
Dynamic Optimality—Almost

Erik D. Demaine∗† Dion Harmon∗ John Iacono‡† Mihai Pǎtraşcu∗

Abstract

We present anO(lg lg n)-competitive online binary
search tree, improving upon the best previous (triv-
ial) competitive ratio ofO(lg n). This is the first ma-
jor progress on Sleator and Tarjan’s dynamic optimality
conjecture of 1985 thatO(1)-competitive binary search
trees exist.

1. Introduction

Binary search trees (BSTs) are one of the most fun-
damental data structures in computer science. Despite
decades of research, the most fundamental ques-
tion about BSTs remains unsolved: what is the asymp-
totically best BST data structure? This problem is un-
solved even if we focus on the case where the BST
stores a static set and does not allow insertions and dele-
tions.

1.1. Model

To make precise the notion of “asymptotically best
BST”, we now define the standard notions of BST
data structures and dynamic optimality. Our defini-
tion is based on the one by Wilber [Wil89], which also
matches the one used implicitly by Sleator and Tar-
jan [ST85].

BST data structures.We consider BST data structures
supporting only searches on a static universe of keys
{1, 2, . . . , n}. We consider only successful searches,
which we callaccesses. The input to the data structure is
thus a sequenceX, called theaccess sequence, of keys
x1, x2, . . . , xm chosen from the universe.

∗ MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA,{edemaine, dion,
mip}@mit.edu

† Supported in part by NSF grant CCF-0430849.
‡ Department of Computer and Information Science, Polytechnic

University, 5 MetroTech Center, Brooklyn, NY 11201, USA,
jiacono@poly.edu

A BST data structure is defined by an algorithm for
serving a given accessxi, called theBST access algo-
rithm. The BST access algorithm has a single pointer
to a node in the BST. At the beginning of an access to
a given keyxi, this pointer is initialized to the root of
the tree. The algorithm may then perform any sequence
of the following unit-cost operations such that the node
containingxi is eventually the target of the pointer.

1. Move the pointer to its left child.

2. Move the pointer to its right child.

3. Move the pointer to its parent.

4. Perform a single rotation on the pointer and its par-
ent.

Whenever the pointer moves to or is initialized to a
node, we say that the node istouched. The time taken
by a BST to execute a sequenceX of accesses to keys
x1, x2, . . . , xm is the number of unit-cost operations
performed. There are several possible variants of this
definition that can be shown to be equivalent up to
constant factors. For example, in one such variant, the
pointer begins a new operation where it finished the pre-
vious operation, rather than at the root [Wil89].

An online BST data structureaugments each node in
a BST with additional data. Every unit-cost operation
can change the data in the new node pointed to by the
pointer. The access algorithm’s choice of the next oper-
ation to perform is a function of the data and augmented
data stored in the node currently pointed to. In particular,
the algorithm’s behavior depends only on the past. The
amount of augmented information at each node should
be as small as possible. For example, red-black trees use
one bit [CLRS01, chapter 13] and splay trees do not use
any [ST85]. Any online BST that uses only a constant
number of bits per node has a running time in the RAM
model dominated by the number of unit-cost operations
in the BST model.

Optimality. Given any particular access sequenceX,
there is some BST data structure that executes it opti-
mally. LetOPT(X) denote the number of unit-cost op-
erations made by this fastest BST data structure forX.
In other words,OPT(X) is the fastest anyofflineBST



can executeX, because the model does not restrict how
a BST access algorithm chooses its next move, so in par-
ticular it may depend on the future accesses to come.
Wilber [Wil89] proved thatOPT(X) = Θ(m lg n) for
some classes of sequencesX.

A BST data structure isdynamically optimalif it ex-
ecutes all sequencesX in time O(OPT(X)). It is not
known whether such a data structure exists.

The goal of this line of research is to design a dynam-
ically optimal online BST data structure that usesO(1)
augmented bits per node. The result would be a single,
asymptotically best BST data structure.

