
Journal of Information Processing Vol.0 1–19 (??? 1992)

[DOI: 10.2197/ipsjjip.0.1]

Regular Paper

Tetris is NP-hard even with O(1) rows or columns

Sualeh Asif1,a) Michael Coulombe1,b) Erik D. Demaine1,c)

Martin L. Demaine1,d) Adam Hesterberg1,e) Jayson Lynch1,f) Mihir Singhal1,g)

Received: xx xx, xxxx, Accepted: xx xx, xxxx

Abstract:
We prove that the classic falling-block video game Tetris (both survival and board clearing) remains
NP-complete even when restricted to 8 columns, or to 4 rows, settling open problems posed over 15
years ago [2]. Our reduction is from 3-Partition, similar to the previous reduction for unrestricted
board sizes, but with a better packing of buckets. On the positive side, we prove that 2-column
Tetris (and 1-row Tetris) is polynomial. We also prove that the generalization of Tetris to larger
k-omino pieces is NP-complete even when the board starts empty, and even when restricted to 3
columns or 2 rows or constant-size pieces. Finally, we present an animated Tetris font.

Keywords: complexity, hardness, video games, font

1. Introduction
Tetris is among the best-selling [9], and perhaps best-

known, video games ever. Since its invention by Alexey
Pajitnov 35 years ago in 1984, over 80 versions have been
developed on nearly every platform [10]. Perhaps most fa-
mous is the Nintendo Game Boy edition, which was bundled
with the Game Boy in the USA, resulting in 35 million copies
sold [5]. The most recent editions — Tetris Effect for PS4
and PC including VR (2018) and Tetris 99 for Nintendo
Switch (2019) — prove Tetris’s sustained popularity.

In standard Tetris, tetromino pieces (, , ,

, , ,) are chosen at (pseudo)random and
fall from the top of a 10-wide 20-tall rectangular playfield.
While 10 is the typical width of most Tetris implementa-
tions, the height varies between 16 and 24, and some edi-
tions change the width to anywhere between 6 and 20 [6].
The player can rotate each piece by ±90◦ and/or slide it
left/right as it falls down, until the piece “hits” another piece
beneath it and the piece freezes. If any rows are completely
full, they get removed (shifting higher rows down), and then
the next piece starts falling from the top.

To make this game easier to analyze from a compu-
tational complexity perspective, the perfect-information
Tetris problem [2] asks, given an initial board state of filled
cells and a sequence of pieces that will arrive, whether the

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

a) sualeh@mit.edu
b) coulombe@mit.edu
c) edemaine@mit.edu
d) mdemaine@mit.edu
e) achesterberg@gmail.com
f) jaysonl@mit.edu
g) mihirs@mit.edu

pieces can be played in sequence to either survive (not go
above the top row) or clear the entire board. (See Section 2
for precise game rules.) This problem was proved NP-hard
for arbitrary board sizes in 2002 [2], and more recently for
the generalization to k-omino pieces for various k [3].
Our results. In this paper, we analyze the following

special cases of Tetris; refer to Table 1.

(1) c-column Tetris, where the playfield has exactly c

columns (and an arbitrary number of rows). The orig-
inal Tetris paper [2] asked specifically about the com-
plexity of c-column Tetris for c = O(1), motivated
by standard Tetris where c = 10.

In Section 4, we prove that it is NP-complete to
survive or clear the board in c-column Tetris for any
c ≥ 8. This result includes the width of most Tetris
variants, including the already small Tetris Jr. (c = 8),
but excludes one variant, Tetris Wristwatch (c = 6) [6].
As an extra feature, this result immediately implies NP-
hardness of Tetris where the player can make only a
bounded number of moves between each unit piece fall
(“bounded reaction speed”).

Complementarily, in Section 3, we prove that c-
column Tetris can be solved in polynomial time for
c ≤ 2. The case c = 2 was claimed without proof in the
conclusion of [2]; we provide the first written proof, and
generalize to 2-column O(n)-tris, by reducing to non-
deterministic pushdown automata. The critical hard-
ness threshold for c is thus between 3 and 8.

(2) r-row Tetris, where the playfield has exactly r rows
(and an arbitrary number of columns). The original
Tetris paper [2] also asked about the complexity of r-
row Tetris for r = O(1).

In Section 5, we prove that it is NP-complete to sur-

© 1992 Information Processing Society of Japan 1

Journal of Information Processing Vol.0 1–19 (??? 1992)

vive or clear the board in r-row Tetris for any r ≥ 4.
Complementarily, we observe the trivial result that

r-row Tetris can be solved in polynomial time for
r = 1. The critical hardness threshold for r is thus
between 2 and 4.

Both the O(1)-row and O(1)-column NP-hardness results
are based on more efficient packings of the “buckets” in the
original reduction from 3-Partition [2]. While they share
the main idea with the original proof, they require substan-
tial care in how they provide a corridor that can reach all of
the buckets without allowing unintended solutions. In par-
ticular, we prove NP-hardness of Tetris survival for the first
time with even-width boards (e.g., c = 8 columns); the pre-
vious “reservoir” approach [2], Section 4.2 required an odd
number of columns.

(3) Empty Tetris, where the playfield starts empty in-
stead of having a specified configuration. The original
Tetris paper [2] highlighted the complexity of this vari-
ant as a “major open question”, as all existing Tetris
hardness proofs (including those in this paper) rely on
a high-complexity initial configuration.

In Section 6, we solve this problem for the general-
ization of Tetris to k-omino pieces, denoted k-tris, as
implemented in the video games Pentris and ntris, and
previously analyzed from a complexity perspective [3].
Specifically, we prove the following results:

(a) 8-column Empty (≤ 65)-tris is NP-hard.
(b) 3-column Empty O(n)-tris is NP-hard. This result

is tight against our polynomial-time algorithm for 2-
column O(n)-tris mentioned above.

(c) 2-row Empty O(n)-tris is NP-hard.

In Section 7, we present a Tetris font where each letter is
made from exactly one copy of each tetromino piece. The
font has several variants, including a puzzle font and an an-
imated font, demonstrated in a companion web app.*1

2. Rules of Tetris
We give a brief summary of the rules of Tetris and its

generalization k-tris, referring the reader to [2], Section 2
and [3], Section 2 respectively for a complete description
of the rules. There are in fact many real-world variations
of the rules, eventually formalized by The Tetris Company
into a modern rule set [1]. The rules we give here are con-
sistent with some, but not all, implementations of Tetris, as
detailed below.

Tetris consists of a rectangular board or playfield [6], which
is rectangular in shape. Each cell is filled or unfilled. In the
initial state and after each move, no row is completely filled.

In Tetris, there are seven tetromino piece types (dis-
tinguished by reflection), labeled with letters that resem-
ble their shape: (O), (J), (L), (S), (Z),

(T), (I). In k-tris, the piece types consist of all
k-ominoes, i.e., all connected shapes made by k unit squares

*1 http://erikdemaine.org/fonts/tetris/

joined along edges. We also define ≤ k-tris, where the piece
types are all polyominoes made from ≤ k unit squares. In a
game instance, n pieces arrive in a fixed order p1, p2, . . . , pn.
Each piece pi falls, starting above the top row of the board,
and the player can rotate by ±90◦, and translate left and/or
right, as the piece drops down one unit at a time. When the
piece tries to drop but would collide with another piece,
then it stops moving (“locks down”). If a locked-down piece
extends above the top row of the board, then the player im-
mediately loses the game. This rule is called partial lock out
[8], and applies to older versions of Tetris (e.g., Atari and
NES), though modern Tetris rules [1] end the game only
when a locked-down piece is entirely above the board; see
Section 8. Finally, if any row is now entirely filled, then that
row gets removed, and all rows above shift down, creating
one new empty row at the top.

