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1 Introduction

The Tangle toy [Zaw15l Zaw85)] is a topological manipulation toy that can be twisted and turned in a
variety of different ways, producing different geometric configurations. Some of these configurations
lie in 3D space while others may be flattened into planar shapes. The toy consists of several curved,
quarter-circle pieces fit together at rotational /twist joints. Each quarter-circle piece can be rotated
about either of the two joints that connect it to its two neighboring pieces. Fig. [1| shows a couple
of Tangle toys that can be physically twisted into many 3D configurations. See [Zawl15] for more
information and demonstrations of the toy.

Figure 1: Two Tangle toys. Photo by Quanquan Liu, 2015.

More precisely, an n-Tangle consists of n quarter-circle links connected at n joints in a closed
loopEl Tangles can move into many configurations by rotating/twisting the joints along the axis

IPrevious literature have also called the quarter-circles “pieces” or “segments.” Here, we choose to use “links” for
greater specificity (when characterizing Tangle structures as fixed-angle linkages) and clarity.
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of the two incident links (which must meet at a 180° angle). Fig. [2| shows an example of such an
axis of rotation that joints may be rotated along. The links connected to the joint in Fig. 2| can
be twisted clockwise or counterclockwise about the axis as shown by the two arrows. While Tangle
configurations usually lie in 3D space, we focus in this paper on planar Tangle configurations, or
Tangle configurations that can be flattened on a flat surface.

Figure 2: Blue dots represent joints. The axis is represented by the dotted line. Arrows show that
both the red and black link can be rotated clockwise and counterclockwise about the axis.

Previous research into planar Tangle configurations [Cha03l [Fle00] makes an analogy between
Tangle and cell-growth problems involving polyominoes. An m-omino is composed of n squares
of equal size such that every square is connected to the structure via incident edges. A well-
known problem involving polyominoes is how many distinct free (cannot be transformed into each
other via translations, rotations, or reflections) n-ominoes are there for n = 1,2,3.... Various
previous research have succeeded in enumerating the number of free n-polyominoes up to n =
28 [Red81l, Mer90, eS15]. Fig. |3|shows the 2 possible free configurations for the tromino.

Figure 3: There are only two possible distinct free trominoes.

Using the analogy to polyominoes where a Tangle link represents a polyomino cell, [Cha03],
Fle00] pose two questions for planar Tangle configurations. First, what is the number of distinct
planar n-Tangles for n = 4i where i = 1,2,3,... (called the “Tanglegram sequence”)? In other
words, given a Tangle toy with n links, what is the number of distinct planar Tangles that can
be formed? Second, can any planar n-Tangle be transformed into any other planar n-Tangle
according to certain moves described in Section [3| below? It was conjectured but not proven that
this is possible.

The problem of determining whether all planar configurations can be reconfigured into each
other using allowable moves is known as flat-state connectivity [ADD™02] of linkages. Recall that
a Tangle toy is an example of a linkage that is composed of links and joints. One can think
about the links in the linkage as “edges” and the joints as “vertices”; just as how vertices connect
edges, joints connect links. Thus far, the study of flat-state connectivity has focused on fized-angle
linkages, where each link has an assigned fixed length and each vertex has an assigned fixed angle
(i.e. the angle of incidence between two incident links is fixed). A flat state of such a linkage
is an embedding of the linkage into R%. A linkage is flat-state connected if any two flat states
of the linkage can be reconfigured into each other using a sequence of dihedral motions without
self-intersections. Otherwise, the linkage is flat-state disconnected. All open chains with no acute



angles, and all closed orthogonal unit chains, are flat-state connected, while open chains with 180°
edge spins and graphs (as well as partially rigid trees) are flat-state disconnected [ADDT02]. For
more details regarding these linkages, please refer to [ADDT(2|. Closed orthogonal unit fixed-
angle chains (chains that have unit length edges and 90° angles of incidence between edges) move
essentially like Tangles (viewing each quarter-circle link as a 90° corner between two half edges),
so their flat-state connectivity means that there are (complex, three-dimensional) moves between
any two planar Tangle configurations of the same length.