1.2. Previous Work

Much of the previous work on the theory of BSTs
centers around splay trees of Sleator and Tarjan [ST85].
Splay trees are an online BST data structure that use a
simple restructuring heuristic to move the accessed node
the root. Splay trees are conjectured in [ST85] to be dy-
namically optimal. This conjecture remains unresolved.

Upper bounds.Several upper bounds have been proved
on the performance of splay trees: the working-set
bound [ST85], the static finger bound [ST85], the se-
quential access bound [Tar85], and the dynamic fin-
ger bound [CMSS00, Col00]. These bounds show that
splay trees execute certain classes of access sequences
in o(m lg n) time, but they all provideO(m lg n) up-
per bounds on access sequences that actually take
time Θ(m) time to execute on splay trees. There are
no known upper bounds on any BST that are supe-
rior to these splay tree bounds. Thus, no BST is known
to be better thanO(lg n)-competitive against the of-
fline optimal BST data structure.

There are several related results in different models.
The unified structure [Iac01, BD04] has an upper bound
on its runtime that is stronger than all of the proved up-
per bounds on splay trees. However, this structure is
not a BST data structure, augmenting with additional
pointers, and it too is no better thanO(lg n)-competitive
against the offline optimal BST data structure.

Lower bounds.There are two known lower bounds for
the BST model, both due to Wilber [Wil89]. Given an
access sequenceX, they provide lower bounds on the
cost of any BST data structure to executeX. Neither
bound is simply stated; they are both complex func-
tions of X. We use the first bound extensively in this
paper, and describe it in detail in Section 2. This first
bound also follows by noting that any BST offers an up-
per bound for the partial-sums problem in the semigroup
model, and using the lower bounds from [HF98, PD04]
for the latter problem.

Optimality. Several restricted optimality results have
been proved for BSTs.

The first result is the “optimal BST” of
Knuth [Knu71]. Given an access sequenceX in
the universe{1, 2, . . . , n}, let fi be the number of ac-
cesses inX to key i. Optimal BSTs executeX in the
entropy boundO(

∑n
i=1 fi lg(m/fi)). This bound is ex-

pected to beO(OPT(X)) if the accesses are drawn in-
dependently at random from a fixed distribution
matching the frequenciesfi. The bound is not op-
timal if the accesses are dependent or not random.
Originally, these trees required thef values for con-
struction, but this requirement is lifted by splay trees,
which share the asymptotic runtime of the older opti-
mal trees.

The second result is key-independent optimal-
ity [Iac02]. SupposeY = 〈y1, y2, . . . ym〉 is a sequence
of accesses to a setS of n unordered items. Letb be a
uniform random bijection fromS to {1, 2, . . . , n}. Let
X = 〈f(x1), f(x2), . . . , f(xm)〉. The key-independent
optimality result proves that splay trees, and any data
structure with the working-set bound, executesX
in time O(E[OPT(X)]). In other words, if key val-
ues are assigned arbitrarily (but consistently) to un-
ordered data, splay trees are dynamically optimal. This
result uses the second lower bound of Wilber [Wil89].

The third result [BCK02] shows that there is
an online BST data structure whose search cost is
O(OPT(X)) given free rotations between accesses.
This data structure is heavily augmented and uses expo-
nential time to decide what BST operations to perform
next.

1.3. Our Results

In summary, splay trees are conjectured to beO(1)-
competitive for all access sequences, but no online BST
data structure is known to have a competitive factor bet-
ter than the trivialO(lg n), no matter how much time
or augmentation they use to decide the next BST opera-
tion to perform. In fact, no polynomial-time offline BST
is known to exist either. (Offline and with exponential
time, one can of course design a dynamically optimal
structure by simulating all possible offline BST struc-
tures that run in time at most2m lg n to determine the
best one, before executing a single BST operation.)

We present an online BST data structure, called
Tango, that isO(lg lg n)-competitive against the op-
timal offline data structure on every access sequence.
Tango usesO(1) bits of augmentation per node, and the
book-keeping cost to determine the next BST opera-
tion is constant amortized.



