
Scanning and Traversing: Maintaining Data for
Traversals in a Memory Hierarchy

Michael A. Bender1?, Richard Cole2??, Erik D. Demaine3? ? ?, and
Martin Farach-Colton4†

1 Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794-4400, USA. bender@cs.sunysb.edu.
2 Courant Institute, New York University, 251 Mercer Street,

New York, NY 10012, USA. cole@cs.nyu.edu.
3 MIT Laboratory for Computer Science, 200 Technology Square,

Cambridge, MA 02139, USA. edemaine@mit.edu.
4 Google Inc., 2400 Bayshore Parkway, Mountain View, CA 94043, USA, and

Department of Computer Science, Rutgers University,
Piscataway, NJ 08855, USA. farach@cs.rutgers.edu.

Abstract. We study the problem of maintaining a dynamic ordered set
subject to insertions, deletions, and traversals of k consecutive elements.
This problem is trivially solved on a RAM and on a simple two-level
memory hierarchy. We explore this traversal problem on more realistic
memory models: the cache-oblivious model, which applies to unknown
and multi-level memory hierarchies, and sequential-access models, where
sequential block transfers are less expensive than random block transfers.

1 Introduction

A basic computational task is to maintain a dynamic ordered set of elements
subject to insertions, deletions, and logical traversals. By a logical traversal we
mean an in-order access of the k elements following an element x, for a given k
and x. These three operations are performed by nearly any computer program
that uses even the most common data structures, such as linked lists or search
trees.

At first glance it does not seem that there is much to study. On a RAM, the
problem is trivially solved by the lowly linked-list. Even on a two-level memory
hierarchy, as described by the Disk Access Model (DAM model) [1], we can guar-
antee optimal results: For blocks of size B, we obtain O(dk/Be) memory accesses
per traversal and O(1) accesses per insertion and deletion by maintaining Θ(B)
contiguous elements in each block.

? Supported in part by HRL Laboratories, NSF Grant EIA-0112849, and Sandia Na-
tional Laboratories.

?? Supported in part by NSF Grants CCR-9800085 and CCR-0105678.
? ? ? Supported in part by NSF Grant EIA-0112849.

† Supported in part by NSF Grant CCR-9820879.



2

The meat of the problem lies in exploring more realistic memory models. For
example, the DAM model makes no distinction between sequential and random-
access block transfers. Furthermore, the solution proposed above is sensitive to
the parameter B. Can we design a data structure that works well on more than
two levels or for all values of B? The main contribution of this paper is a sys-
tematic study of the memory-traversal problem under a variety of tradeoffs and
assumptions about memory, e.g.: cache aware versus cache oblivious, minimizing
accesses versus minimizing seeks, and amortized versus worst case.

Some special cases of the traversal problem have been explored previously.
By taking a systematic approach to memory issues—e.g., when does it pay to
keep elements in sorted order—we improve bounds for almost all versions of
the problem. By proving separations between the versions, we demonstrate the
impact of making particular assumptions on the memory hierarchy.

1.1 Hierarchical Memories

The Disk Access Model (DAM model), introduced by Aggarwal and Vitter [1],
is the standard two-level memory model. In this model, the memory hierarchy
consists of an internal memory of size M and an arbitrarily large external mem-
ory partitioned into blocks of size B. Memory transfers between the two levels
are performed in blocks.

The cache-oblivious model enables us to reason about a simple two-level
memory model, but prove results about an unknown, multilevel memory model.
The idea is to avoid any memory-specific parameterization, that is, to design
algorithms that avoid using information about memory-access times or about
cache-line and disk-block sizes. Such algorithms are optimal at all levels of the
memory hierarchy, because the analysis is not tailored to any particular level.

The cache-oblivious model was introduced by Frigo, Leiserson, Prokop, and
Ramachandran [14, 22]. They show how several basic problems—namely matrix
multiplication, matrix transpose, Fast Fourier Transform, and sorting—have op-
timal algorithms that are cache-oblivious. More recently, cache-oblivious data
structures matching the bounds of B-trees, priority queues, and tries have been
developed [2, 4–7].