The previous study of reachable configurations of Tangles consider a set of moves called z-
and Q-rotations [Cha03|, [Fle00]. In this paper, we generalize these moves into two broad categories,
reflections and translations, that allow for a larger set of possible moves. In particular, our reflection
moves involve rotating one chain of the Tangle by 180° around the rest, effectively reflecting the
former. Such reflections over an axis (such as “flipturns”, “Erdés pocket flips”, and “pivots”) has
been studied by previous work in transforming planar polygons [ABBT07, IACDT02, DGOTO0S,
ADET01]. The purpose of such moves is to simplify complex moves involving many edge flips
and rotations into simpler, more “local” moves. The reflection and translation moves used in our
paper together encompass all possible edge flips around any two joints in a Tangle; thus, they seem
natural to use as simplifications of more complex Tangle moves. More details of these moves as
well as their relation to the previous z- and Q-rotations can be found in Section

Our results show that Tangle configurations are flat-state disconnected under even our general
reflection and translation moves, in particular, disproving a conjecture of [Cha03]. This result
provides an example of nontrivial flat-state disconnectedness. Planar Tangle configurations are
natural examples of flat-state configurations obtained using a set of “local” moves around two
joints. We show examples of planar Tangle configurations that have no moves whatsoever, as well
as examples that have a few moves but cannot escape a small neighborhood of configurations.

In addition to our results on Tangle flat-state connectivity, we present two different Tangle fonts.
This is a continuation of a study on mathematical typefaces based on computational geometry, as
surveyed in [DD15a]. The two Tangle fonts were created from 52- and 56-Tangles.

We define some notations and conventions we follow in this paper in Section Then, we
describe the two classes of moves we considered in evaluating planar Tangles and their reachable
configurations in Section In Section ] we present some examples of planar Tangles that are
locked or rigid under our specified set of moves. In Section |5, we present the two Tangle fonts.
Finally, in Section [6] we conclude with some open questions.

2 Definitions

A Tangle link can have two possible orientations with respect to the body of the structure, convex
or reflex; see Fig. [

A face in a planar Tangle configuration consists of a set of convex links. Two faces are tangential
if they are connected by reflex links. Fig. [5] shows some examples of faces. It was previously shown
that an n-Tangle can form planar Tangle configurations if and only if n is a multiple of 4 [Fle00].

Using this definition of faces, we can further define the dual graph representation of a planar
Tangle configuration to be a graph consisting of a vertex for each face of the configuration with an
edge connecting each pair of tangential faces (see Fig.|5). This definition is analogous to the graph
representation definition given by [Tay15].

This dual graph representation of planar Tangle configurations is useful in some proofs in the
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Figure 4: Reflex (a, b) and convex (c, d) links.

@l

Figure 5: Dual graphs of planar Tangle configurations. «, 3, v, and A label faces connected to
other faces by reflex links.

later sections. Furthermore, this dual graph representation is used by our planar Tangle moves
enumerator to enable users to easily create arbitrarily shaped planar configurations [DD15b].

3 Tangle Moves

In this section, we describe the set of legal moves that can be performed on any planar Tangle
configuration. We categorize these moves broadly as translation and reflection moves, with the
distinguishing factor being that translation moves are asymmetric while reflection moves can be
performed along a reflection axis.

3.1 Reflections

Reflection moves are performed over a linear reflection axis, which consists of a line through two
joints of the Tangle. We call these two joints the reflection joints. To perform a reflection, one of
the two parts of the Tangle separated by the reflection joints is rotated 180° clockwise or counter-
clockwise around the reflection axis. In fact, the previously mentioned z- and Q-rotations [Cha03]
are reflection moves?

The reflection move may only be made if

1. there are no pieces occupying the space on the other side of the reflection, and

2Furthermore, the sequence of z-rotations introduced in [Cha03] represents a type of translation move (described

later in Section .



2. the reflective joints are free to move 180° in the reflection direction (i.e. either clockwise or
counterclockwise).

It not difficult to see when the latter requirement is satisfied (namely, when the reflection axis is
exactly the axis of rotation of each of the joints). Fig.[6]shows some examples of successful reflection
moves.

Figure 6: Reflection moves over horizontal and vertical axes where the joints labeled a and b are
the reflection joints. Reflections may or may not change the orientation of the reflected links.

A reflection over the axis can change the orientation of a link. For example, Fig. [6] shows the
result of reflecting a chain of links over the indicated z- or y-axis, resulting in the final configuration
where all the orientations of the reflected links have changed. Although, there are examples of
reflections where the orientation of the links do not change (see the middle figure in Fig. @

Some planar Tangle configurations may allow no reflection moves. Fig. [7] shows two instances
where no reflection moves are possible.

Figure 7: The first two planar Tangle configurations do not allow any reflection moves. The third
configuration allows no translation moves.

3.2 Translations

Translations are asymmetric moves that are not performed across a single axis, but across a col-
lection of parallel axes. A translation has two translation joints oriented in the same (vertical
or horizontal) direction and four translation links, the two links next to each of the translation
joints. When a translation move is performed, one of the two connected components of the Tangle
without its translation links is picked up and translated to a different location relative to the other
component by rotating the translation links. Fig. [§] shows an example of a translation move.

