of configurations.

Case 2:Case 1: Case 3:

Figure 10: Examples of symmetric assemblies belonging to each case. Case 1 highlights
vertices of connected pieces that intersect. Case 2 highlights join operations using lengths
of piece edges. Case 3 is constructed from one symmetric piece and a pair of congruent
pieces.

In order to enumerate possible configurations, we would like to distinguish
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between three cases of the puzzle (see Figure 10), specifically:

Case 1: the puzzle has a symmetric assembly in which two connected pieces
share a vertex on their connection;

Case 2: the puzzle has no symmetric assembly satisfying Case 1, but has one
in which the distance between vertices from the connecting edges
between two connected pieces has the same length as another whole
edge in the piece set (we say the connection between the two pieces
constructs the length of another edge);

Case 3: the puzzle has no symmetric assembly satisfying Case 1 or Case 2,
but has one in which a nonempty set of pieces are themselves line
symmetric about the line of symmetry of the symmetric assembly,
and any remaining pieces are pairs of congruent pieces symmetric
about the line of symmetry.

The following lemma ensures that these three cases are exhaustive.

Lemma 6. If a SAP has a symmetric assembly, it can be described by one
of the above three cases.

To prove this lemma, we will use the following auxiliary results.

Lemma 7. If a SAP has a symmetric assembly that is not Case 1, the con-
nection graph of the symmetric assembly is a tree and all connections are
single line segments.

Proof. Let P be a SAP with symmetric assembly f : {p ∈ P | P ∈ P} →
R2, such that {f(p) | p ∈ P} for P ∈ P is a rigid transformation of P , that
is not Case 1. Suppose, for contradiction, that the connection graph of f(P)
is not a tree, so that there exists a cycle C in the connection graph. Let S be
a simple closed curve embedded in f(P) that traverses the piece connections
from C. The region R bounded by S is completely covered by f(P), or else it
would contain a hole, contradicting that f(P) is a simple polygon. Because
f(P) covers R and S corresponds to a cycle in the connection graph, then R
contains a vertex v in R of some piece P . But then P must share vertex v
along its connection with another piece, contradicting exclusion from Case 1.

So the connection graph of f(P) is a tree. Now suppose for contradiction
there exists two connected pieces P and Q whose connection is more than
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one line segment. Then there exists a closed curve embedded in f(P) that
crosses from P to Q along two distinct edges. Then the region R bounded
by the cycle must contain a vertex v of P . If f(P) covers R, P must share
vertex v along its connection with a vertex of Q, contradicting exclusion
from Case 1. Otherwise, f(P) does not cover R, contradicting that f(P) is
a simple polygon. 2

Lemma 8. If a SAP has a symmetric assembly that is not Case 1 or Case 2,
the reflection of any partially connected leaf is exactly another piece congruent
to the leaf.

Proof. Let P be a SAP with a symmetric assembly f : {p ∈ P | P ∈ P} →
R2, such that {f(p) | p ∈ P} for P ∈ P is a rigid transformation of P , that
is not Case 1 or Case 2. Let s : f(P)→ f(P) be an automorphism reflecting
f(P) across a line of symmetry L, and let µ = s ◦ f , mapping each point
p ∈ Pi of a piece Pi ∈ P to the corresponding point in the reflection of f(Pi)
across L.

Consider a partially connected leaf P whose parent is Q with edge eP
connected to edge eQ, and suppose for contradiction that µ(P ) is not exactly
covered by another piece congruent to P . We first show that a single piece
P ′ contains µ(eP ) under f so that f(P ′) ⊂ µ(P ), and then show that in fact
f(P ′) = µ(P ).