Most memory models do not distinguish between random block transfers and
sequential block transfers. The difference in access times is caused by the seek
times and latencies on disk and by prefetching in disk and main memory. The
current difference in speed between random access and sequential access on disk
is around a factor of 10 [15], and this factor appears to increase by 5 every two
years [23, 21]. We could incorporate these issues into the models by specifying
the balance between physical scans and random block access, but this is another
unwieldy parameter at each level of the memory hierarchy. Instead, we make the
restriction that all operations in the traversal problem involve only a constant
number of scans. This restriction can lead to better performance in both the
DAM model and the cache-oblivious model. The idea of minimizing scans was
also considered by Farach-Colton, Ferragina, and Muthukrishnan [12].



3

DAM Cache-Oblivious

Unsorted,
unrestricted
block transfers

O (dk/Be) [well-known] O

(⌈

k
(log logN)2+ε

B

⌉)

Sorted,
unrestricted
block transfers

O

(⌈

k
log2(N/(k+B))

B

⌉)

amortized [4]

O

(⌈

k
log3(N/(k+B))

B

⌉)

worst-case

O

(⌈

k
log2(N/k)

B

⌉)

amortized [4]

O

(⌈

k
log3(N/k)

B

⌉)

worst-case

Sorted,
O(1) physical
scans

O

(⌈

log2(N/B)

B

⌉)

O

(⌈

log2 N

B

⌉)

Table 1. Number of memory transfers for a cluster of k updates in a structure sup-
porting fast traversals, amortized except where noted as worst-case. All results are
new, except those marked with a reference. Uncaptured by this table are the precise
traversal bounds: they are all O(dk/Be) except for the polyloglog cache-oblivious re-
sult; in this case, the bound is off by a small factor in the worst case, but holds in the
amortized sense.

1.2 Results

We present the first positive progress on the traversal problem in almost two
decades (cf. Section 1.3). Results are summarized in Table 1. We consider a
variety of settings, depending on whether the memory hierarchy has two levels
with a known block size (DAM) or multiple levels with unknown parameters
(cache oblivious); whether the block accesses must be in sequential order or
may be in arbitrary order; and whether the elements must be kept sorted5. One
encouraging aspect of the traversal problem is that the update cost is surprisingly
low (polylogarithmic or better) in all contexts, especially compared to the näıve
update cost of Θ(N) when the elements are stored in sorted order without gaps.

When the elements must be sorted, the best general lower bound is
Ω((logN)/B) memory transfers, which follows directly from [9], and the best
upper bound was O((log2 N)/B) amortized memory transfers for unrestricted
block transfers [4, 17, 31]. We make two main contributions in this setting. In
Section 4 we extend the upper-bound result to hold even when updates can
make only a constant number of physical scans. This restriction is important
because it causes block accesses to be mainly sequential. Finally, we strengthen
the result in a different direction, achieving even worst-case bounds. This algo-
rithm follows a different, de-amortized strategy, and is more complex. We defer
the description of this algorithm to the full paper.

One of our main contributions is to remove the implicit assumption in the
literature that elements have to be sorted. Allowing elements to be stored

5 By keeping elements in sorted order, we mean that their logical order is monotone
with respect to their memory addresses. This notion is valuable for algorithms that
use memory addresses as proxies for order. See, for example, [6].



4

out-of-order leads to update bounds exponentially below the lower bound of
Ω((logN)/B) for the sorted case. In particular, in Section 2 we develop a cache-
oblivious structure using O(d(log logN)2+ε/B1e) unrestricted block transfers,
for any ε > 0. This is our only result for which the traversal bound is (slightly)
worse than the optimal Θ(dk/Be); if k is at least B1−ε, then there is an additive
Bε term. However, in Section 3, we show how to modify scans to be self-adjusting
(following splay trees [26]) and achieve the optimal O(dk/Be) bound in an amor-
tized sense, while maintaining the near-optimal worst case.

This polyloglog structure uses a weak version of the tall-cache assumption:
M = Ω(Bτ ) for some τ > 1. This assumption is commonly made in other
external-memory and cache-efficient algorithms and usually holds in practice.

Our result is an exponential improvement in update cost over the best known
solutions for sequential block accesses and for when elements must be in sorted
order. An intriguing open problem is to prove a nonconstant lower bound.

A natural question is whether the per-operation performance of a traversal
structure can be improved when the updates are batched and possibly clustered
around a common element. Although some improvement is possible for large
clusters, as shown in Table 1, it seems that this improvement is marginal.

