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Abstract

In this paper, we give a PSPACE-completeness reduction from QBF
to the Dyson Telescopes Puzzle where opposing telescopes can overlap in
at least two spaces. The reduction does not use tail ends of telescopes
or initially partially extended telescopes. If two opposing telescopes can
overlap in at most one space, we can solve the puzzle in polynomial time
by a reduction to graph reachability.

1 Introduction

The complexity of many motion-planning problems has been studied extensively
in the literature. This work has recently focused on very simple combinatorial
puzzles (one-player games) that nonetheless exhibit the theoretical difficulty of
general motion planning; see, e.g., [1]. Two main examples of this pursuit are
a suite of pushing-block puzzles, culminating in [2, 3], and a suite of problems
involving sliding-block puzzles [4]. In pushing-block puzzles, an agent must
navigate an environment and push blocks in order to reach a goal configuration,
while avoiding collisions. The variations of pushing blocks began with several
versions that appeared in video games (the most classic being Sokoban), and
continued to consider simpler and simpler puzzles with the goal of finding a
polynomially solvable puzzle. Nonetheless, all reasonable pushing-block puzzles
turned out to be NP-hard, and many turned out to be PSPACE-complete, with
no problems known to be in NP , except in one trivial case where solution paths

∗The work described in this paper was partially supported by a grant from the National
Natural Science Fund China (grant no. 60573025).
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are forced to be short. Similarly, sliding-block puzzles are usually PSPACE-
complete, even in very simple models.

In this paper we consider a motion-planning puzzle, the Dyson Telescopes
Puzzle. It takes the form of an enjoyable computer game [5], invented and
developed by the Dyson company to advertise a vacuum cleaner called “Tele-
scope” that is retractable like an astronomical telescope. The puzzle is perhaps
most closely related to sliding blocks, in the sense that the agent is outside
the environment. At any time, the agent can extend or retract one of sev-
eral “telescopes”, each of which has a specified, fixed length in extended form.
Erickson [6] posed the complexity of the problem in 2003. The complexity re-
mained open despite fairly extensive pursuit—it seemed nearly impossible to
build gadgets that required multiple entrances. Thus we hoped that it would
be the first “interesting” yet polynomially solvable motion-planning puzzle.

We prove that the Dyson Telescopes Puzzle is indeed polynomially solvable
in a fairly natural situation in which the extended forms of opposing telescopes
(two telescopes on the same row or column, pointing towards each other) over-
lap in at most one space. However, some of Dyson’s puzzles do not satisfy
this restriction. We prove that this small flexibility in the general form of the
problem in fact makes the problem PSPACE-complete.

The polynomial-time algorithm for the restricted form of the telescopes
game is particularly interesting because such puzzles are nonetheless enjoyable
for humans to play. All but a few of the hundreds of levels of the puzzle on
the Dyson homepage [5] (mainly the Grandmaster levels) do not have opposing
telescopes that overlap in more than one square. Therefore we expect that our
algorithm can be used to design enjoyable instances of the telescope game, enu-
merating over puzzles within this restricted family (either by hand or by some
automatic process), and automatically computing which puzzles are solvable.
Our algorithm can also find the shortest solution, for most reasonable weight-
ing functions, enabling the puzzle designer to find the hardest puzzle according
to a particular difficulty measure, such as the solution requiring the longest
sequence of moves or requiring a “difficult to see” sequence of moves.

1.1 Description of the Problem

In the Dyson Telescopes Puzzle, the goal is to maneuver a ball on a two-
dimensional square grid from a starting position to a goal position, by extending
and retracting telescopes on the grid; refer to Fig. 1. An instance of the problem
consists of an n × m grid, a number of telescopes on this grid, and the ball’s
starting position and goal position. Each telescope is specified by its position,
its direction (up, right, down, left), and its length, i.e., the number of spaces
it can be extended. Each telescope can be in either an extended or a retracted
state. Initially, all telescopes are retracted. A move is made by changing the
state of a telescope.