Like [2], Section 2, we allow any model of piece rotation
that satisfies two “reasonable” restrictions. First, a piece
cannot “jump” from one connected component of the un-
filled space to another. Second, any piece that is not 1 × k

(in particular, not) cannot “squeeze through” a single-
cell choke point. Precisely, if cell 〈i, j〉 is unfilled and either
〈i± 1, j〉 are both filled or 〈i, j ± 1〉 are both filled, and the
filling of cell 〈i, j〉 would partition the unfilled space into two
connected components, then a piece that is not 1×k cannot
jump between these two connected components. This model
is a slight strengthening of the one in [2], which only con-
sidered the 〈i, j ± 1〉 case because it only had to consider
vertical passage; in our O(1)-row proof, we need to also
consider horizontal passage. Notably, this rotation model
includes the Classic Rotation System where each piece ro-
tates about a center interior to the piece, and the operation
fails if that rotation would overlap a filled square [1]; and
it includes the more-complex Super Rotation System (SRS)
that is now standard to Tetris [1], [7], which adds a series of
possible translation checks that attempt to avoid collisions
via “wall kicks”.

The (≤)k-tris problem is the following decision problem:
given a starting configuration of filled cells, and the sequence
p1, p2, . . . , pn of (≤)k-omino pieces that will arrive, can the
player maneuver the pieces to avoid pieces freezing above
the top row, and optionally, reach a state where the entire
board is unfilled? Tetris is the special case 4-tris. These
problems are trivially in NP: a certificate is the sequence of
player moves (a linear number of translations and/or rota-
tions) between each unit piece drop. As a result, so are the
following special cases considered in this paper:

(1) c-column (≤)k-tris, where the board has c columns.

(2) r-row (≤)k-tris, where the board has r rows.

(3) Empty (≤)k-tris, where the board’s initial configura-
tion is entirely unfilled.

3. 2-column Tetris is polynomial

For completeness, we start with an easy result about one

© 1992 Information Processing Society of Japan 2

Journal of Information Processing Vol.0 1–19 (??? 1992)

Rows Columns Empty? Piece Sizes Complexity Reference
1 O(n) no O(n) strongly NP-hard Proposition 5.13
1 O(n) yes O(n) linear Proposition 6.4
1 O(n) no k linear Proposition 3.1
2 O(n) yes O(n) strongly NP-hard Theorem 6.3
3 O(n) no 4 OPEN
4 O(n) no 4 strongly NP-hard Theorem 5.1

O(n) 1 no O(n) linear Proposition 3.1
O(n) 2 no O(n) polynomial Theorem 3.2
O(n) 3 yes O(n) strongly NP-hard Theorem 6.2
O(n) 3–7 no 4 OPEN
O(n) 8+ no 4 strongly NP-hard Theorem 4.1
O(n) 8 yes ≤ 65 strongly NP-hard Theorem 6.1

Table 1: Summary of our results. Each row of the table specifies the supported board size (numbers of rows and columns),
whether the board starts empty or from an adversarial position (empty is stronger for hardness, while nonempty is stronger
for algorithms), the allowed piece polyomino sizes (4 for Tetris), the complexity result for this case (red for hardness, blue for
algorithm, and yellow for open), and where we prove the result.

row or column:
Proposition 3.1. 1-column ≤ k-tris and 1-row k-tris
are solvable in linear time.

Proof. In 1-column ≤ k-tris, only 1 × j pieces (e.g.,
) are valid. (Any other piece does not fit in the board.)

Every such piece immediately fills any rows it occupies, so
immediately disappears. Thus every sequence of pieces that
fit in the board is a trivial win for the player.

In 1-row k-tris, any piece that is not 1 × k results in
an immediate loss for the player. If there are only 1 × k

pieces in the sequence, then we can follow a greedy strat-
egy: place each piece in the leftmost position where it fits.
If there is any way to clear the initial row configuration,
then this algorithm will produce one. If there is any way
to fill a then-empty row (i.e., k divides the board width),
then we claim that this algorithm will produce one. Fur-
thermore, if the row cannot be cleared, then we claim that
this algorithm will make the most moves possible before get-
ting stuck. These claims follow from a simple greedy argu-
ment: take any strategy, sort its piece placements between
line clears from left to right, and if a piece placement is not
maximally left, shift it so. Thus, this algorithm will play for
as long as is possible.

Theorem 3.2. 2-column O(n)-tris is solvable in polyno-
mial time.

Proof. We reduce to APDA, the acceptance problem for
nondeterministic pushdown automata, which is known to
be in P by reduction to the acceptance problem for CNF
Context-Free Grammars [4] and the CYK algorithm that
solves it [11]. Given a set Σ of ≤ k-omino pieces, a piece
sequence p of length n over Σ, the initial board configura-
tion B, and board height h, we output (M,p), where M is
a PDA that recognizes piece sequences from Σ that permit
staying under h rows starting from board B, and optionally
clearing the board.

The constructed pushdown automaton M represents the
board state in its stack, with the topmost occupied row
at the top. Its stack alphabet Γ = {��,��} repre-
sents the two possible configurations of a 2-column row (as
�� is invalid and �� is invalid below the topmost occu-
pied row). Each piece pi ∈ Σ is described by a string
over {��,��,��}, as wider pieces cannot fit within two
columns.

When a piece pi comes in, it would suffice for M to pop
and observe the top |pi| ≤ k rows to determine how each
placement choice changes the board state. Because a move
can either delete or add up to k occupied rows at the top of
the board, at most 2k new rows need to be pushed to realize
the outcome of a chosen placement. This locality of updates
may not seem true for 1× j pieces with pattern (��)∗ like
the tetromino, because they can descend arbitrarily
far below the topmost row; but observe that each row it
passes through and clears must be identical, either all ��

or all ��, so the resulting board state would be the same
as if the top j rows were cleared instead.

However, while this implementation would be sufficient,
it will not be efficient for large k: there are 2k possible se-
quences of k rows, so if M always popped k rows into its
finite state space, we would have exponential blowup. We
can fix this issue by noticing that there are only two possible
row patterns that M needs to handle, (��)∗(��)? and its
mirror image (��)∗(��)?, as (by the reasonable rotation
assumption) no piece can pass through two unequal rows
or affect any rows below them. This reduces the number of
possibilities to O(k), keeping M ’s state space small. Figs. 1,
2, and 3 show how to handle the standard tetromino pieces.

The execution of M starts by pushing B onto the stack
before reading any input, initializing the board. For each
piece pi, M nondeterministically chooses which orientation
to place pi on the board. As it runs, M enforces the max-
imum row constraint by keeping a stack height counter in
its state, which is incremented and decremented appropri-

© 1992 Information Processing Society of Japan 3

Journal of Information Processing Vol.0 1–19 (??? 1992)

(a) onto �� (b) onto ��

(c) onto �� (d) onto ��

Fig. 1: Possible 2-column outcomes for placing or
pieces. and flipped cases are symmetric.