Our results form a body of tools for manipulating dynamic data in unknown
and multilevel memory hierarchies. In particular, they can be used to improve
cache-oblivious B-trees. The only cache-oblivious B-tree structures that support

traversals optimally [4, 6, 7] require O(logB N+ log2 N
B ) amortized memory trans-

fers per update. By applying the structure in Section 4, we obtain the following
improvement:

Corollary 1. There is a cache-oblivious data structure that maintains an or-

dered set subject to searches in O(logB N) memory transfers, insertions and

deletions in O(logB N) amortized memory transfers, and traversals of k consec-

utive elements in O(dk/Be + [Bε if k is at least B1−ε]) memory transfers in

the worst-case and O(dk/Be) memory transfers in the amortized sense. Further-
more, scanning all N element requires O(dN/Be) worst case memory transfers.

1.3 Related Work

The main body of related work maintains a set of N elements ordered in O(N)
locations of memory, subject to insertions and deletions at specific locations in
the order. This ordered-file maintenance problem is one version of the traversal
problem, in which the elements must be sorted. Most of this work analyzes
running time, but these results often adapt to multilevel memory hierarchies.

Itai, Konheim, and Rodeh [17] give a structure using O(log2 N) amortized
time per update. Similar results were also obtained by Melville and Gries [20]
and Willard [29]. Willard [29–31] gives a complicated structure using O(log2 N)
worst-case time per update. A modification to the structure of Itai et al. results
in a cache-oblivious traversal algorithm running in O((log2 N)/B) amortized
memory transfers per update.



5

The best lower bounds for this problem are Ω(logN) time in general [9] and
Ω(log2 N) time for “smooth relabeling strategies” [9, 10, 32]. The problem has
also been studied in the context of average-case analysis [13, 16, 17].

Raman [23] gives a scheme for maintaining N elements in order using polyno-
mial space (Θ(N1+ε)) and O(log2 N) time per update. The update bound can be
improved to O(logN) by tuning existing algorithms [3, 8, 11, 27], and this bound
is optimal [9]. However, such a blowup in space is disastrous for data locality, so
this work does not apply to the traversal problem.

2 Cache-Oblivious Traversal in O((log log N)2+ε)

We first consider the cache-oblivious traversal problem without restriction on
the number of scans. In this context, we can store the data out-of-order, but
because the cache-oblivious algorithm does not know the block size, we do not
know how out-of-order the data can be. To resolve this conflict, our data layout
keeps the data “locally ordered” to obtain the following result:

Theorem 1. There is a cache-oblivious data structure supporting traversals

of k elements in O(dk/Be + [Bε if B1−ε ≤ k ≤ B]) memory transfers, and

insertions and deletions in O(d(log logN)2+ε/Be) amortized memory trans-

fers, for any ε > 0. Each update moves O((log logN)2+ε) amortized elements.

More generally, a block of k consecutive elements can be inserted or deleted

in O(dk(log logN)2+ε/Be) memory transfers, for any ε > 0. If k = N ,

then the number of memory transfers is O(dN/Be). These bounds assume that
M = Ω(Bτ ) for some τ > 1.

For intuition, we first describe the structure top-down, but for formality,
we define the structure bottom-up in the next paragraph. Consider the en-
tire memory region storing the N elements as a widget WN . This widget is
recursively laid out into subwidgets as follows. Each widget W` consists of
(1+1/(log log `)1+ε)`1−α subwidgets of type W`α for some ε > 0 and 0 < α < 1.
The constant α is chosen near 1, depending both on ε (see Lemma 2) and on
the weak tall-cache assumption. Specifically, if M = Ω(Bτ ), then α ≥ 1/τ .
For example, under the standard tall-cache assumption in cache-oblivious and
external-memory algorithms, τ = 2 and α ≥ 1/2. The closer τ and α are to 1,
the weaker the assumption on the memory hierarchy.