If a telescope is extended, it will expand in its direction until it is blocked
(i.e., there is a telescope occupying the space where the telescope would extend
to next), or until it reaches its full length. If a ball blocks the extension of the
telescope, the ball is pushed in the direction of the telescope, either until it is
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(a) Start (b) 1st step (c) 2nd step (d) 3rd step (e) 4th step

Figure 1: This example depicts a sample situation from the original game where
all telescopes have length 3. We can solve this instance as follows: We extract
the first telescope to push the ball to the right, where we then can push it
downwards into the row of the lower telescope; when we extend and retract the
lower telescope, it will finally pull the ball back to the goal position.

blocked by another telescope or until the pushing telescope is fully extended
(see Fig. 1(d)). On the back side of the telescope (i.e., in the opposite direction
as the telescope extends), there is a one-space tail. When the telescope is
extended, this tail is retracted.

If an extended telescope is retracted, it is retracted all the way until it
occupies only its base space. If the space behind the telescope is not occupied,
its tail will be extended and occupy this space (and possibly push the ball). If
the telescope end touches the ball when being retracted, it pulls the ball with
it, so that the ball will move to the position directly in front of the retracted
telescope (see Fig. 1(d)).

We prove that it is PSPACE-complete to determine whether a given problem
instance has a series of telescope movements that moves the ball from the
starting position to the goal position (think of the goal square as a hole; the
ball will fall down as soon as it is pushed across the goal square). We do this
by constructing a circuit solving QBF, using gadgets of telescope configurations
to simulate Boolean variables, logical gates, etc. If opposing telescopes are not
allowed to overlap in more than one space, we give a polynomial time algorithm
to find a solution.

Alternative versions of the game allow the telescopes to be partially ex-
tended in the initial state, or to not consider a tail end of the telescopes. We
show that these modifications do not change the complexity of the problem.

2 Gadgets Used in the Reduction

In this section, we introduce various gadgets made from configurations of tele-
scopes. These gadgets usually have some entrances and exits labeled by capital
letters. We usually describe all the possible paths along which the ball can
travel from an entrance to an exit.
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2.1 Basic Gadgets

We use the symbols in Fig. 2 for simple tracks, simple crossings, division of the
path, and union of paths, which are easy to implement. We assume that passage
through one-way, split and join gadgets is possible only in the appropriate
directions. Figures 3 and 4 show the join and split gadget, respectively.

(a)
Track

(b) Crossing (c)
Split

(d)
Join

Figure 2: Simple gadgets.

Fig. 5 shows a pair of opposing telescopes (the number on a telescope in-
dicates its length). The pair is said to be emphactive if one of the telescopes
is extended with its end between the black and the white dot, and inactive
otherwise.

Figure 3: Join gadget. Figure 4: Split gadget.

2

2

5 5

2

try

no

yes

Figure 5: Opposing
telescopes.

If the pair is inactive and the ball enters from try, it can only leave the gadget
at no. On its way from try to no, it may activate the pair as follows. First, we
retract all telescopes in the gadget. Then we extend the left telescope to full
length (so that it covers the white dot square) and extend the right telescope
until it is blocked by the left telescope just to the right of the white dot square
(i.e., we extend it by three spaces). Then we retract the left telescope, put the
ball into the gadget along the try path, and push it to the white dot square.
Then we pull the ball to the no exit by retracting the right telescope. Note that
this action leaves the pair in an active state.

If the pair is active and the ball enters from try, then the right telescope
must be extended to just cover the white dot square. Then we can push the
ball to the black dot square, where it can be picked up by the top telescopes
so that it can leave the gadget at yes. We can also leave the pair at the no

exit. In both cases, we may choose to leave the opposing pair either active or
inactive.

Note that the ball can exit the gadget via yes and no, but it cannot enter
the gadget at these points. We may lengthen the left and right telescopes
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(increasing the size of the gaps) and vertically flip the sides of the try, yes,
or no pathways without changing the properties of the gadget, as long as we
maintain the two-space overlap of the left and the right telescopes.

2.2 Variable Gadget

When we move the ball from try to yes in an active opposing pair we may leave
the pair active. To force it become inactive, we construct a reset gadget, shown
schematically in Fig. 6. Each grey rectangle represents an opposing pair. A
single telescope extends along the lower pathway r, crossing the path of the
lower telescope of β and ending in the path of the lower telescope of γ. The
ball cannot enter β directly; it must first enter γ.