By Lemma 7 the partial connection is a single line segment, and `P =
f(eP ) \ f(eQ) is non-empty. s(`P ) cannot be covered by more than one piece
or else two pieces would share a vertex along their connection contradicting
exclusion from Case 1. Also s(`P ) cannot be exactly the edge of another
piece or else the connection between P and Q would construct its length,
contradicting exclusion from Case 2. Thus, s(`P ) is a strict subset of an
edge eP ′ from some piece P ′ under f . Further, µ(eP ) = f(eP ′). Suppose for
contradiction it did not, and an endpoint p of eP ′ maps to a point interior
to f(eP )∩ f(eQ). Then f(p) is also an interior point of f(P), so µ(p) is also
an interior point, and f(eP ′) would share a vertex along its connection with
another piece contradicting exclusion from Case 1. So µ(eP ) is exactly edge
eP ′ of f(P ′). And because P is a leaf, f(P ′) ⊆ µ(P ).

Now we show that in fact f(P ′) = µ(P ). Suppose for contradiction that
f(P ′) is a strict subset of µ(P ), meaning that some other piece is also fully
contained in µ(P ). Let Q′ be the first such piece connecting to P ′ in a
clockwise traversal of P ′ from eP ′ . Then the connection between Q′ and P ′
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must either construct the length of some edge from P under f , contradicting
exclusion from Case 2, or Q′ and P ′ must share a vertex on their connection,
contradicting exclusion from Case 1. So, P ′ is a piece congruent to P . 2

We now use these intermediate results to prove Lemma 6.

Proof (of Lemma 6). Suppose for contradiction there exists a SAP P
having a symmetric assembly f : {p ∈ P | P ∈ P} → R2, such that {f(p) |
p ∈ P} for P ∈ P is a rigid transformation of P , that does not satisfy any of
the above cases, and assume P has the fewest pieces among all such SAPs.
We will identify a symmetric leaf or a congruent pair of leaves that can be
removed from P to form a SAP with fewer pieces. The new SAP must have
the same classification as the original, contradicting the minimality of P .

Let s : f(P)→ f(P) be an automorphism reflecting f(P) across a line of
symmetry L, and let µ = s ◦ f , mapping each point p ∈ Pi of a piece Pi ∈ P
to the corresponding point in the reflection of f(Pi) across L. Let P be a leaf
in the symmetric assembly whose siblings include at most one branch. Such
a P exists, as any leaf with longest distance from an arbitrary root satisfies
this property. We claim that either P is symmetric about line of symmetry
L, or µ(P ) is exactly covered by a second piece of the SAP congruent to P ,
contradicting the minimality of P .

First, if P has no parent and is the only piece in the symmetric assembly,
P must be a line symmetric polygon. Otherwise, let Q be the parent of P
with edge eP of P connected to edge eQ of Q. Let ePQ denote the subset of eQ
that maps to the intersection f(eP )∩f(eQ). We show that f(ePQ) and µ(ePQ)
are not the same line segment. Suppose for contradiction f(ePQ) = µ(ePQ).
Then either f(ePQ) lies along L or is symmetric about L.

If f(ePQ) lies along L, consider either endpoint p of eP . f(p) is either in
the interior or on the boundary of f(P). If f(p) is interior, then the two edges
of P incident to f(p) must be connected to two different pieces, contradicting
that P is a leaf. Alternatively, f(p) is on the boundary, and a vertex of some
other piece P ′ must contain f(p), contradicting exclusion from Case 1.

Alternatively f(ePQ) is symmetric about L. Because P is a leaf, it con-
nects to the rest of the symmetric assembly only through f(ePQ), so for the
assembly to be symmetric, f(P ) must be the same as µ(P ), and piece P is a
line symmetric polygon.

So f(ePQ) and µ(ePQ) are not the same line segment. We claim that µ(P )
is exactly covered by another piece of the SAP congruent to P . Suppose for
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Figure 11: Possible topological configurations of µ(P ).

contradiction it were not. Then by Lemma 8, P must be fully connected to
Q. Then µ(P ) either (a) contains a piece as a strict subset, (b) does not
fully contain a piece but intersects the interiors of multiple pieces, or (c) is a
strict subset of a single piece (see Figure 11).