(a) onto �� (or ��) (b) flipped onto ��

(c) flipped onto
��,��

(d) flipped onto
��,��

Fig. 2: Possible 2-column outcomes for placing pieces.
cases are symmetric.

ately as M pushes and pops rows. If M places a piece over
the height limit h, then M enters an inescapable rejecting
state on that branch, whereas all other states (or optionally
only those with an empty stack) are accepting states. With
these finite-state implementable rules, M performs a cor-
rect simulation which recognizes winning games, therefore
(Σ, p, B, h) is in 2-column ≤ k-tris if and only if (M,p) is
in APDA.

To bound the running time, note that we may assume
h ≤ |B| + kn, as otherwise it would be impossible to reach
the top row and lose. Because producing M is dominated
by the computation of its transition function — enumerating
and simulating the outcomes of the O(|Σ|×h×k) scenarios
of placing every piece in each orientation at all legal heights
with every pattern of the top k rows — the size of M and
the time required to produce it is polynomial in the input
size.

4. 8-column Tetris is NP-hard
In this section, we prove the following theorem:

Theorem 4.1. It is NP-complete to survive or clear the

(a) on any board.

(b) on top of ��

(c) into (��)1(��)
(d) into (��)2(��)

(e) into (��)3(��)

(f) into
(��)4(��)∗(��)

Fig. 3: Possible 2-column outcomes for placing and
pieces. Mirrored cases are symmetric.

board in c-column Tetris for any c ≥ 8.
Like [2], we reduce from the strongly NP-hard 3-

Partition problem.
Definition 4.2. The 3-Partition problem is defined as
follows:
Input: A set of nonnegative integers {a1, a2, . . . , a3s}

and a nonnegative integer T satisfying the constraints∑3s
i=1 ai = sT and T

4 < ai <
T
2 for all 1 ≤ i ≤ 3s.

Output: Whether {a1, a2, . . . , a3s} can be partitioned
into s (disjoint) sets of size 3, each of which sum to exactly
T .

For the reduction, we exhibit a mapping from 3-
Partition instances to Tetris instances so that the fol-
lowing is satisfied:
Lemma 4.3 (c-column Tetris ⇐⇒ 3-Partition).
For a “yes” instance of 3-Partition, there is a way to drop
the pieces that clears the entire board without triggering a
loss. Conversely, if the board can be cleared, then the 3-
Partition instance has a solution.

Proof sketch. The initial board, illustrated in Fig. 4a
(where filled cells are grey and the rest of the cells are un-

© 1992 Information Processing Society of Japan 4

Journal of Information Processing Vol.0 1–19 (??? 1992)

filled), has 12sT+48s+17 rows. The reduction is polynomial
size.

The piece sequence is as follows. First, for each ai, we
send the following ai sequence (see Figs. 4(i–m)):

〈 , 〈 , , 〉ai , , 〉.

After all these pieces, we send the following clearing sequence
(see Figs. 4(n) and (b–h)):

〈〈 , , 〉s, , 〈 〉6sT+24s+6,

, , 〈 〉3sT+12s+4〉.

Figs. 4(b–n) illustrate that a solution to 3-Partition
clears the Tetris board. To show the other direction, we
progressively constrain any Tetris solution to a form that
directly encodes a 3-Partition solution. Because the area
of the pieces sent is exactly equal to 4(12sT + 48s+ 13), no
cell can be left empty. We enumerate all possible cases to
show that this goal is impossible to meet (some cell must be
left empty) if there is no 3-Partition solution. Figs. 4(o–w)
show some of the cases.

4.1 Reduction
In this section, we detail our polynomial reduction from

an instance P = 〈{a1, a2, . . . , a3s}, T 〉 of 3-Partition to an
instance G = G(P) of Tetris. In later sections, we prove
that P and G have the same answer, i.e., there exists a valid
3-partition if and only if there is a sequence of moves that
survives or that clears the Tetris board.
4.1.1 Initial board

The initial board, illustrated in Fig. 4(a) (where filled cells
are grey and the rest of the cells are unfilled), has 8 columns
and 12sT +48s+17 rows. The columns are numbered 1 to 8
from left to right. (To prove hardness for c > 8 columns, we
simply fill all columns beyond the 8th.) The unfilled cells
consist of five main parts:

• The corridor, which consists of a 2× (12sT + 48s+ 12)

rectangle, as well as a 3-square cut out on the bottom
left.

• The buckets (of which there are s), which branch off
the corridor to its left. These are similar in shape to
the buckets used in [2]: except for the first few and
last few rows, their shape is periodic with a period of 5
rows. Each bucket has a total height of 5T + 20, and
contains T +3 notches (the pairs of adjacent empty cells
in column 5, not including the 3 empty cells at the top).

• The T-lock, which is in the shape of a piece. The
buckets are each separated by two rows.

• The alley, which is a 1 × (12sT + 48s + 16) rectangle
which is “unlocked” by the T-lock.

We also define the horizon, which is the horizontal line
separating the empty rows at the top of the board from
the topmost filled cell. When a row is cleared, the horizon

moves down by one row per row that is cleared. We also de-
fine the bucket line as the horizontal line immediately below
the bottommost cell of the bottommost bucket.
4.1.2 Piece sequence

The pieces arrive in the following order.
First, for each ai, the following pieces arrive in the follow-

ing order, called the ai-sequence. This part is identical to
the reduction in [2].

• The initiator, which is a single piece.

• The filler, which consists of the pieces 〈 , , 〉ai

(which we take to mean the sequence 〈 , , 〉
repeated ai times).

• The terminator, which consists of the pieces
〈 , 〉.

After all the ai-sequences, we then have the following
pieces in the following order, called the closing sequence:

• The bucket closer, which consists of the pieces
〈 , , 〉s.

• A single (note this is the first to arrive).

• The corridor closer, which consists of the pieces
〈〈 〉6sT+24s+6, 〉.

• A single (note this is the first to arrive).

• The clearer, which consists of the pieces
〈 〉3sT+12s+4.

The total size of the board is 8(12sT + 48s + 17) and the
total number of pieces is

3s∑
i=1

(3 + 3ai) + 3s + 1 + (6sT + 24s + 6)

+ 1 + 1 + (3sT + 12s + 4) = 12sT + 48s + 13,

which are both polynomial in the size of the 3-Partition
instance.

4.2 3-Partition solvable ⇒ Tetris solvable
In this section, we show one side of the bijection: for a

“yes” instance of 3-Partition, we can clear the game board.
Theorem 4.4. For a “yes” instance of 3-Partition, there
is a trajectory sequence Σ that clears the entire gameboard
of G(P) without triggering a loss.

Proof. Since P is a “yes” instance, there is a partitioning of
{1, 2, . . . , 3s} into sets A1, A2, . . . , As so that

∑
i∈Aj

ai = T

We have ensured that |Aj | = 3 for all j. All pieces associ-
ated with set Aj = {x, y, z} should be placed into the jth
bucket of the gameboard.