Lemma 1 The ball can always move through a reset gadget from in to out, but
this forces the opposing pair α to become inactive.

Proof. The ball can only pass along path r if the lower telescopes of both β

and γ are retracted. If an opposing telescope is also retracted, the corresponding
pair will become inactive. If both upper telescopes of β and γ are extended to
keep the opposing pairs active, α must be inactive. Since the ball can leave
the gadget only if both β and γ are active, this is only possible if α is inactive.
Note that the initial states of the opposing pairs are not important because we
can activate β and γ (de-activating α). 2

no

try

r

out

in

no

try

yesyes

α
β γ

Figure 6: Reset gad-
get.

α
β1 γ1

β2 γ2β3 γ3

try

C

E
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D B

F

in

in

out

out

in

out

noyes

Figure 7: Variable gadget.

We attach three independent reset gadgets to a single opposing pair α to
construct a variable gadget, shown in Fig. 7. Here, each pair (βi, γi) corresponds
to one reset gadget; the internal reset pathways are not shown. This is our
workhorse gadget, forming the basis of all the following constructions. We say
that the variable gadget is open (closed) if α is active (inactive).

Lemma 2 In a variable gadget, traversal from either A or C to B is always
possible, and may open the gadget. Traversal from C to D is possible precisely
if the gadget is open, and forces it to close. Traversal from E to F is always
possible, and forces the gadget to close. No other traversals are possible.

Proof. By properties of opposing telescopes, Lemma 1, and the pathways
shown in Fig. 7. 2
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2.3 3SAT Gadget

Given a 3CNF formula W (a propositional formula in conjunctive normal form
with three disjuncts per clause) with m clauses and n variables, we construct
a 3SAT gadget, shown in Fig. 8, to test the formula. We use an m × 3 array
of variable gadgets. The three gadgets in row i correspond to the variables in
clause i.

For each variable v and truth value b ∈ {0, 1}, we connect the A-B lines of
all variable gadgets corresponding to v = b into a chain. We also connect the
E-F lines of all variable gadgets corresponding to v = 1− b into another chain.
We concatenate these two chains by joining the last B line of the first chain
to the first E line of the second chain. Finally we connect the first A line of
the chain to an input channel (v = b)in, and the last F line in the chain to an
output channel (v = b)out of our 3SAT gadget.

We connect together the D lines of the three variable gadgets on row i and
the C lines of the three variable gadgets on row i + 1, so that it is possible to
go from any of the three D lines to any of the three C lines. We connect an
input channel test to the C lines of row 1. We connect the D lines of row m to
an output channel pass.

Thus, the 3SAT gadget has 4n + 2 ports (in(v = b) for each v and b, one
test input, and as many outputs).

… ……

test

pass

A

E

B

F

D

C

v1

A

E

B

F

D

C

v5

A

E

B

F

D

C

v3

A

E

B

F

D

C

v5

A

E

B

F

D

C

v1

A

E

B

F

D

C

v3

A

E

B

F

D

C

v3

A

E

B

F

D

C

v4

A

E

B

F

D

C

v1

(v = 1)1 in

(v = 1)1 out

(v = 1)
n in

(v = 0)
n in

(v = 1)
n out

(v = 0)
n out

Figure 8: A 3SAT gadget. Shown are the test path and the path (v1 = 1)in
to (v1 = 1)out, where v1 appears only in the first three clauses (twice positive,
once negated).
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Lemma 3 Consider a 3SAT gadget for a formula W . If the ball enters at
(v = b)in, it can only exit the gadget at (v = b)out. This may open all gadgets
corresponding to v = b and must close all gadgets corresponding to v = 1 − b.
The ball can also move from test to any (v = b)out, and this must close all
gadgets corresponding to v = 1 − b.

There exists an assignment v1 = b1, ..., vn = bn satisfying W if and only if
the ball can traverse the gadget from test to pass (after first traversing it from
(vi = bi)in to (vi = bi)out, for i = 1, . . . , n).