This top-down definition of widgets suffers from rounding problems. Instead,
we define the finest widget, W(log logN)2+ε , to consist of Θ((log logN)2+ε) ele-
ments. From finer widgets of type W` we build widgets of type W`1/α , from which
we build widgets of type W`(1/α)2 , etc. The coarsest widget type is between WN

and WN1/α , specifically, WÑ where Ñ = (1/α)dlog1/αNe. Thus, conceptually, we
keep the top widget underfull to avoid rounding at every level. In fact, this ap-
proach wastes too much space, and we partition the structure into widgets of
various sizes, as described at the end of this section.

At each recursive level of detail, each widget W` is either empty, which means
it stores no elements, or active, which means it stores at least ` elements. We



6

recursively impose the restriction that if a widget W` is active, at least `1−α of
its subwidgets are active.

Lemma 1. Widget W` occupies Θ(`) space.

Proof. Let S(`) denote the space occupied by widget W`. Then S(`) = (1 +
1/(log log `)1+ε) `1−α S(`α), which has the solution S(`) = Θ(`) for any constant
ε > 0 and 0 < α < 1. It is for this space bound that we need ε > 0. 2

Within a widget W`, the subwidgets of type W`α are stored in a consecutive
segment of memory (for fast traversals), but out-of-order (for fast updates).
This “unordered divide-and-conquer” recursive layout is powerful, allowing us
to break through the polylogarithmic barrier.

Lemma 2. Traversing k elements in a widget W` requires O(dk/Be + [Bε if

Bε ≤ k ≤ B]) memory transfers.

Proof. Let j be the smallest integer such that widget Wj has size greater than B.
Thus subwidget Wjα fits into a block. There are three cases.

First, if k = O(jα) ≤ O(B), then by Lemma 1 the elements to be traversed fit
in a constant number of subwidgets of type Wjα . Each subwidget Wjα occupies
a contiguous region of memory, and hence occupies at most two memory blocks.
Thus, the traversal takes O(1) memory transfers, which is O(dk/Be) as desired.

Second, if k = Ω(j) > Ω(B), then the number of elements to be traversed
is Ω(1) times the size of a widget Wj . Because jα ≤ O(B), the weak tall-cache
assumption implies that j = (jα)1/α ≤ O(B1/α) ≤ O(Bτ ) ≤ O(M). Hence, each
widget Wj fits in memory. Thus we spend at most O(dj/Be) memory transfers
to read an entire widget or part of a widget. Hence, the total number of memory
transfers is O(dk/jedj/Be), which is O((k/j)(j/B)) = O(k/B) because k = Ω(j)
and j = Ω(B).

Third, if k is Ω(jα) and O(j), then k is also Ω(Bα) and O(B). Accessing each
subwidget of type Wjα only costs O(1) block transfers because jα = O(B), but
the number of subwidgets of type Wjα may be as much as j1−α = O(B1/α)1−α =
O(B1/α−1). Setting ε = 1/α − 1, ε approaches 0 as α approaches 1, and the
desired bound holds. 2

We now outline the behavior of this layout under insertions. At the top
level, when WÑ is active, we have at least Ñ1−α active subwidgets, so at most

Ñ1−α/(log log Ñ)1+ε empty subwidgets. When all of a widget’s subwidgets are
active, we say that the widget is hyperactive. Insertions are handled locally if
possible. Insertion into a hyperactive widget may find room in a subwidget, or it
may “overflow.” When a widget overflows, it passes its logically last subwidget to
its parent widget for handing. At this point, the widget is no longer hyperactive,
because it has a (single) empty subwidget. The remaining issues are how the
parent widget “handles” a given subwidget, and when that causes an overflow.

More precisely, the following steps define the possible outcomes of an insertion
into a W` widget. We will not move individual elements (except at the finest
level of detail); rather, we will manipulate entire subsubwidgets of type W`α2 ,
inserting them into subwidgets of type W`α .



7

1. Conceptually, we recursively insert the element into the appropriate subwid-
get S of type W`α , and if that widget does not overflow, we are finished. In
fact, the insertion algorithm is not recursive; it begins at the finest level and
works its way up to coarser levels.

2. If the subwidget S overflows (in particular, it was hyperactive), then S gave
us one of its subsubwidgets T of type W`α2 to handle. We insert this sub-
subwidget T into the logical successor S ′ of S. If S′ was not hyperactive, it
has room for T and we are finished. If S ′ was hyperactive, we push T into S ′

anyway, and out pops the last subsubwidget of S ′, T ′. We pass T ′ onto the
successor of S′, and cascade in this fashion for (log log `)1+ε steps, or until
we find a nonhyperactive subwidget. (In fact, if a cascade causes the last
subsubwidget of S to pop out of subwidget S after fewer than (log log `)1+ε

steps, then we reverse-cascade; below for simplicity we only consider cascad-
ing forward.)