The rest of the paper proceeds as follows. In Section 2
we present the first bound on Wilber, which we call the
interleave lower bound. This lower bound is the basis of
our competitive ratio. In Section 3 we describe Tango
and prove that it isO(lg lg n)-competitive.

2. Interleave Lower Bound

The interleave boundis a lower bound on the time
taken by any BST data structure to execute an access
sequenceX, dependent only onX. The particular ver-
sion of the bound that we use is a slight variation of the
original by Wilber [Wil89], and is identical to the lower
bounds that follow from partial sums in the semigroup
model [HF98, PD04]. For self-containment, we include
a proof of the lower bound in Appendix A.

We maintain a perfect binary tree, calledP , on the
keys {1, 2, . . . , n}. (Assume thatn is one less than a
power of two so that we do not have to worry about im-
balance.) This tree has a fixed structure over time. How-
ever, we additionally augment each internal node of the
treeP to specify apreferred childof either left or right.
Specifically, the preferred child of a nodey in P cor-
responds to the child subtree containing the most re-
cently accessed node withiny’s subtree; in the special
case that the most recently accessed node isy itself, we
define the preferred child to be the left child. LetPi de-
note the state of this augmented structure after accesses
x1, x2, . . . , xi.

For each nodey in P , define theleft regionof y to
consist ofy itself plus all nodes iny’s left subtree; and
define theright region of y to consist of all nodes in
y’s right subtree. The left and right regions ofy parti-
tion y’s subtree and are temporally invariant. For each
nodey in P , we label each accessxi in the access se-
quenceX by whetherxi is in the left or right region
of y, discarding all accesses outsidey’s subtree. Thein-
terleaving throughy is the number of alternations be-
tween “left” and “right” labels in this sequence. The to-
tal interleave boundIB(X) is the sum of these interleav-
ing counts over all nodesy in P .

The exact statement of the lower bound is as follows:

Theorem 2.1 IB(X)/2 − O(n) is a lower bound on
OPT(X), the cost of the optimal offline BST that serves
access sequenceX.

Again, the interested reader is referred to Appendix A
for a proof.

3. BST Upper Bound

3.1. Overview of Tango BST

We now define a specific BST access algorithm,
Tango. LetTi denote the state of the Tango BST after
executing accessesx1, x2, . . . , xi. Again we maintain a
perfect binary treeP on the same keys, augmented to
store the preferred child for each node (whose subtree
contains the most recently accessed item), as in the pre-
vious section. Thus the statePi of this augmented per-
fect binary tree at any timei is determined solely by the
access sequence, independent of the Tango BST.

The following transformation converts a statePi of
P into a stateTi of the Tango BST. Follow the preferred
child of the root ofP , and the preferred child of that
child, etc., until we reach a leaf. The nodes traversed by
this process form a root-to-leaf path, called apreferred
path. We compress this preferred path into an “auxil-
iary” treeR. (Auxiliary trees are BSTs defined below.)
Removing this preferred path fromP splitsP into sev-
eral pieces; we recurse on each piece and hang the re-
sulting BSTs off of auxiliary treeR as children.

The behavior of the Tango BST is now determined:
at each accessxi, the stateTi of the Tango BST is given
by the transformation described above applied toPi. We
have not yet defined how to efficiently obtainTi from
Ti−1. To address this algorithmic issue, we first describe
auxiliary trees and the operations they support.

3.2. Auxiliary Tree

The auxiliary tree data structure is an augmented
BST that stores a subpath of a root-to-leaf path inP , but
ordered by key value. With each node we also store its
fixeddepthin P . Thus, the depths of the nodes in an aux-
iliary tree form a subinterval of[0, lg(n + 1)). We call
the shallowest node thetop of the path, and the deep-
est node thebottomof the path. We require the follow-
ing operations of auxiliary trees:

1. Searchingfor an element by key in an auxiliary
tree.

2. Cutting an auxiliary tree into two auxiliary trees,
one storing the path of all nodes of depth at most a
specified depthd, and the other storing the path of
all nodes of depth greater thand.