First suppose (a), so µ(P ) contains some piece as a strict subset. We will
say that piece P covers a piece P ′ if f(P ′) is a strict subset of µ(P ). We will
identify a leaf piece P ′ covered by P , whose parent connection constructs the
length of an edge of P , contradicting exclusion from Case 2. To find such a
piece, consider any piece R that is not covered by P , and let S be a piece
from among all pieces covered by P that has longest distance to R in the
connection graph. This condition ensures that S is a leaf, connected to some
piece Q′ through edge eQ′ from Q′. Because S is covered by P , at least one
endpoint of eQ′ maps to point contained in µ(P ). Let q be such an endpoint.
Point f(q) is a vertex of the symmetric assembly or else the connection of Q
and some other piece would share a vertex on their connection at f(q). Let
P ′ be the piece connected to eQ′ with connection closest to q. P ′ is a leaf or
else S would not have had a longest distance to R in the connection graph.
Further, because S is covered by P , so is P ′. By Lemma 8, the connection
between P ′ and Q′ must be fully connected. If f(eP ′) = f(eQ′) then P ′ and
Q′ share vertices along their connection, contradicting exclusion from Case
1. If f(eQ′) ⊂ f(eP ′), then because P ′ is a leaf, f(eP ′) \ f(eQ′) constructs the
lengths of two edges of P , contradicting exclusion from Case 2. So edge eP ′

fully connects P ′ to Q′ in the assembly. And because no other piece connects
to eQ′ between vertex q and the connection between P ′ and Q′, the distance
betwen them constructs the length of an edge of P , contradicting exclusion
from Case 2. So µ(P ) does not contain a piece as a strict subset.

Now suppose (b), so that two connected pieces intersect µ(P ). The edges
connecting these two pieces must overlap in µ(P ) to construct a length equal
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to an edge of P , contradicting exclusion from Case 2. So µ(P ) does not
intersect the interior of multiple branch pieces.

Finally suppose (c), and let µ(P ) be the strict subset of some piece Q∗.
Let ` be the line collinear with segment f(ePQ), and let e` be the subset of
Q that maps to the largest connected subset of ` ∩ f(Q) containing f(ePQ).
Consider the two disconnected sections of the boundary of Q between an
endpoint of ePQ and an endpoint of e`, which must each be more than an
isolated point or exclusion from Case 1 would be violated. Piece P has at
most one branch sibling, so at most one of these sections can be connected to
a branch. Let q be an endpoint of e` in a section not connected to a branch.

f(P) µ(P)

P

Q

e

ePQ q
Q∗

µ(q)

× ×<π

µ(P)

Q∗

f(P)

P

Q

e

ePQ q
q

× µ(q)>π

Figure 12: Considering if µ(P ) is a strict subset of Q∗ and the boundary between ePQ

and q is a [Left] straight line or [Right] not a straight line.

Consider the boundary of Q between ePQ and q. Suppose this boundary
were a line segment subset of eQ, implying the internal angle of Q at q is less
than π; see Figure 12. Point q is not included in the connection between Q
and another piece through eQ. If it were, it would be a partial connection
with a leaf piece, which by Lemma 8 would be part of a partially connected
pair contradicting the minimality of f(P). Further, µ(q) is a vertex of f(Q∗)
or else Q∗ would connect to another piece somewhere on the segment between
µ(ePQ) and µ(q), and their connection would construct an edge of the same
length as an edge from a leaf connected to f(eQ), contradicting exclusion from
Case 2. The edge of Q∗ adjacent to µ(q) contained in µ(eQ) will have the
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same length as the subset of eQ between q and a vertex of a leaf, contradicting
exclusion from Case 2.

Thus, the boundary of Q between ePQ and q is not a line segment, so
f(Q) must cross `, and the endpoint q′ of eQ in this section is a vertex of
Q with internal angle greater than π; see Figure 12. By the same argument
as we applied to q in the preceding paragraph, µ(q′) must be in f(Q∗), and
if it were a vertex, we would have the same contradiction as with q before.
However this time µ(q′) need not be a vertex of f(Q∗) because f(Q∗) may
extend past µ(q′), with Q∗ connecting to another piece on the other side of
e`. However, the connection between these pieces will construct an edge that
is the same length as an edge in either Q or a leaf connected to Q, and we
have arrived at our final contradiction. So if P is not line symmetric, µ(P )
is itself a piece of the SAP congruent to P , contradicting the minimality of
P . 2