3. If we finish the cascade without finding a nonhyperactive subwidget, we en-
ter the activation stage. Consider the last subwidget L of the cascade. Take
its logically last `(1−α)2 subsubwidgets of type W`α2 , and form a new sub-
widget of type W`α from these. This creates a new active subwidget (to be

placed later), but leaves L nearly empty with exactly `(1−α)2/(log log Ñ)1+ε

subsubwidgets (because L was hyperactive), which is not enough for L to
be active. Next take enough subsubwidgets from L’s logical predecessor to
make L active. Repeat this process back through the cascade chain until the
beginning. Because all cascade subwidgets are hyperactive, we have enough
subsubwidgets to activate a new subwidget, while leaving every cascade sub-
widget active.

4. If the W` widget was not hyperactive, we store the new active subwidget
from the previous step into one of the empty subwidgets. Otherwise, the W`

widget overflows to its parent, passing up the logically last subwidget.

Theorem 2. The amortized cost of an insertion into this layout is

O((log logN)2+ε) time and O(d(log logN)2+ε/Be+[Bε if Bε ≤ k ≤ B]) memory
transfers.

Proof. Within a widget of type W`, activation of a subwidget of type W`α

requires a logically contiguous segment of (log log `)1+ε subwidgets of type
W`α all to be hyperactive. After such an activation, these subwidgets are
all nonhyperactive, each having an empty fraction of 1/(log log `α)1+ε. Thus,
each of these subwidgets will not participate in another activation until these
`α(1−α)/(log log `α)1+ε subsubwidgets of type W`α2 are refilled. These refills are
caused precisely by activations of subsubwidgets of type W`α2 within a subwid-
get of type W`α . Thus, the activation of a subwidget of type W`α requires the
activation of (log log `)1+ε`α(1−α)/(log log `α)1+ε = Θ(`α(1−α)) subsubwidgets of
type W`α2 . Working our way down to the bottom level, where widgets of type
W1 are created by insertions, the activation of a subwidget of type W`α requires
Θ(`α(1−α)`α

2(1−α) · · · 1) insertions. The exponents form a geometric series, and

we obtain that Θ(`(α+α2+···)(1−α)) ≤ Θ(`(α/(1−α))(1−α)) = Θ(`α) insertions are
needed for an activation of a subwidget of type W`α .



8

An activation of a subwidget of type W`α involves the movement
of O((log log `)1+ε) subwidgets, which costs O((log log `)1+ε`α) time and
O((log log `)1+εd`α/Be) memory transfers. We charge this cost to the Θ(`α)
insertions that caused the activation. As a result, each insertion is charged at
most log logN times, once for each level. The amortized time for the activation
is therefore O((log log `)2+ε).

To compute the amortized number of memory transfers, there are three cases.
If `α ≥ B so ` ≥ B, we have O(d(log logN)2+ε/Be) amortized memory transfers.
If ` ≤ B so `α ≤ B, then the number of memory transfers is O(1). If `α < B
and ` > B, then at this particular level, there is an additional amortized cost of
(log log `)1+εd`α/Be/`α = (log log `)1+ε/`α = o(1).

Cascades are more frequent than activations, because several cascades occur
at a particular level between two activations, but a cascade can only be trig-
gered by an activation at the next lower level. Also, cascades are cheaper than
activations, because they only touch one subsubwidget per subwidget involved.
Therefore, the cost of a cascade within widget W` is O((log log `)1+ε`α

2

), which

can be amortized over the Ω(`α
2

) insertions that must take place to cause a sub-
subwidget to activate. The amortized number of memory transfers is bounded
as above. 2

The overall structure consists of widgets of several types, because one wid-
get is insufficient by itself to support a wide range of values of N . In the
ideal situation, the structure consists of some number of active widgets of type
W

(1/α)
dlog1/α Ne , followed by an equal number of empty widgets of that type, fol-

lowed by some number of active widgets of the next smaller type, followed by
an equal number of empty widgets of that type, etc. The number of widgets of
each type can be viewed roughly as a base-(1/α) representation of N . Whenever
all widgets of a particular type become active and another is needed, the en-
tire structure to the right of those widgets is moved to make room for an equal
number of empty widgets of that type.