Proof. If the ball enters at (v = b)in, it first reaches a chain of A-B channels
through variable gadgets. It must follow the chain because in a variable gadget
the only way from A leads to B. This may open all these gadgets. After the
chain of A-B channels, the ball must traverse a chain of E-F channels which is
also possible in only one way. This forces the corresponding variable channels
to close.

If the ball enters at test, it follows a chain of C-D channels through vari-
able gadgets. It may exit a variable gadget corresponding to v = b at B and
then follow the chain of A-B channels as above. It may open some gadgets
corresponding to v = b, but then must close all gadgets in the E-F chain corre-
sponding to v = 1− b. This ensures that no variable is assigned more than one
truth value (i.e., if any variable gadget corresponding to v = b is open, then all
variable gadgets corresponding to v = 1 − b are closed, and vice versa).

So, if a path from test to pass of open variable gadgets exists, the corre-
sponding variable assignment satisfying W can be read off. On the other hand,
for each solution v1 = b1, . . . , vn = bn of W , the n traversals from (vi = bi)in to
(vi = bi)out are possible, opening a path from test to pass. 2

3 PSPACE-Completeness

In this section, we show that the Dyson Telescopes Puzzle is PSPACE-complete.
It is easy to see that the problem is in PSPACE, since the state of all telescopes
and the ball position can be stored in linear memory. To show hardness, we
reduce the problem from Quanitified Boolean Formulas (QBF).

3.1 Countdown Unit

We need a countdown unit that can be traversed at most 2n times. The gadget
is shown in Fig. 9. We chain together n + 1 variable gadgets, linking each
gadget’s B exit to the next gadget’s C entry. We combine the D exits into an
overall exit line, and link the last variable gadget’s B exit to another exit of the
countdown unit.

Lemma 4 When the ball enters the countdown unit for the first time, it can
leave it at restart. After the gadget has been traversed from in to restart, it can
be at most 2n times traversed from in to step, before it must again be traversed
from in to restart.
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restart

step

in

…

C

Variable n

B

D

C

Variable 0

B

D

C

Variable 1

B

D

Figure 9: Countdown unit.

Proof. If all variable gadgets are closed, the ball can only leave them at
B. After moving from in to restart, all or some of the gadgets may be open.
But then the in-step channel can be used at most 2n times, as can be seen by
induction. 2

3.2 Reduction from QBF

Let W = ∀v1,1∃v1,2∀v2,1∃v2,2 . . . ∀vn,1∃vn,2f(v1,1, ..., vn,2) be a quantified boolean
formula with a 3CNF formula f . We build a gadget to test W using a 3SAT
gadget for f , one countdown unit of size n, and a chain of n additional variable
gadgets. The construction is shown in Fig. 10.

Each D exit of the variable gadgets is linked to the C entry of the previous
gadget. Each F exit is linked to the E entry of the next variable gadget, however
not directly but via (1) the (vi,1 = 0) channel of the 3SAT gadget, and then (2)
either the (vi,2 = 0) or the (vi,2 = 1) channel of the 3SAT gadget. The B exit
of each variable gadget is also linked to the E entry of the next gadget, via (1)
the (vi,1 = 1) channel of the 3SAT gadget, and then (2) either the (vi,2 = 0)
or the (vi,2 = 1) channel of the 3SAT gadget. The (vn,2 = 0) and (vn,2 = 1)
channels of the 3SAT gadget are linked to the in entry of the countdown unit,
whose step exit is linked via the test channel of the 3SAT gadget to the last
variable gadget’s C entry. The first gadget’s D exit is linked to the goal. The
starting point is also linked to the in entry of the countdown unit. The restart

exit of the countdown unit is linked to the first variable gadget’s E entry point.

Theorem 5 W is true if and only if the ball can move from start to goal.

Proof. We first describe how we can systematically test the formula for all
possible truth assignments according to the quantifiers in W .

Initially, we must traverse the countdown unit from in to restart. Whenever
the ball leaves the countdown unit at restart, it institutes a restart of the
variable gadgets: all of them must be passed from E to F , so all of them are
closed, and all variables with universal quantifiers are set to 0; all other variables
can be chosen freely.