3. Joining two auxiliary trees that store two disjoint
paths where the bottom of one path is the parent of
the top of the other path.

We require that all of these operations take timeO(lg k)
where k is the total number of nodes in the auxil-
iary tree(s) involved in the operation. Note that the re-



quirements of auxiliary trees (and indeed their solution)
are similar to Sleator and Tarjan’s link-cut trees; how-
ever, auxiliary trees have the additional property that the
nodes are stored in a BST ordered by key value, not by
depth in the path.

An auxiliary tree is implemented as an augmented
red-black tree. In addition to storing the key value and
depth, each node stores the maximum depth of a node
in its subtree. This auxiliary data can be trivially main-
tained in red-black trees with a constant-factor overhead;
see e.g. [CLRS01, chapter 14].

The additional complication is that the nodes which
would normally lack a child in the red-black tree (e.g.,
the leaves) can nonetheless have child pointers which
point to other auxiliary trees. In order to distinguish aux-
iliary trees within this tree-of-auxiliary-trees decompo-
sition, we mark the root of each auxiliary tree.

Recall that red-black trees support search, split, and
concatenate inO(lg k) time [CLRS01, Problem 13-2].
In particular, this allows us to search in an augmented
tree inO(lg k) time. We use the following specific forms
of split and concatenate phrased in terms of a tree-of-
trees representation instead of a forest representation:

1. Split a red-black tree at a nodex: Re-arrange the
tree so thatx is at the root, the left subtree ofx is
a red-black tree on the nodes with keys less thanx,
and the right subtree ofx is a red-black tree on the
nodes with keys greater thanx.

2. Concatenatetwo red-black trees whose roots are
children of a common nodex: Re-arrangex’s sub-
tree to form a red-black tree onx and the nodes in
its subtree.

It is easy to phrase existing split and concatenate algo-
rithms in this framework.

Now we describe how to support cut and join using
split and concatenate.

To cut an augmented treeA at depthd, first observe
that the nodes of depth greater thand form an inter-
val of key space withinA. Using the augmented max-
imum depth of each subtree, we can find the node`
of minimum key value that has depth greater thand in
O(lg k) time, by starting at the root and repeatedly walk
to the leftmost child whose subtree has maximum depth
greater thand. Symmetrically, we can find the noder of
maximum key value that has depth greater thand. We
also compute the predecessor`′ of ` and the successor
r′ of r.

With the interval[`, r], or equivalently the interval
(`′, r′), defining the range of interest, we manipulate the
trees using split and concatenate as shown in Figure 1.
First we splitA at `′ to form two subtreesB andC of `′

corresponding to key ranges(−∞, `′) and(`′,∞). Then

we splitC atr′ to form two subtreesD andE of r′ cor-
responding to key ranges(`′, r′) and(r′,∞). Now we
mark the root ofD, effectively splittingD off from the
remaining tree. The elements inD have keys in the range
(`′, r′), which is equivalent to the range[`, r], which are
precisely the nodes of depth greater thand. Next we con-
catenate atr′, which to the red-black tree appears to have
no left child; thus the concatenation simply forms a red-
black tree onr′ and the nodes in its right subtree. Fi-
nally we concatenate at`′, effectively merging all nodes
except those inD. The resulting tree therefore has all
nodes of depth at mostd.

Joining two augmented treesA andB is similar, ex-
cept that we unmark instead of mark. First we determine
which tree stores nodes of larger depth than all nodes in
the other tree by comparing the depths of the roots of
A andB. Suppose by relabeling thatA stores nodes of
larger depth. Symmetric to cuts, observe that the nodes
in B have key values that fall in between two adjacent
keys`′ andr′ in A. We can find these keys by search-
ing in A for the key ofB’s root. Indeed, if we splitA
at `′ and thenr′, the marked root ofB becomes the left
child of r′. Then we unmark the root ofB, merge atr′,
and then merge at̀′. The result is a single tree contain-
ing all elements fromA andB.