We place the ax-sequence into bucket j as in Figs. 4(i–
l). After all pieces associated with the number ax have been
placed into bucket j, the bucket has ax+1 fewer notches, but
otherwise still has the shape of a bucket. Similarly, ay, az are

© 1992 Information Processing Society of Japan 5

Journal of Information Processing Vol.0 1–19 (??? 1992)

al
le

y

b
u
ck

et
b
u
ck

et

co
rr

id
or

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n)
Fig. 4: (a) shows the initial board. (b–h) demonstrate filling and clearing the board in the final clearing sequence. (i–m)
show a valid sequence of moves for ai = 5. (n) shows our bucket terminator.

placed in bucket j, for a total of (ax+1)+(ay+1)+(az+1) =

T + 3 notches being filled, so each bucket has 0 notches left
and may then be filled by the bucket closer, as in Fig. 4(n).
After all the ai-sequences arrive, then, we fill all the buckets

© 1992 Information Processing Society of Japan 6

Journal of Information Processing Vol.0 1–19 (??? 1992)

with the bucket closer.
Next, now that the buckets are all filled, the remaining

moves are straightforward. We drop a into the corri-
dor to fill the bottom 4 cells of the corridor. Now we use the
6sT +24s+6 s in the corridor closer to fill the corridor,
as depicted in Fig. 4d. We then drop the into the T-
lock, which fills the top row immediately below the horizon
and clears it, opening the alley. Now we drop a sequence of
3sT + 12s + 4 s which clear all the rows of the board
since they clear 4(3sT + 12s + 4) = 12sT + 48s + 16 rows,
as shown in Figs. 4(f–h). This clears the whole board, as
desired.

4.3 Tetris solvable ⇒ 3-Partition solvable
Here we show that if G(P) has a sequence of moves that

survive, then the 3-Partition instance P must also have
a solution (i.e., a valid partition). Suppose there is such
a surviving sequence of moves. By a sequence of claims,
we progressively constrain this survival strategy into a form
that directly encodes a 3-Partition solution.
Claim 4.5. The top row must be the first row to be cleared.

Proof. Every row except the top has an empty square in
the alley. The alley is completely surrounded by pieces, and
thus no part of the alley can be filled until a row is filled.

Claim 4.6. Only a can go in the T-lock.

Proof. By the previous claim, no rows can be cleared be-
fore the top row, and thus the T-lock will remain at the top
of the board until it is filled. There are only four empty
cells in the connected component of the T-lock within the
board, so any piece placed other than a will have at
least one block above the board, causing a loss by partial
lock out.

Claim 4.7. No rows can be cleared before the is given.

Proof. Follows from the prior two claims.

Claim 4.8. All squares not in the alley and T-lock must be
completely filled before the arrives.

Proof. Cells in the alley and cells above the horizon cannot
be filled before the arrives by Claim 4.7. Cells in the
T-lock cannot be filled before the arrives by Claim 4.6.
The total number of empty cells outside those two areas is
48sT +192s+52 = 4(12sT +48s+13), which is exactly four
times the number of pieces that arrive before the . Each
piece fills four cells, so every cell not in the alley and T-lock
must be filled; otherwise, some piece will extend above the
board, causing a loss by partial lock out.

By Claim 4.8, the surviving trajectory sequence can-
not leave any unfillable holes behind when placing pieces.
Henceforth, we focus on the prefix of the surviving trajectory
sequence that places the ai-sequences without such holes; we
only need the surviving trajectory sequence for the closing
sequence in order to guarantee Claim 4.8.
Claim 4.9. During the ai-sequences, no piece other than

an can be placed first in the corridor.

Proof. The casework in Fig. 5 shows that any , ,
, or placed in the bottom of the corridor will leave

empty squares, which is not allowed by Claim 4.8. No ,
, or arrives during the ai-sequences, leaving just
.

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

(k) (l) (m)

Fig. 5: Possibilities for placing various pieces other than
and into the corridor, all of which make the puzzle

unsolvable.

Any piece placed higher up in the corridor creates a choke
point of width 1 through which no pieces but can
pass. Since an placed at the bottom of the corridor
leaves empty squares, this makes the bottom of the corridor
unfillable.

Next we show that the buckets must be filled in the man-
ner given by Section 4.2. We define prepped and unprepped
buckets as in [2]. An unprepped bucket is one that takes the
form of a bucket in the initial board, but possibly with fewer
notches, as shown in Fig. 6(a). The height of an unprepped
bucket is the number of notches in the bucket; the buckets
all initially have height T +3. A special case is an unprepped
bucket of height 0; this is also shown in Fig. 6(b).

We also define a prepped bucket as one in which all cells

© 1992 Information Processing Society of Japan 7

Journal of Information Processing Vol.0 1–19 (??? 1992)

(a) (b)

Fig. 6: Unprepped buckets of heights 1 and 0, respectively.

(a) (b)

Fig. 7: Prepped buckets of heights 1 and 0, respectively.

below some notch are filled, as in Fig. 7(a). The height of
a prepped bucket is again its number of notches. Again,
there is the special case of a prepped bucket of height 0,
also shown in Fig. 7(b).
Claim 4.10. None of , , may be placed in an
unprepped bucket.

Proof. Figs. 8 and 9 show all possible placements, and the
crosses show cells that cannot be filled. In Fig. 9(q), there
are two cells with crosses; these two cells cannot both be
filled (noting that there is no in the piece sequence).
Thus we have a contradiction by Claim 4.8, since all the
crossed cells must be filled eventually.

Claim 4.11. If an is placed in an unprepped bucket,
it must form a prepped bucket of the same height.

Proof. We do casework on the possible placements of the
, showing that in each other case, there is a cell that

can never be filled before any row is cleared. This would
contradict Claim 4.8.

All possible placements are shown in Figs. 10 and 11,
where we have split into cases based on whether or not the
bucket has height 0. (The cases where the bucket does not
have height 0 are essentially the same even as the height
varies). Most cases are marked with a cross, which indicates
a cell which can never be filled, making that placement in-
valid. In the only valid cases, Figs. 10(d) and 11(d), an
unprepped bucket of the same height results.

Claim 4.12. An cannot be placed in a prepped bucket
of height 0.

Proof. There is only one possible placement of an in
a prepped bucket of height 0, shown in Fig. 12. The cross

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m)

Fig. 8: Possibilities for placing an , , or into
an unprepped bucket of height 0. All leave the puzzle un-
solvable.

marks an unfillable cell; hence, this is not permissible.

Claim 4.13. When the sequence 〈 , , 〉 is placed
in a prepped bucket of height h, the bucket must end up
as an prepped bucket of height h − 1. (We know h ≥ 1 by
Claim 4.12.)

Proof. Here we show that each of the parts of the sequence
must be placed in a specific way. First, Fig. 13 shows all the
ways an can be placed. Only Fig. 13(b) shows a valid
placement.

After the has been placed as in Fig. 13(b), Fig. 14
shows all the ways the can be placed afterward. Again,
only Fig. 14(c) shows a valid placement.

Finally, after the has been placed as in 14(c), Fig. 15
shows all the ways the second can be placed. In the only
valid case, Fig. 15(a), what remains is a bucket of height
h− 1, as desired.

Claim 4.14. When the sequence 〈 , 〉 is placed in
a prepped bucket of height h, the bucket must end as an un-
prepped bucket of height h− 1. (We know h ≥ 1 by Claim
4.12.)