Next we can test the 3SAT gadget with the current choice of variables truth
assignment. If we can pass the gadget successfully, the ball ends up at the C

entrance of the gadget of the last variable n. Since this gadget is closed, the
ball can only leave it at B, and we open the gadget while passing through.
Since we leave the gadget at B we can now set vn,1 to 1 and then choose a new
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start

test

pass

E

BF

C

D E

Variable n

Countdown

Figure 10: Reduction from QBF.

arbitrary value for vn,2. Then we test the 3SAT gadget again with this new
truth assignment. But this time we can leave the gadget for variable n at D,
pass through the gadget for variable n−1, opening it, and set vn−1,1 to 1. Then
we can choose a new value for vn−1,2, traverse the gadget for variable n along
E-F , thereby closing it, and reset vn,1 to 0. Finally we can choose a new value
for vn,2.

In this way, the chain of variable gadgets enumerates all possible settings of
variables with universal quantifiers. Whenever we open a variable gadget, its
corresponding ∀-variable is set to 1, and whenever we use the E-F channel to
close the gadget, we reset its ∀-variable to 0. For the corresponding ∃-variables
we can choose arbitrary values. A gadget can only be opened if all gadgets
below (i.e., with higher index) have already been opened, so the gadgets act as
a counter which must be passed at least 2n times to reach the goal.

Every time this counter is increased (i.e., reaches the entry of the countdown
unit), it must pass the countdown unit and the 3SAT test channel. If the
ball were to traverse the 3SAT unit from test to any (v = b)out, then the
countdown unit would have to be passed more often than the counter given by
the additional variable gadgets. But these must be passed 2n times to reach
goal. Since the countdown unit does not allow more than 2n traversals from
A to B, it would have to be left at restart before we reach goal, which would
reset the whole structure. Therefore, the ball cannot move from test to any
other exit than pass if it wants to reach goal.

By the same argument, whenever a variable gadget is traversed from C to
B, it must be opened, otherwise more than 2n passages are required to reach
goal, and the whole structure is reset.

If the 3SAT gadget is tested with every possible variable setting for the
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variables with universal quantifiers and a choice of values for the variables with
existential quantifiers, W is true. If on the other hand W is true, there is such
a selection for each possible setting for variables with universal quantifiers, and
a path from start to goal exists. 2

4 Opposing Telescopes that Overlap in at Most One

Space

In this section, we show that the Dyson Telescopes Puzzle is in P if opposing
telescopes cannot overlap in more than one space. Let D denote an instance
of such a problem, and let T1, . . . , Tn denote the telescopes. A constellation of
the telescopes is an assignment of integers to the telescopes describing how far
the telescopes are extended.

A direct traversal from Ti to Tj is a sequence of telescope extensions and
retractions such that the ball is initially attached to Ti, finally attached to Tj ,
and in between it is not pushed or sucked by any other telescope. A traversal
from T1 to Tn is a sequence of direct traversals, where the ball is first attached
to T1 and ends up attached to Tn.

We first assume that D has no opposing pairs. Then we can define an
induced directed graph GD with the telescopes as vertices and an edge from Ti

to Tj if

• Ti and Tj are orthogonal. Let f be the space in which they overlap.

• Ti and Tj can be extended at least up to the space before f .

• f is either the first space in front of Ti, the first space not reachable by
Ti (i.e., the space to which the ball would be pushed if Ti was completely
extended), or there is a third telescope Tk that can be extended to the
space after f in the extension path of Ti.

Lemma 6 Assume D has no opposing pairs. If the ball is attached to a tele-
scope Ti, then a direct traversal from Ti to another telescope Tj is possible
precisely if there is an edge from Ti to Tj in GD, independent of the current
constellation of D.

Proof. If there is an edge from Ti to Tj , then obviously a direct traversal
is possible.

Assume a direct traversal is possible in some constellation. Then Ti and Tj

must be able to reach a common space f . Since there are no opposing pairs of
telescopes, Ti and Tj must be orthogonal. Then, f is the only space reachable
by both telescopes. We can transfer the ball from Ti to f if f is either the first
or last reachable space of Ti, or if the space after f in the path of Ti is blocked
by another telescope Tk. In any case, the edge (Ti, Tj) exists in GD. 2
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Aout Bout

Bin

A

C

B

Ain

Figure 11: Opposing telescopes with at most one overlapping space.