Because every symmetric assembly can be classified as one of these cases,
we can check for each case to decide whether the SAP has a symmetric
assembly. Given a SAP that does not satisfy Case 1 or Case 2, by Lemma 6 it
must satisfy Case 3 if it has a symmetric assembly. However, satisfying Case 3
is not sufficient to ensure a symmetric assembly. For example, two congruent
regular polygons with many sides and a single regular star with many spikes
cannot by themselves form a symmetric assembly, though they satisfy Case 3,
because no pair of edges can be joined without making the pieces overlap (for
example, the Case 3 example from Figure 10, exchanging to the triangular
pieces for large regular hexagons). Thus given a SAP in Case 3, we must
search the configuration space of possible connected arrangements of the
pieces for an arrangement that forms a simple polygon.

Recall that the connection graph for a symmetric assembly not in Case 1
must be a tree. For a SAP with k pieces, consisting of at most n vertices
in total, Cayley’s formula says the number of distinct connection trees is
kk−2 [6]. However, even if two pieces are connected, they could be connected
through O(n2) different pairs of directed edges, so the number of different
edge distinguishing connection trees, connection trees distinguishing between
which pairs of edges are connected, can be no more than n2kkk = O(n2k) (k
is constant). As an instance of Case 3, P consists of one or more symmetric
pieces, with the rest being congruent pairs. Let DP and D′P be maximal
disjoint subsets of P such that there exists a matching η : DP → D′P between
pieces in DP and D′P such that matched pairs are congruent. Let SP be
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Figure 13: An example showing a SAP P satisfying Case 3, with SP = {A,B}, DP =
{C,E, F}, D′P = {D,G,H}, Ds = {C}, η(Ds) = {D}, and trunk R = {A,B,C,D}. IT
for two connected pieces in the trunk is just a single point as shown by the midpoint of
their connection. Pieces not in the trunk have a degree of freedom sliding along their
connection. IT {E,F} is a single interval where F can attach to E, while IT {B,E} is four
intervals. The right diagram shows CT the Cartesian product of each IT .

the set of symmetric pieces in P not in DP or D′P . Let Ds denote some
subset of the symmetric pieces contained in DP , and define a trunk to be
a subset of symmetric pieces R = SP ∪ Ds ∪ η(Ds) that can be connected
into a simple polygon without overlap while aligning each of their lines of
symmetry to a common line L (see Figure 13). Define a half tree T to be an
edge distinguishing connection tree on R ∪ DP such that every piece in DP
connected to a piece R in R connects through an edge of R intersecting the
same half-plane bounded by L. We call this half-plane the connecting half-
plane, with the other half-plane the free half-plane. The reason we define half
trees is if we can find a point in their configuration space for which pieces do
not intersect and for which pieces in DP not in the trunk do not intersect the
free half-plane, we can place the remaining congruent pieces in DP \ Ds at
the mirror image of their respective matched pairs to complete a symmetric
assembly. If a symmetric assembly exists satisfying Case 3, the assembly will
correspond to a point in the constructed configuration space by definition.

Let TP be the set of possible half trees of P . Let LT be the set of
undirected edges {P,Q} where piece P is connected to piece Q in tree T ∈ TP ,
and let m = |LT | ≤ k. For a fixed edge distinguishing connection tree, the
orientation of each piece is fixed as pieces may only translate along their
specified connection. We want to define a set of intervals IT{P,Q} where we
could join pieces P and Q along respective edges eP to eQ that are connected
in tree T , while together forming a simple polygon without overlap. For each
{P,Q} ∈ LT with eP and eQ the respective connecting edges of P and Q
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with λ(eP ) ≥ λ(eQ), let IT{P,Q} be defined as follows. If P and Q are
both in R, let IT{P,Q} be the empty set if join(eP , eQ, dPQ) is the empty
set and {dPQ} otherwise, where we use dPQ to denote |λ(eP )− λ(eQ)|/2, the
distance d would need to be in order to align the midpoints of eP and eQ.
Alternatively if P or Q are not both in R, let IT{P,Q} be the closure of
the set of distances d for which join(eP , eQ, d) is a simple polygon for which
P and Q do not share a vertex along their connection. Note that if P or
Q are not both in R, IT{P,Q} will be a sequence of positive length closed
intervals. Each interval endpoint represents a point at which P and Q would
just intersect, no longer forming a simple polygon. The number of such points
is upper bounded by the O(n2) possible intersections between some edge of P
and some edge of Q when sliding the two pieces along their connection; so the
number of distinct intervals in IT{P,Q} is at most quadratic in the number of
vertices, O(n2). Any fixed arrangement of the pieces consistent with an edge
distinguishing connection tree T joins each pair of pieces by fixing one point
in every IT{P,Q}, so the set of configurations is a subset of Rm. Ignoring
overlap between pieces that are not connected, the configuration space CT
of possible arrangements is defined as the Cartesian product of IT{P,Q}
for every {P,Q} ∈ LT . Thus CT is a set of O(nm) disjoint m-dimensional
hyperrectangles in Rm.