© 1992 Information Processing Society of Japan 8

Journal of Information Processing Vol.0 1–19 (??? 1992)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 9: Possibilities for placing an , , or in an
unprepped bucket of positive height. All leave the puzzle
unsolvable.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10: Possibilities for placing an into an unprepped
bucket of height 0. All but the first leave the puzzle unsolv-
able.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 11: Possibilities for placing an into an unprepped
bucket of positive height. All but the first leave the puzzle
unsolvable.

© 1992 Information Processing Society of Japan 9

Journal of Information Processing Vol.0 1–19 (??? 1992)

Fig. 12: The only way to place an in a prepped bucket
of height 0. This leaves the puzzle unsolvable.

(a) (b) (c)

(d) (e)

Fig. 13: Possibilities for placing the first in
〈 , , 〉. All but the first leave the puzzle unsolv-
able.

Proof. By the exact same cases as in Claim 4.13, the
must be placed as in 13(b).

Now, Fig. 16 shows all possible placements of the
afterward, where again crosses show unfillable cells. (In this
case, it is necessary to split between the h = 1 and h > 1

cases.) Again, in Fig. 16(e), there are two cells with crosses,
which cannot both be filled since there is no in the se-
quence. In the only valid placements, Figs. 16(a) and 16(d),
the result is a prepped bucket of height h− 1.

The following corollary follows directly from Claims 4.11,
4.10, 4.12, 4.13, and 4.14:
Corollary 4.15. Suppose that before the ai-sequence ar-
rives, all buckets are unprepped. If the starting the ai-
sequence is placed into a bucket, then the entire ai-sequence
must be placed into that bucket. Furthermore, the height
of that bucket decreases by ai + 1; or if the height were to
become negative, then these placements are impossible.

We can now remove the assumption that the starting
the ai-sequence is placed into a bucket:

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Fig. 14: Possibilities for placing the in 〈 , , 〉.
All but the first leave the puzzle unsolvable.

Claim 4.16. The starting each ai-sequence must be
placed into a bucket.

Proof. By the definition of the ai-sequence, the is im-

© 1992 Information Processing Society of Japan 10

Journal of Information Processing Vol.0 1–19 (??? 1992)

(a) (b) (c) (d)

Fig. 15: Possibilities for placing the second in
〈 , , 〉. All but the first leave the puzzle unsolv-
able.

(a) (b) (c)

(d) (e) (f)

Fig. 16: Possibilities for placing the . All but the first
leave the puzzle unsolvable.

mediately followed by an . Consider for a contradiction
the first from an ai-sequence that is placed into the
corridor. We claim that that the following cannot be
placed. By Claim 4.9 and by induction, no piece other than
the just-placed has been placed in the corridor. If the

piece is placed in the corridor, the casework in Fig. 17
shows that it would create an unfillable hole. However, by
Corollary 4.17, before each ai-sequence, all buckets are un-
prepped, so by Claim 4.10, the also cannot be placed in
a bucket, a contradiction.

Combining Corollary 4.15 with Claim 4.16, we obtain the
following:
Corollary 4.17. Suppose that before the ai-sequence ar-
rives, all buckets are unprepped. Then the entire ai-
sequence must be placed into that bucket. Furthermore, the
height of that bucket decreases by ai+1; or if the height were
to become negative, then these placements are impossible.

(a) (b) (c)

(d) (e)

Fig. 17: Possibilities for placing into the corridor and
then into the corridor.

We are finally ready to prove the other direction of the
bijection.
Theorem 4.18. If G(P) has a surviving trajectory se-
quence, then the 3-Partition instance P has a solution.

Proof. Numbering the buckets 1, 2, . . . , s, let Sb be the set
of i such that the ai-sequence is placed in bucket b. By
the first half of Corollary 4.17, the Sb’s form a partition of
{a1, a2, . . . , a3s}. By the second half of Corollary 4.17, the
sum

∑
i∈Sb

(ai + 1) is at most the original height of each
bucket, which is T + 3. However,

∑3s
i=1(ai + 1) = s(T + 3),

so equality must hold.
Thus, we have

∑
i∈Sb

(ai + 1) = T + 3 for each bucket
b. But the condition T/4 < ai < T/2 means that this
sum cannot have at most 2 or at least 4 terms, so it must
have 3 terms, and thus |Sb| = 3. Then the condition sim-
plifies to

∑
i∈Sb

ai = T , and thus the Sb represent a valid
3-partition.

5. 4-row Tetris is NP-hard
Theorem 5.1. It is NP-complete to survive or clear the
board in r-row Tetris for any r ≥ 4.

The proof by reduction from 3-Partition. Given an in-
stance P of 3-Partition with elements {a1, a2, . . . , a3s}
and target T , we create an instance G = G(P) of r-row
Tetris which has a valid 3-partition if and only if there is
a sequence of moves to survive, and an extension of such a
surviving sequence to leave the Tetris board empty.

The initial board, illustrated in Fig. 18 for r = 6 (where
filled cells are grey and the rest of the cells are unfilled),
has 15sT + 8s + 8 + 4r columns and r rows, containing the
following unfilled cells:

• A number s of buckets, which branch off the corridor
to its right. These are similar in shape to the buckets
used for the proof of c-column Tetris except for the
first few and last few columns. Each bucket has a total
width of 15T + 6, and contains 3T notches (the pairs of
adjacent empty cells in row 5, counting rows from the
top). Buckets are separated by 2 columns.

© 1992 Information Processing Society of Japan 11

Journal of Information Processing Vol.0 1–19 (??? 1992)

Fig. 18: The initial board for r = 6.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 19: (a) shows the initial board for r = 4. (b) shows a correctly filled board. After (c), there are many ways to survive;
(c–h) show the clearing sequence.

• A T-lock in the shape of a piece in the top two
rows.

• An O-lock in the shape of a piece in the next two
rows.

• Right filler: in each row below the top four, there are
exactly four empty spaces, to the right of any columns
empty in any higher row.

The piece sequence is as follows. First, for
each ai, we send the following ai sequence (see
Figs. 4(i–m)): 〈 , 〈 , , 〉3ai−1, , 〉.
After all these pieces, we send the following
clearing sequence (see Figs. 4(n) and (b–h)):
〈〈 , , , , , 〉s, , 〉. Finally,
if r > 4, we send 〈 〉r−4.

The total size of the board is r(15sT + 8s + 8 + 4r) and
the total number of pieces is

3s∑
i=1

(3 + 3(3ai − 1)) + 2 + 6s

which are both polynomial in the size of the 3-Partition
instance (recalling that 3-Partition is strongly NP-hard).
Lemma 5.2 (r-row Tetris ⇐⇒ 3-Partition). For a
“yes” instance of 3-Partition, there is a way to drop the
pieces that survives and clears the entire board. Conversely,
if the piece sequence can be survived, then the 3-Partition
instance has a solution.

Fig. 19 illustrates that a solution to 3-Partition survives
and clears the Tetris board.

To show that if G(P) has a sequence of moves that sur-
vives, then the 3-Partition instance P must also have a
solution (i.e., a valid partition), we progressively constrain
any Tetris solution to a form that directly encodes a 3-
Partition solution.
Claim 5.3. Nothing may be placed in the T-lock except a

.