3.3. Tango Algorithm

Now we describe how to construct the new stateTi of
the BST given the previous stateTi−1 and the next ac-
cessxi. Accessingxi changes the necessary preferred
children to make a preferred path from the root toxi,
and does not change any other preferred children. These
points of change correspond exactly to where the search
algorithm crosses from one augmented tree to the next,
i.e., where it hits a marked node. For each such change
in a preferred child, say changing the preferred child of
x from left to right, we cut the augmented tree of the
old path containingx at the left child ofx, and then join
the resulting top path (which containsx) with the aug-
mented tree of the right child ofx.

3.4. Analysis

Define theinterleave boundIBi(X) of accessxi to
be the interleave bound on the prefixx1, x2, . . . , xi of
the access sequence minus the interleave bound on the
shorter prefixx1, x2, . . . , xi−1. In other words, the in-
terleave bound of accessxi is the number of additional
interleaves introduced by accessxi.

Lemma 3.1 The numberk of nodes whose preferred
child changes during an accessxi is proportional to the
interleave boundIBi(X) of accessxi.



merge (̀ ′)

split (A, `′)

mark root ofD

split (C, r′)

merge (r′)

A

`′ r′
B

`′

r′
C B

D E

r′

`′

`′

r′

D E

BCB

D

r′

`′

A

`′ r′

D

Figure 1. Implementing cut with split, mark, and merge.

Proof: The preferred child of a nodey in P changes
from left to right precisely when the previous access
within y’s subtree was in the left region ofy and the next
accessxi is in the right region ofy. Symmetrically, the
preferred child of nodey changes from right to left pre-
cisely when the previous access withiny’s subtree was
in the right region ofy and the next accessxi is in the
left region ofy. Both of these events correspond exactly
to interleaves. 2

Lemma 3.2 The running time of an accessxi is
O(k (1 + lg lg n)), where k is the number of nodes
whose preferred child changes during accessxi.

Proof: The running time consists of two parts: the cost
of searching forxi and the cost of re-arranging the struc-
ture from stateTi−1 into stateTi. The search visits a
root-to-xi path in Ti−1, which we partition into sub-
paths according to the auxiliary trees visited. The transi-
tion between two auxiliary trees corresponds one-to-one
to the edge between a node and its nonpreferred child
in the root-to-xi path inP , which is precisely where a
node’s preferred child changes because of this access.
Thus the search path inTi−1 partitions into exactlyk+1
subpaths ink + 1 auxiliary trees. The cost of the search
within a single auxiliary tree isO(lg lg n) because each
auxiliary tree storesO(lg n) elements, corresponding to
a subpath of a root-to-leaf path inP . Therefore the to-
tal search cost forxi is O(k (1 + lg lg n)). The update
cost is the same as the search cost up to constant fac-
tors. For each of thek + 1 auxiliary trees visited by the

search, we perform one cut and one join, each costing
O(lg lg n), for a total cost ofO(k (1 + lg lg n)). 2

Theorem 3.3 The running time of the Tango BST on an
access sequenceX over the universe{1, 2, . . . , n} is
O((n + OPT(X)) (1 + lg lg n)) whereOPT(X) is the
cost of the offline optimal BST servicingX.

Proof: Lemmas 3.1 and 3.2 together states that
Tango’s cost per accessxi is O(IBi(X) (1 + lg lg n)).
Summing over all i, the total cost of Tango is
O(IB(X) (1 + lg lg n)). On the other hand, Lemma 2.1
states that OPT(X) ≥ IB(X) − O(n), i.e.,
IB(X) ≤ OPT(X) + O(n). Therefore, the running
time of Tango isO((OPT(X) + O(n)) (1 + lg lg n)).

2

Corollary 3.4 Whenm = Ω(n), the running time of the
Tango BST isO(OPT(X) (1 + lg lg n)).