We now describe the subset of Rm where intersection occurs between two
pieces that are not connected in T . If two pieces in a configuration overlap,
by continuity there exist two edges eP and eQ from two distinct pieces P and
Q that also intersect. The positions of eP and eQ are translations parame-
terized by a point in CT and the region in which the two edges intersect is
a convex region XT{eP , eQ} ⊂ Rm bounded by four hyperplanes forming the
m-dimensional parallelogram representing the intersection of the two edges.
For each O(n2) pair of edges from distinct pieces that are not connected, we
can subtract each XT{eP , eQ} from CT to form C ′T .

If C ′T is empty, there will certainly be no symmetric assembly satisfying
Case 3. If C ′T is a single point, tree T places all pieces in the trunk R to
form a symmetric assembly. Lastly, if C ′T is non-empty and contains a point
in its interior, then there exists a symmetric assembly because it will be
a point in the configuration space avoiding overlap between pieces. Points
on the boundary of C ′T correspond to configurations that are non-simple (the
symmetric assembly is not homeomorphic to a disc), as the boundaries of each
IT not between two pieces in R and the boundaries of each XT correspond
to configurations which produces a hole in the assembly or a cycle in the
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1 Function hasAssemblyCase3(P)
2 input : Symmetric assembly puzzle P .
3 output: TRUE if P has a Case 3 symmetric assembly, // FALSE

otherwise.
4 for T ∈ TP do
5 C ′T ← CT
6 for {P,Q} ∈ LT do
7 C ′T ← C ′T \ XT{eP , eQ}
8 if interior(C ′T ) 6= ∅ then
9 return TRUE

10 else if C ′T 6= ∅ and DP = ∅ then
11 return TRUE

12 return FALSE

Algorithm 1: Pseudocode for function hasAssemblyCase3(P)

connection graph. Thus, if P has a symmetric assembly satisfying Case 3,
C ′T will have a point on its interior or be a single point.

Consider the function hasAssemblyCase3 described in Algorithm 1.

Lemma 9. Given symmetric assembly puzzle P that satisfies Case 3, func-
tion hasAssemblyCase3(P) returns TRUE if and only if P has a symmet-
ric assembly, and terminates in O(n6k) time.

Proof. We can test all pieces for line symmetry or congruence in O(nk)
time [7]. If P has a symmetric assembly satisfying Case 3 with nonempty
DP , C ′T will have a point on its interior for some tree T as argued above;
or if DP is empty, C ′T must be nonempty, i.e., a single point corresponding
to constructing a trunk from all the pieces. There are O(n2k) elements of
TP . There are m = O(k) interval sets IT{P,Q} each having computational
complexity O(n2), so we can construct CT naively in O(n2k) time. The union
XT of theO(n2) regions XT{eP , eQ}, which arem-dimensional convex regions,
has computational complexity at most O(n2m), so the final computational
complexity of C ′T = CT \ XT is at most O(n4m) and can be computed in as
much time. Checking each of the O(n2k) elements of TP in this way yields
the running time for hasAssemblyCase3 bounded by O(n6k). 2