Translation involves the rotation of the four links connected to the translational joints. A
translation move may only be made if

1. the translational links can be rotated, and

2. the translated portion may be placed in a location that do not contain other links.
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Figure 8: Example of translation move. Translation involves the rotation of all four links connected
to each of the two translational joints indicated by b and e. Here the translation move rotates the
links spanned by the joints a, b, ¢, d, e, and f.

Fig. [7] shows one example where no translation moves are allowed.

The natural question (answered in Section {4 is whether any planar Tangle configurations can
reach any other by a sequence of reflection and /or translation moves. Otherwise, we call an n-Tangle
locked, meaning that a proper subset of the planar configurations cannot reach configurations
outside the set. In particular, we call a planar Tangle configuration rigid if it admits no such
reflection or translation moves.

3.3 Tangle Moves Enumerator

The Tangle Moves Enumerator [DD15b] takes a starting planar Tangle configuration and lists all
possible planar configurations that can be reached via the moves above. The enumerator performs
the search in a breadth-first manner. There are O(n?) possible rotation and translation axes. For
each axis, the number of possible rotational moves is 2 and the number of possible translational
moves is also 2. Therefore, the number of possible new configurations resulting from moves in each
level of the search is O(n?). The enumerator exhaustively searches each possible new configuration.
If a configuration was already reached before, the current branch of the search is terminated. In
the next section, we use this software to explore the configurations reachable from a planar Tangle
configuration to determine whether it is locked or rigid.

4 Rigid and Locked Tangles

Here we illustrate two planar Tangle structures that are rigid under the moves defined in Section
Furthermore, we demonstrate a set of locked but not rigid configurations with n = 308 links. We
thereby disprove both conjectures in [Tay15] and [Cha03]. Both examples can be verified by hand
or with the Tangle Moves Enumerator (Section .

4.1 Rigid Structures

Fig. [9] and Fig. [I0] show two symmetric examples of rigid structures along with their dual graphs.
Fig. shows that, even if we restrict ourselves to planar Tangle configurations where the dual
graph is a path, there exist rigid configurations.
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Figure 9: 4-leaf, symmetric rigid counterexample. Here, the dual graph contains 4 leaves and a
cycle.

Figure 10: 2-leaf, symmetric rigid counterexample. Here, the dual graph contains 2 leaves and is a
simple path.

4.2 Locked Structures

Fig. shows an example of locked but not rigid Tangles: these seven planar 308-Tangles cannot
reach any planar configuration outside this set. Seven is far less than the number of possible planar
308-Tangle configurations, so the set is locked.



Figure 11: Locked planar 308-Tangles. Illustrated are seven planar Tangles that can reach each
other but none of the other planar 308-Tangles.

B EEEE

5 Tangle Fonts

Mathematical typefaces offer a way to illustrate mathematical theorems and open problems, es-
pecially in computational geometry, to the general public. Previous examples include typefaces
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Figure 12: 52-Tanglegram typeface.
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Figure 13: 56-Tanglegram typeface.

illustrating hinged dissections, origami mazes, and fixed-angle linkages; see [DD15a]. Free software
lets you interact with these fonts ]

Here we develop two Tangle typefaces, where each letter is a planar Tangle configuration of
a common length. Figures and [13] show the typeface of 52- and 56-Tangles, respectively. Our
software lets you write messages in these fontsE‘] We know that these configurations can reach each
other by complex 3D motions without collision [ADDT02|. An interesting open question is whether
all the configurations in each font can reach each other via just reflection and translation moves.
We conjecture the answer is “yes”; see Figure [14] for one example.

3http://erikdemaine.org/fonts/
“http://erikdemaine.org/fonts/tangle/
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Figure 14: Transforming R into Z, in honor of Richard Zawitz who invented Tangle [ZawS85].

6 Open Questions

Since we showed that there exist planar locked and even rigid Tangle structures under our reflec-
tion and translation moves, a natural next step is to investigate the computational complexity of
determining whether a structure is rigid. Another natural question is the computational complex-
ity of determining whether two planar configurations of an n-Tangle can be transformed into each
other through a sequence of valid moves. Furthermore, a natural optimization question is, given
two planar n-Tangle configurations, to find the minimal set(s) of reflection and translation moves
necessary to transform one into the other.