Proof. No row can be cleared until some cell of the T-lock
is filled and we also note that there is only one in the
complete piece sequence. However, the only piece that can
fill any cell of the T-lock without filling a cell above the

© 1992 Information Processing Society of Japan 12

Journal of Information Processing Vol.0 1–19 (??? 1992)

horizon (causing a loss by partial lock out) is a , so the
claim follows from Claim 5.6.

Corollary 5.4. Nothing may be placed in the O-lock except
an .

Proof. The first two rows cannot be cleared until T-lock is
filled with an by Claim 5.3. This means that no piece
may reach the O-lock since it is covered by the first two
rows. The only piece that follows the is an which
must go into the O-lock as desired.

So we have the following corollary which follows directly
from Claim 5.4:
Corollary 5.5. No row may be cleared until the first
has arrived.

We implicitly use Corollary 5.5 throughout this paper,
since it implies that the buckets must maintain their shape
until after the arrives.
Claim 5.6. No cell above the horizon may ever be filled.

Proof. The area of the pieces sent up to the first is
exactly equal to

4(9sT + 6s + 1),

the area of the unfilled cells in the first four rows outside the
lock is

s(36T + 24) + 4 = 4(9sT + 6s + 1),

so when the first arrives, every cell in the first four
rows outside the lock must be full for survival, and no
cell can ever be placed in an empty row.

If we survive until the first by filling all cells in the
first four rows except the lock, then the remaining
and pieces clear the board. Hence it suffices to show
that for r = 4, the given Tetris game is clearable if and only
if the instance of 3-Partition is solvable. Henceforth we
assume r = 4.

Now, to complete the proof, we show that the buckets
must be filled in the manner shown in Fig. 19, so some cell
must be left empty if there is no 3-Partition solution. De-
fine prepped (Fig. 21) and unprepped (Fig. 20) buckets as in
Section 4.3. We define the height in the same manner by
the number of notches.

(a) (b)

Fig. 20: Prepped buckets of heights 1 and 0, respectively.

We can now prove an analogue of Claim 4.11:
Claim 5.7. If an is placed in an unprepped bucket of
height at least 1, it must form a prepped bucket of the same
height.

Proof. In Fig. 22, we show all cases that do not leave the
leftmost cell disconnected from the outside. The first one

(a) (b)

Fig. 21: Unprepped buckets of heights 1 and 0, respectively.

works; in the others, we attempt to place an incorrectly,
and mark some cell that can never thereafter be filled.

(a) (b)

(c) (d)

Fig. 22: Ways to place an into an unprepped bucket
of positive height. Cases in which the leftmost empty cell is
neither filled nor connected by a path of empty cells to the
outside are not shown.

Claim 5.8. None of , , may be placed in an
unprepped bucket of height at least 1.

Proof. In Fig. 23, we show all possible cases. In every one,
we attempt to place an incorrectly, and mark some
set of cells (usually exactly one) that can never thereafter
be simultaneously filled. For instance, in Fig. 23(p), the
only piece (of the ones we ever use) that can fill the bottom
marked cell is , but once a is placed, no piece can
fill the top marked cell.

Proof. There are only eight empty cells in an unprepped
bucket of height 0, less than the 12 needed.

Claim 5.9. When the sequence 〈 , , 〉 is placed
in a prepped bucket of height h ≥ 2, the bucket must end
up as a prepped bucket of height h− 1.

Proof. In Fig. 24, we show all possible cases. In every one,
we attempt to place a , , . The first one works.
For every other one, we show some cell that cannot be filled
by the next piece.

Claim 5.10. When the sequence 〈 , 〉 is placed in
a prepped bucket of height h ≥ 2, the bucket must end as
an unprepped bucket of height h− 1.

Proof. In Fig. 25, we show all possible cases. In every one,
we attempt to place a , . The first one works. For
every other one, we show some cell that cannot be filled by
the next piece.

The following corollary follows from Claims 5.7, 5.8, 5.9,
and 5.10:

© 1992 Information Processing Society of Japan 13

Journal of Information Processing Vol.0 1–19 (??? 1992)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

(s) (t)

(u) (v)

Fig. 23: Ways to place an , , or into an un-
prepped bucket.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

Fig. 24: Ways to place an , then a , then an
into a prepped bucket, where the following piece is an .

Corollary 5.11. Suppose that before the ai-sequence ar-
rives, all buckets are unprepped and have height 1 (mod 3).
Then, the entire ai-sequence must be placed in one bucket,
and the height of that bucket decreases by 3ai (the height
cannot go below 0) and is unprepped at the end.

Proof. The initial of the ai-sequence must go in some
bucket; say it has height 3h + 1. By Claim 5.7, the bucket
is now prepped with height 3h + 1. By Claim 5.8, all pieces
of the ai-sequence must go into this bucket. Now, we have

© 1992 Information Processing Society of Japan 14

Journal of Information Processing Vol.0 1–19 (??? 1992)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Fig. 25: Ways to place an and then an into a
prepped bucket, where the following piece is an .

that the total area of pieces remaining in the ai-sequence
is 36ai − 4, while the total area remaining in the bucket is
36h+ 20. Thus, since the total area of the pieces cannot ex-
ceed the area of the bucket, we must have 36ai−4 ≤ 36h+20,
and therefore (since ai, h are integers), ai ≤ h. Now, by
Claim 5.9, each 〈 , , 〉 sequence must decrease the
height of the bucket by 1, so after all of these the bucket is
now prepped and has height 3h− 3ai + 2 (note that at each
step the bucket had height at least 2). Now, the height of
the bucket is still at least 2, so we can apply Claim 5.10.
Thus, after the final 〈 , 〉, the bucket must become
an unprepped bucket of height 3h− 3ai + 1, as desired.

Theorem 5.12. If G(P) has a clearing trajectory sequence,
then the 3-Partition instance P has a solution.

Proof. Numbering the buckets 1, 2, . . . , s, let Sb be the set
of i such that the ai-sequence is placed in bucket b, so the Sb

form a partition of {a1, a2, . . . , a3s}. By Corollary 5.11, the
sum

∑
i∈Sb

3ai is at most the original width of each bucket,
which is 3T +1. But note that the sum is a multiple of 3, so
it must in fact be at most 3T . However,

∑3s
i=1 3ai = 3sT ,

so equality must hold for each individual sum.
Thus, we have

∑
i∈Sb

3ai = 3T for each b. Dividing out
by 3,

∑
i∈Sb

ai = T , and thus the Sb represent a valid 3-
partition.

5.1 Linear-size pieces, 1 row
As a transition to the next topic, which considers ≤ k-

tris, we point out that even just one row is trivially NP-
hard when we allow k � 4:
Proposition 5.13. 1-row ≤ k-tris is strongly NP-hard.

Proof. We reduce from 3-Partition. The board is s(T+1)

units wide, with an initially filled square every T +1 spaces,
leaving s gaps of length exactly T . The first 3s pieces are
1 × ai for i = 1, 2, . . . , 3s. The line can clear if and only if
3-Partition has a solution. A final 1×s(T +1) piece forces
a loss otherwise.