Our brute force algorithm hasAssembly(P) is described in Algorithm 2.
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1 Function hasAssembly(P)
2 input : Symmetric assembly puzzle P .
3 output: TRUE if P satisfies Case 1 or Case 2 or Case 3, FALSE

otherwise.
4 for eP ∈ EP , eQ ∈ EQ, {P,Q} ⊂ P do
5 S ← join(eP , eQ, 0)
6 P ′ ← (P \ {P,Q}) ∪ {S}
7 if S 6= ∅ and hasAssembly(P ′) then
8 return TRUE // Case 1

9 for eR ∈ ER, R ∈ P do
10 if λ(eR) < λ(eP ) then
11 S ← join(eP , eQ, λ(eR))
12 P ′ ← (P \ {P,Q}) ∪ {S}
13 if S 6= ∅ and hasAssembly(P ′) then
14 return TRUE // Case 2

15 return hasAssemblyCase3(P) // Case 3

Algorithm 2: Pseudocode for function hasAssembly(P)

Lemma 10. Function hasAssembly(P) returns TRUE if and only if P
has a symmetric assembly that satisfies either Case 1, Case 2, or Case 3,
and terminates in O(n6k) time.

Proof. We prove by induction. For the base case, P consists of only a
single piece satisfying Case 3, which will drop directly to the last line of the
algorithm checking Case 3 which, by Lemma 9 will evaluate correctly. Now
suppose hasAssembly returns a correct evaluation for SAPs containing k−1
pieces. Then we show hasAssembly returns a correct evaluation for SAPs
containing k pieces.

The outer for loop of hasAssembly cycles through every pair of directed
edges eP = (p1, p2) and eQ = (q1, q2) taken from different pieces P and Q.
For each pair, hasAssembly first checks to see if there exists a symmetric
assembly for which eP is connected to eQ with p1 coincident to q1, which
would satisfy Case 1. If one exists, then joining P and Q into one piece
as described would produce a SAP P ′ with one fewer piece that also has a
symmetric assembly. Then evaluating hasAssembly on the smaller instance
will return correctly by induction. Because the outer for loop checks every
possible pair of edges that could be joined in a symmetric assembly satisfying
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Case 1, hasAssembly will return TRUE if P satisfies Case 1.
Next hasAssembly checks to see if there exists a symmetric assembly

for which eP is connected to eQ with p1 and q1 separated by a distance equal
to the length of some other edge eR in P , which would satisfy Case 2. In
the same way as with Case 1, both for loops check every possible pair of
edges and that could be joined at every possible length that could produce
a symmetric assembly satisfying Case 2, so hasAssembly will return TRUE
if P satisfies Case 2.

Otherwise, no symmetric assembly exists satisfying Case 1 or Case 2.
By Lemma 9, hasAssemblyCase3 correctly evaluates if P is in Case 3, so
hasAssembly returns a correct evaluation for SAPs containing k pieces.

Let T (k) be the running time of hasAssembly on an instance with k
pieces. Then the recurrence relation for hasAssembly is T (k) = O(n3)T (k−
1) +O(n6k), where O(n6k) is the running time given by Lemma 9. Running
time for Case 3 at the leaves dominates the recurrence relation so hasAssem-
bly terminates in O(n6k). 2

Now we can determine whether a symmetric assembly puzzle with a con-
stant number of pieces has a symmetric assembly in polynomial time.

Proof (of Theorem 5). By Lemma 6, if the SAP has a symmetric as-
sembly, it satisfies either Case 1, Case 2, or Case 3, and by Lemma 10
hasAssembly(P) can correctly determine if it has a symmetric assembly
satisfying one of the cases in polynomial time, proving the claim. 2

4. Conclusion

Several open questions remain. It may be interesting to consider SAPs for
special classes of shapes Pi ∈ P . We conjecture that SAPs remain hard for
instances in which the shapes Pi are right triangles (Conjecture 4). Are SAPs
hard for a constant number k = O(1) of pieces if the target shape is allowed
to be nonsimple (a polygon with holes)? Are SAPs fixed-parameter tractable
with respect to the number k of pieces? (We conjecture W[1]-hardness.)
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