Acknowledgements. We thank Julian Fleron and Philip Hotchkiss for inspiring initial discus-
sions. We also thank the members of the MIT-Tufts Computational Geometry problem solving
group for a fun and productive environment, and specifically Zachary Abel and Hugo Akitaya for
helpful discussions related to Tangle.

10



References

[ABB107]

[ACDT02]

[ADD*02]

[ADE*+01]

[Cha03]

[DD15a]

[DD15b)]

[DGOTOS]

[eS15]

[Fle00]

Greg Aloupis, Brad Ballinger, Prosenjit Bose, Mirela Damian, Erik D. Demaine, Mar-
tin L. Demaine, Robin Flatland, Ferran Hurtado, Stefan Langerman, Joseph O’Rourke,
Perouz Taslakian, and Godfried Toussaint. Vertex pops and popturns. In Proceedings
of the 19th Canadian Conference on Computational Geometry (CCCG 2007), pages
137-140, Ottawa, Ontario, Canada, August 20-22 2007.

Oswin Aichholzer, Carmen Cortés, Erik D. Demaine, Vida Dujmovié, Jeff Erickson,
Henk Meijer, Mark Overmars, Belén Palop, Suneeta Ramaswami, and Godfried T.
Toussaint. Flipturning polygons. Discrete & Computational Geometry, 28(2):231-253,
August 2002.

Greg Aloupis, Erik D. Demaine, Vida Dujmovié, Jeff Erickson, Stefan Langerman, Henk
Meijer, Joseph O’Rourke, Mark Overmars, Michael Soss, Ileana Streinu, and Godfried
Toussaint. Flat-state connectivity of linkages under dihedral motions. In Proceedings of
the 13th Annual International Symposium on Algorithms and Computation, volume 2518
of Lecture Notes in Computer Science, pages 369-380, Vancouver, Canada, November
2002.

Oswin Aichholzer, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, Mark Overmars,
Michael A. Soss, and Godfried T. Toussaint. Reconfiguring convex polygons. Com-
putational Geometry: Theory and Applications, 20(1-2):85-95, October 2001. Special
issue of selected papers from the 12th Annual Canadian Conference on Computational
Geometry, 2000.

KCB Chan. Tangle series and tanglegrams: a new combinatorial puzzle. Journal of
Recreational Mathematics, 31(1):1-11, 2003.

Erik D. Demaine and Martin L. Demaine. Fun with fonts: Algorithmic typography.
Theoretical Computer Science, 586:111-119, June 2015.

Erik D. Demaine and Martin L. Demaine. Tanglegrams enumerator. http://
erikdemaine.org/tangle/, 2015. Accessed: 2015-10-21.

Erik D. Demaine, Blaise Gassend, Joseph O’Rourke, and Godfried T. Toussaint. All
polygons flip finitely... right? In J. Goodman, J. Pach, and R. Pollack, editors,
Surveys on Discrete and Computational Geometry: Twenty Years Later, volume 453
of Contemporary Mathematics, pages 231-255. American Mathematical Society, 2008.
Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, June 18-22,
2006, Snowbird, Utah.

Toms Oliveira e Silva. Animal enumerations on the 4,4 euclidean tiling. http://sweet.
ua.pt/tos/animals/a44.html, 2015.

Julian F. Fleron. The geometry of model railroad tracks and the topology of tan-
gles: Glimpses into the mathematics of knot theory via children’s toys. Unpublished
manuscript, February 2000.

11


http://erikdemaine.org/tangle/
http://erikdemaine.org/tangle/
http://sweet.ua.pt/tos/animals/a44.html
http://sweet.ua.pt/tos/animals/a44.html

[Mer90]

[Red81]

[Tay15]

[Zaw85]

[Zaw15]

S. Mertens. Lattice animals: A fast enumeration algorithm and new perimeter polyno-
mials. Journal of Statistical Physics, 58(5):1095-1108, 1990.

D. Hugh Redelmeijer. Counting polyominoes: Yet another attack. Discrete Mathemat-
ics, 36(3):191 — 203, 1981.

Ron Taylor. Planar tanglegrams. In Talk at MOVES 2015, August 2015.

Richard E. Zawitz. Annular support device with pivotal segments. United States Patent
4,509,929, April 9 1985. Filed August 27, 1982.

Richard X Zawitz. Tangle creations. http://www.tanglecreations.com/, 2015. Accessed:
2015-10-20.

12


http://www.tanglecreations.com/

	Introduction
	Definitions
	Tangle Moves
	Reflections
	Translations
	Tangle Moves Enumerator

	Rigid and Locked Tangles
	Rigid Structures
	Locked Structures

	Tangle Fonts
	Open Questions