6. Starting from an empty board is NP-
hard

6.1 O(1)-size pieces, 8 columns
Theorem 6.1. c-column Empty (≤ c2 + 1)-tris is NP-
complete for any c ≥ 8. In particular, 8-column Empty
(≤ 65)-tris is NP-complete.

Proof. We force the player to build the board initial config-
uration B from Theorem 4.1’s proof, starting from an empty
board, using pieces of size at most c2 + 1. We build B from
the bottom up using pieces of height c + 1 (so they cannot
be rotated) and width c (so they also cannot be translated).
Specifically, if we want to add a cell in column i of the top
row that already has a cell, we send a c× c square with an
extra cell in column i below it (in the bottom (c+1)st row);
the c× c square lands above the top existing row and clears,
leaving just a cell in column i in the previous top row. To
start a new row with a cell in column i, we send a c × c

square with an extra cell in column i above it (in the top
(c+ 1)st row); the c× c square lands above the top existing
row and clears, leaving just a cell in column i in its own row.

These two operations suffice to create any legal board con-
figuration, until we get near the top of the board in which
case the partial lock out would cause the player to lose.
When we fill the last pixel in the (c+ 1)st row of the board,
we send a different piece: instead of putting a c × c square
above that pixel, we put the desired board configuration for
the top c rows. By modifying the construction of Theo-
rem 4.1 to have a lot of rows after the first two where just
the first, seventh, and eighth columns are empty, we can
guarantee the additional property that this piece shape is a
connected polyomino.

Then we proceed as in the reduction of Theorem 4.1.

6.2 Linear-size pieces, 3 columns
Theorem 6.2. 3-column Empty O(n)-tris is NP-
complete.

Proof. The problem is in NP because checking whether a
sequence of Tetris piece placements clears the board can be
done in polynomial time, so it suffices to prove that 3-column
Tetris with polynomially sized pieces is NP-hard.

As in the previous section, we reduce from 3-Partition
to perfect-information Tetris.

Given an instance of 3-Partition with target sum T and
integers {a1, . . . , a3s}, we construct an instance of 3-column

© 1992 Information Processing Society of Japan 15

Journal of Information Processing Vol.0 1–19 (??? 1992)

Tetris as follows, and as pictured in Fig. 26:

(1) The board is 3 columns wide and (3t + 1)s rows tall.

(2) In the left column, the cells whose row is a multiple of
3t + 1 are filled (starting with the bottom one, row 0).

(3) The middle column is empty.

(4) In the right column, the cells whose row is not a multiple
of 3t + 1 are filled.

(5) The sequence of pieces is an ai sequence, a right filling
sequence, and a clearing sequence:

(a) The ai sequence is, for each ai, a 3ai × 1 rectangle.
(b) The right filling sequence is s 1× 1 squares.
(c) The clearing sequence is a single (3T+1)s×1 rectangle.

Fig. 26: The initial board when T = 3 and s = 3.

This initial position can be reached by normal Tetris play,
by placing pieces, pieces, and one 1 × 1 piece at
the top. If, as in Section 6, all lines clear (and lines above
descend), before the game checks whether the player lost by
breaching the ceiling, then we can force this position from an
empty board, by sending pieces consisting of a 3× 3 square
and one extra cell, which cannot rotate and therefore add a
pixel.

If the 3-Partition instance has a solution, then the
constructed Tetris problem has a solution: for each triple
{ai, aj , ak} with sum T in the 3-Partition solution, we
will fill one of the empty blocks of size 3t in the left column
by moving the rectangles of size 3ai×1, 3aj×1, and 3ak×1

down the empty middle column and then left. Then use the
s squares of the right filling sequence to fill the s empty cells
in the right column, which are again accessible by the mid-
dle column. Finally, place the (3T + 1)s× 1 rectangle in the
middle column, which clears the puzzle.

If the Tetris problem has a solution, we can construct a

solution to the 3-Partition instance.
First, there are 2(3T + 1)s empty cells in the starting

board, so at least 2(3T + 1)s cells from the given pieces
must fill those empty cells. The total number of cells in the
given sequence of pieces is 2(3T +1)s: (3T)s from the ai se-
quence, s from the right filling sequence, and (3T +1)s from
the clearing sequence, so every cell from the given pieces
must fill one of the empty cells in the (3T + 1)s rows that
are initially nonempty. The final (3T + 1)s × 1 rectangle
puts pieces in (3T + 1)s rows, so those must be exactly the
initially nonempty rows; that is, no rows can be cleared be-
fore the final piece, and no pieces can be placed in the center
column before the final piece.

The T empty cells in the right column can be filled only by
1× 1 rectangles, so the T pieces of the right filling sequence
must be placed there.

Finally, the pieces of the ai sequence can only go in the
left column and fill the s empty spaces of size 1× 3T , so the
assignment of ai blocks to those spaces gives a solution to
the 3-Partition problem.

If we relax the constraint that the initial position can be
reached by normal Tetris play, then essentially the same
proof shows that Tetris is hard even with only 2 columns:
just delete the right column and the right filling sequence.
More interestingly, we can apply this idea to the regular
game with two rows:
Theorem 6.3. 2-row Empty O(n)-tris is NP-complete.

Proof. We reduce from 3-Partition. If the instance of 3-
Partition has s triples and target sum t, the Tetris board
has 2 rows and s(4t + 1) + 2 columns. We first send a piece
of width s(4t + 1) + 1 columns; on the bottom row, with
every cell present on the bottom row and only the multiples
of 4t+1 (starting with 0, for a total of s+1 of them) present
on the top row. This piece can only be placed in two posi-
tions, and either of them leaves s buckets of size 4t on the
top row and a single 1 × 2 hole at the side. We then send,
for each ai, a 1 × 4ai rectangle; these cannot fill the 1 × 2

hole without losing, so they must be placed in the buckets
on the top row. If there is a solution to the 3-Partition
instance, the buckets can be filled by the 1× 4ai rectangles
exactly by filling the buckets according to such a solution;
if there is no solution, the Tetris game is lost. Finally, we
send a 1 × 2 piece, which can go in the hole at the side to
clear the Tetris board and survive.

This result is tight:
Proposition 6.4. 1-row Empty O(n)-tris can be solved
in linear time.

Proof. In 1-row Empty ≤ k-tris, any piece that is not
1 × k results in an immediate loss for the player (as in the
proof of Proposition 3.1). If there are only 1 × k pieces in
the sequence, we proceed in rounds between line clears. For
each round except the last, we compute the number m of
pieces before the next round by finding the prefix of remain-
ing pieces whose total area is exactly the board width. If

© 1992 Information Processing Society of Japan 16

Journal of Information Processing Vol.0 1–19 (??? 1992)

such an m exists, we can place those m pieces greedily from
left to right in the initially empty row, and the row clears.
If no such m exists, then we attempt to place the remaining
pieces greedily from left to right; if we run out of space, then
no strategy could have survived.

7. Font
To demonstrate the versatility of Tetris constructions, we

designed an 8-row font where each letter of the alphabet is
constructed as a stacking of exactly one copy of each tetro-
mino (treating reflections as distinct, as in Tetris). Fig. 27
shows the fully assembled font. Crucially, these letters can
actually be constructed in Tetris by stacking the pieces one
at a time in some order (dependent on the letter), while
being supported by the previously stacked pieces according
to Tetris physics. Fig. 28 illustrates the stacking order in a
puzzle version of the font, where the pieces are spread out
vertically according to their fall order, but placed correctly
horizontally; letting the pieces fall straight down reveals the
letters in Fig. 27. A companion web app*2 allows you to
type a custom message, and animate the stacking. Fig. 29
shows a sample animation.