3.5. Tightness of Approach

Observe that we cannot hope to improve the com-
petitive ratio beyondΘ(lg lg n) using the current lower
bound. At each moment in time, the preferred path from
the root ofP containslg(n + 1) nodes. Regardless of
how the BST is organized, one of theselg(n + 1) nodes
must have depthΩ(lg lg n), which translates into a cost
of Ω(lg lg n) for accessing that node. On the other hand,
accessing any of these nodes increases the interleave
bound by at most1. Suppose we access nodex along the



preferred path from the root ofP . The preferred chil-
dren do not change for the nodes belowx in the pre-
ferred path, nor do they change for the nodes abovex.
The preferred child of onlyx itself may change, in the
case that the former preferred child was the right child,
because we (arbitrarily) defined the preferred child of
a just-accessed nodex to be the left child. In conclu-
sion, at any time, there is an access that costsΩ(lg lg n)
in any fixed BST data structure, yet increases the inter-
leave lower bound by at most1, for a ratio ofΩ(lg lg n).

Acknowledgments

We thank Richard Cole, Martin Farach-Colton,
Michael L. Fredman, and Stefan Langerman for many
helpful discussions.

References

[BCK02] Avrim Blum, Shuchi Chawla, and Adam Kalai.
Static optimality and dynamic search-optimality
in lists and trees. InProceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1–8, 2002.

[BD04] Mihai Bădoiu and Erik D. Demaine. A simplified
and dynamic unified structure. InProceedings of
the 6th Latin American Symposium on Theoretical
Informatics, Buenos Aires, Argentina, April 2004.
To appear.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein.Introduction
to Algorithms. MIT Press, second edition, 2001.

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and
Alan Siegel. On the dynamic finger conjecture for
splay trees. Part I: Splay sortinglog n-block se-
quences.SIAM Journal on Computing, 30(1):1–
43, 2000.

[Col00] Richard Cole. On the dynamic finger conjecture
for splay trees. Part II: The proof.SIAM Journal
on Computing, 30(1):44–85, 2000.

[HF98] Haripriyan Hampapuram and Michael L. Fred-
man. Optimal biweighted binary trees and the
complexity of maintaining partial sums.SIAM
Journal on Computing, 28(1):1–9, 1998.

[Iac01] John Iacono. Alternatives to splay trees with
O(log n) worst-case access times. InProceed-
ings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 516–522, Washing-
ton, D.C., January 2001.

[Iac02] John Iacono. Key independent optimality. InPro-
ceedings of the 13th Annual International Sym-
posium on Algorithms and Computation, volume
2518 ofLecture Notes in Computer Science, pages
25–31, Vancouver, Canada, November 2002.

[Knu71] Donald E. Knuth. Optimum binary search trees.
Acta Informatica, 1:14–25, 1971.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight
bounds for the partial-sums problem. InProceed-
ings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 20–29, New Orleans,
Louisiana, January 2004.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan.
Self-adjusting binary search trees.Journal of the
ACM, 32(3):652–686, July 1985.

[Tar85] R. E. Tarjan. Sequential access in splay trees
takes linear time.Combinatorica, 5(4):367–378,
September 1985.

[Wil89] Robert Wilber. Lower bounds for accessing bi-
nary search trees with rotations.SIAM Journal on
Computing, 18(1):56–67, 1989.

A. Proof of Interleave Lower Bound

In this appendix, we prove Theorem 2.1, stated be-
low as Theorem A.4. We assume a fixed but arbitrary
BST access algorithm, and argue that the time it takes
is at least the interleave bound. LetTi denote the state
of this arbitrary BST after the execution of accesses
x1, x2, . . . , xi.

Consider the interleaving through a nodey in P . De-
fine thetransition pointfor y at time i to be the high-
est nodez in the BSTTi such that the path fromz to the
root ofTi includes a node from the left region ofy and a
node from the right region ofy. (Here we ignore nodes
not fromy’s subtree inP .) Thus the transition pointz is
in either the left or the right region ofy, and it is the first
node of that type seen along this root-to-node path.

First we show that this definition is well-defined:

Lemma A.1 The transition pointz in Ti for a nodey in
P is unique.