Now assume D contains an opposing pair as shown in Fig. 11, where A

and B overlap in at most one space, denoted by the black dot (if it exists).
There may also be a third telescope C pointing to this space (or even extending
beyond). There might even be a forth telescope (not shown, it can be handled
analogously) opposing C and extending up to or beyond the black dot space.
We define the graph GD as before, but for the opposing pair we must add some
additional edges as described below. For a telescope T , let Tin denote the set of
all telescopes with an edge pointing to T , and Tout the set of telescopes to which
T points in GD. Note that C may or may not be in Ain and Bin, depending on
the overall configuration of the at most four telescopes covering the black dot
square and the inital position of the ball. Actually, for the construction below
it is sufficient to assume that C is not in Ain and Bin.

Lemma 7 Traversal from any telescope in Ain∪Bin to C (if it exists) and any
telescope in Aout ∪ Bout is possible in every constellation of D.

Proof. If C exists, we can move the ball from any telescope T ∈ Ain to C

as follows. First, we retract A, B, T , and C. Then we extend A completely. If
we now extend B, it will be stopped just right of the black dot. Now we can
retract A and move the ball from T to the line of A, which is possible since
there is an edge from T to A in GD. If we then extend A, the ball will come to
rest on the black dot, where we can pick it up with C.

All other traversals are trivially possible. 2

Although the traversal from T to C in the proof above is done via A, it is
impossible to traverse directly from A to C without prior preparation of the
opposing pair if C extends exactly to the square above the black dot square.
If the ball is initially placed in the opposing pair and the pair is not initially
set up such that traversal to C is possible, C cannot be reached directly. This
means we should add the following edges to GD for each opposing pair (A,B)
with one space overlap (and maybe an orthogonal telescope C pointing to the
overlap space):

• edges A → B and B → A;

• edges T → C for all T ∈ Ain ∪ Bin, if C exists;
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• edge A → C, if C exists and can be extended to block A or B, or B is
initially extended immediately to the right of the overlap space;

• edge B → C, if C exists and can be extended to block A or B, or A is
initially extended immediately to the left of the overlap space.

Note that in the second case the edges T → C are a shortcut for T → A → C

because we do not always want to add edge A → C to the graph (depending
on the inital placement of the ball).

Lemma 8 Let D be an instance of the Dyson Telescopes Puzzle with no op-
posing pair having more than one space overlap. Let GD be the induced graph
with edges as described above. Then, D has a solution exactly if there exists a
path in GD from a telescope that reaches the starting position of the ball to a
telescope that reaches the goal position.

Proof. If there is a sequence of telescope movements that move the ball from
start to goal, this induces a sequence of telescopes. If the start position of the
ball is within an opposing pair (A,B) and both telescopes are initially retracted,
the ball cannot leave the segment between A and B via C. But paths from A

and B to all nodes of Aout and Bout exist in GD, so the first telescope moves
until the ball leaves the segment between A and B are reflected by edges in GD.
If the ball starts within the pair and one of the telescopes is not extended such
that leaving at C would be possible, this is also reflected in GD. Afterwards,
all direct traversals of the winning strategy correspond to edges in GD.

If on the other hand a path in GD exists, it can easily be translated to a
sequence of ball traversals (either direct or through opposing pairs) that gives
a strategy to move the ball from start to goal. 2

Corollary 9 The Dyson Telescopes Puzzle is in P if opposing telescopes can
overlap in at most one space. 2

5 Summary and Outlook

We showed that, in general, the problem of deciding whether the ball can move
from start to goal in a setting of the Dyson Telescopes Puzzle is PSPACE-
complete. We also gave a polynomial-time algorithm if opposing pairs are
restricted to at most one space of overlap.

Both the PSPACE-completeness proof and the algorithm for the restricted
case also work if the back ends of the telescopes are taken into account and if
the telescopes can initially be arbitrarily (partially) extended. Note that the
PSPACE-hardness proof requires rather along telescopes. It would be interest-
ing to investigate the complexity status of the problem with bounded-length
telescopes.
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