Fig. 27: Tetris font: each 8-row letter can be made by stack-
ing each of the seven tetrominoes exactly once in some order.

8. Open Problems

The main open problems are to determine the critical
threshold for the minimum number c∗ of columns and the
minimum number r∗ of rows for which c∗-column Tetris
and c∗-row Tetris are NP-complete, respectively. We
proved here that c∗ ∈ [3, 8] and r∗ ∈ [2, 4]. We conjec-
ture that r∗ = 2, i.e., that 2-row Tetris is NP-complete.
These problems are open even for c∗-column O(1)-tris and
r∗-row O(1)-tris, i.e., allowing constant-size pieces.

Our hardness proof for c-column Tetris survival relies
on the partial lock out rule, which has been changed in mod-
ern versions of Tetris [1]. We can avoid this assumption, and
also allow constant reaction times for the player, by adding

*2 http://erikdemaine.org/fonts/tetris/

Fig. 28: Tetris puzzle font: if each piece falls vertically, the
result is Fig. 27.

many rows on top and using the reservoir trick from [2],
Section 4.2. However, this approach works only for c odd.
Is 8-column Tetris survival NP-hard without the partial
lock out rule?

Modern versions of Tetris also have a “holding” function,
where the player can put one piece aside for later use. Can
existing results be re-established, or existing open problems
be solved, with the addition of this feature?

Many other questions posed in prior papers on Tetris still
remain open. For example, does Tetris remain hard from an
empty board? What is the complexity of Tetris with imper-
fect information or randomness? Are there guaranteed loss
sequences in n-tris for all n?

© 1992 Information Processing Society of Japan 17

Journal of Information Processing Vol.0 1–19 (??? 1992)

Fig. 29: Tetris animated font. See http://erikdemaine.org/
fonts/tetris/?text=tetris for animation with falling, sliding,
and rotation.

Acknowledgments This work was initiated during
open problem solving in the MIT class on Algorithmic Lower
Bounds: Fun with Hardness Proofs (6.892) in Spring 2019.
We thank the other participants of that class — in partic-
ular, Joshua Ani, Jonathan Gabor, and Claire Tang — for
related discussions and providing an inspiring atmosphere.
We also thank the anonymous referees for helpful comments.

References
[1] Blue Planet Software: 2009 Tetris Design Guideline (2009).

https://tetris.fandom.com/wiki/Tetris_Guideline.
[2] Breukelaar, R., Demaine, E. D., Hohenberger, S., Hooge-

boom, H. J., Kosters, W. A. and Liben-Nowell, D.: Tetris
is Hard, Even to Approximate, International Journal of
Computational Geometry and Applications, Vol. 14, No. 1–
2, pp. 41–68 (2004).

[3] Demaine, E. D., Demaine, M. L., Eisenstat, S., Hesterberg,
A., Lincoln, A., Lynch, J. and Yu, Y. W.: Total Tetris:
Tetris with Monominoes, Dominoes, Trominoes, Pentomi-
noes, . . . , Journal of Information Processing, Vol. 25, pp.
515–527 (2017).

[4] Sipser, M.: Introduction to the Theory of Computation,
Vol. 2, Cengage learning (2006).

[5] Sparkes, M.: Tetris at 30: a history of the world’s
most successful game, The Telegraph (2014). https://
www.telegraph.co.uk/technology/video-games/10877456/
Tetris-at-30-a-history-of-the-worlds-most-successful-game.

html.
[6] Tetris Wiki: Playfield, https://tetris.fandom.com/wiki/

Playfield (2019).
[7] Tetris Wiki: SRS, https://tetris.fandom.com/wiki/SRS

(2019).
[8] Tetris Wiki: Top out, https://tetris.fandom.com/wiki/

Top_out (2019).
[9] Wikipedia: List of best-selling video games, https://en.

wikipedia.org/wiki/List_of_best-selling_video_games
(2019).

[10] Wikipedia: Tetris, https://en.wikipedia.org/wiki/Tetris
(2019).

[11] Younger, D. H.: Recognition and parsing of context-free
languages in time n3, Information and control, Vol. 10,
No. 2, pp. 189–208 (1967).

Sualeh Asif is an undergraduate stu-
dent at MIT expecting to graduate
in 2022. His research interests in-
clude computational complexity, effi-
cient computing and topics at the in-
tersection of computing and number
theory.

Michael Coulombe received his
B.S. degree from the University of
California at Davis in 2013 and his
M.S. degree from the Massachusetts
Institute of Technology in 2015. He
is currently working towards a Ph.D.
under Erik Demaine.

Erik D. Demaine received a B.Sc.
degree from Dalhousie University in
1995, and M.Math. and Ph.D. degrees
from the University of Waterloo in
1996 and 2001, respectively. Since
2001, he has been a professor in com-
puter science at the Massachusetts In-
stitute of Technology. His research in-

terests range throughout algorithms, from data structures
for improving web searches to the geometry of understand-
ing how proteins fold to the computational difficulty of play-
ing games. In 2003, he received a MacArthur Fellowship
as a “computational geometer tackling and solving difficult
problems related to folding and bending— moving readily
between the theoretical and the playful, with a keen eye to
revealing the former in the latter”. He cowrote a book about
the theory of folding, together with Joseph O’Rourke (Ge-
ometric Folding Algorithms, 2007), and a book about the
computational complexity of games, together with Robert
Hearn (Games, Puzzles, and Computation, 2009). With his
father Martin, his interests span the connections between
mathematics and art.

© 1992 Information Processing Society of Japan 18

Journal of Information Processing Vol.0 1–19 (??? 1992)

Martin L. Demaine is an artist and
computer scientist. He started the first
private hot glass studio in Canada and
has been called the father of Canadian
glass. Since 2005, he has been the
Angelika and Barton Weller Artist-in-
Residence at the Massachusetts Insti-
tute of Technology. Martin works to-

gether with his son Erik in paper, glass, and other material.
Their artistic work includes curved origami sculptures in the
permanent collections of the Museum of Modern Art in New
York, and the Renwick Gallery in the Smithsonian. Their
scientific work includes over 140 published joint papers, in-
cluding several about combining mathematics and art.

Adam Hesterberg received an A.B.
degree summa cum laude from Prince-
ton University in 2011 and a Ph.D. de-
gree from Massachusetts Institute of
Technology in 2018. He is now Assis-
tant Director of Undergraduate Stud-
ies in Computer Science at Harvard
University.

Jayson Lynch received a Ph.D. from
MIT 2020 for work on the computa-
tional complexity of motion planning
problems under Erik Demaine. Jayson
is now a Postdoctoral Researcher at
the University of Waterloo continuing
to do work on computational geome-
try and origami, graph algorithms, re-

source efficient computing, and the computational complex-
ity of games and puzzles.

Mihir Singhal is an undergraduate
studying mathematics at MIT. His re-
search interests include combinatorics,
algorithms, and complexity theory.

© 1992 Information Processing Society of Japan 19