Proof: Let l be the lowest common ancestor of all of
the nodes inTi that are in the left region ofy in P . Be-
cause the lowest common ancestor of any two nodes in
a binary search tree has a key value between these two
nodes,l is in the left region ofy in P . Similarly, define
r be the lowest common ancestor of all of the nodes in
Ti that are in the right region ofy in P . The lowest com-
mon ancestor ofl andr in Ti must be eitherl or r, be-
cause they are adjacent in key space. Assume by sym-
metry that it isl. We claim thatr is the unique transition
point fory in z. This claim follows becauser has at least
one ancestor in the left region ofy in P , namelyl, and
because all other nodes inTi in the right region ofy in P
are inr’s subtree. Thusr is the unique first node on any
path containing elements from both the left and right re-
gions ofy in P . 2

Second we show that the transition point is “stable”:

Lemma A.2 If the BST access algorithm does not touch
a nodez in Ti for the time intervali ∈ [j, k], andz is the



transition point inTj for a nodey in P , thenz remains
the transition point inTi for nodey for the entire time
interval i ∈ [j, k].

Proof: Using the same definition ofl and r as in the
previous lemma, and we assume that, at timej, l is an
ancestor ofr in the tree. The transition point can not
change in[j, k] because all elements of the right region
of y in P will remain in the subtree ofr, and no ele-
ments of the left region ofy in P can move into the sub-
tree ofr without r being touched. Thus least one ele-
ment of the left region ofy is P must be an ancestor of
r (this will be l at timej but may change), and therefore
r remains the unique first element of every path contain-
ing elements from the left and right regions ofy in P .

2

Next we prove that these transition points are differ-
ent for all the nodes inP :

Lemma A.3 At any timei, no node inTi is the transi-
tion point for multiple nodes inP .

Proof: The proof is by contradiction. Suppose a nodex
in Ti is a transition point for two distinct nodesr ands
in P . Becausex is in either the left or right region of both
r ands in P , bothr ands are ancestors ofx in P . As-
sume by symmetry thatr is aboves in P . The transition
point of s is the lowest common ancestor inTi of either
the left or the right region ofs in P . It cannot be the low-
est common ancestor of all of the nodes in the subtree of
s in P . The transition point ofr is the lowest common
ancestor inTi of either the left or the right region ofr
in P . Becauser is an ancestor ofs in P , one of these
two regions is disjoint froms’s subtree and the other re-
gion containss’s subtree. Thus the transition points for
r ands are distinct. 2

Finally we prove that the interleave bound is a lower
bound:

Theorem A.4 IB(X)/2 − O(n) is a lower bound on
OPT(X), the cost of the optimal offline BST that serves
access sequenceX.

Proof: We define an adversarial game between the lower
bound and the BST access algorithm, involving the dis-
tribution of marbles.

The lower bound plays as follows. Consider any left-
to-right interleave through nodey in P , that is, two
adjacent accessesxi and xj to y’s subtree such that
xi ≤ y < xj and i < j. (Thusxi is in the left re-
gion ofy, xj is in the right region ofy, and every access
betweenxi andxj is outsidey’s subtree.) Then, imme-
diately after the execution of accessxi, the lower bound
places a marble on the transition point for nodey.

The BST access algorithm plays as follows. When-
ever it touches a node in a treeTi, it discards any mar-
bles on that node.

First we claim that there is at most one marble on
any node inTi at any timei. By Lemma A.3, the mar-
bles from different nodesy andy′ in P do not interfere.
For any nodey in P , we place a marble only after ac-
cessing an element in the left region ofy and when the
next access to an element iny’s subtree is in the right re-
gion of y. This event will not occur again until the ele-
ment in the right region ofy has been accessed, which
requires that it be touched, which requires that the tran-
sition point fory be touched.

Whenever the algorithm takes a marble, it is pay-
ing a unit of cost to touch the node storing the marble.
Therefore the number of marbles picked up is a lower
bound on the running time of the algorithm. The num-
ber of marbles picked up is at least the number of mar-
bles placed minusn, because every node stores at most
one marble. As argued above, the number of marbles
placed is exactly the number of left-to-right interleaves,
which is at least one half of the interleave bound mi-
nusn, one for each nodey in P . 2