A slight modification of our data structure supports deletions, by al-
lowing each widget W` to consist of between (1 − 1/(log log `)1+ε)`1−α and
(1 + 1/(log log `)1+ε)`1−α subwidgets of type W`α . We cannot use the global
rebuilding technique, in which we mark deleted nodes as ghost nodes and re-
build whenever the structure doubles in size, because many ghost nodes in a
region of elements decreases the density, causing small traversals within that
region to become expensive.

3 Cache-Oblivious Traversal with Self-Adjusting Scans

In this section we modify the data structure in the previous section so that, in
addition to achieving near-optimal worst-case traversal bounds, the structure
achieves optimal traversal bounds in an amortized setting. The idea is to allow
expensive traversals to adjust the data structure in order to improve the cost of
future traversals. Specifically, out-of-order subwidgets make traversal expensive,



9

and this jumbling is caused by insertions. Thus, we augment traversals to sort
the subwidgets traversed. The main difficulty is that there is little extra space
in any widget, and thus little room to re-order subwidgets.

We partition each widget W` into two parts: the “main” left part, which is
the initial set of subwidgets, and the “extra” right part, which is a Θ(1/ log log `)
fraction of the size. We never move the widgets in the main part, so the subwid-
gets within the main part remain sorted with respect to each other at all times.
The subwidgets in the extra part serve as little additions in between adjacent
subwidgets in the main part, but they are stored off to the right side.

We enforce the constraint that only a third (or any constant fraction ≤ 1/3)
of the extra part is actually occupied by subwidgets; the remaining two thirds
is (a small amount of) extra empty space that we use for memory management.

Consider a traversal in widget W`. The critical case is when ` is asymptot-
ically larger than B, but the size of a subwidget W`α is asymptotically smaller
than B, so each random access to a subwidget causes an additional not-totally-
used memory transfer.

We consider the traversal as having two working sets. On the one hand, it may
visit subwidgets in the main part of the widget. In this context, no additional
memory transfers are incurred, because the subwidgets in the main part are in
sorted order and thus are visited consecutively.

On the other hand, the traversal may visit subwidgets in the extra part of the
widget. Sometimes these subwidgets are stored in sorted order, and sometimes
they are out-of-order. We count the number r of consecutive runs of subwidgets
stored in order that the traversal visits. Each distinct run incurs O(1) extra
memory accesses. We ignore the cost of the first run, but charge the remaining
O(r − 1) memory accesses to the previous insertions that caused those runs to
split in the first place.

Now the traversal concatenates these r− 1 runs, so that future traversals do
not also charge to the same insertions. We proceed by sorting the r runs, i.e.,
extracting the runs and writing them in the correct order at the end of the extra
part of the widget, and we erase the original copies of the runs.

Ideally, there is enough unused space at the end of the extra part of the
widget to fit the new concatenated run. If there is not enough space, at least the
first two thirds of the extra part must be occupied (with holes), which means
that we have already concatenated several runs, an amount equal to a third of
the entire size of the extra part. We charge to this prior concatenation the cost
of recompactification: shifting items in the extra part to the left so as to fill all
holes and maintain the relative order of the items. Now only the first third of
the extra part is occupied, so there is room for the new run at the right end.

The total cost, therefore, is O(dk/Be) amortized memory transfers for
traversing k elements. Each insertion is only charged at most O(1) extra memory
transfers, so the cost of insertions does not change.

Theorem 3. There is a data structure achieving all bounds claimed in The-

orem 1, with the additional property that traversing k elements uses only

O(dk/Be) amortized memory transfers.



10

4 Constant Number of Physical Scans

We now impose the restriction that every operation uses only O(1) physical scans
of memory. In the cache-oblivious model, this restriction requires us to keep the
elements close to their sorted order. Thus, we base our data structure on the
ordered-file structures mentioned in Section 1.3. Specifically, our structure is
motivated by the “packed-memory structure” of [4]. Unfortunately, the packed-
memory structure performs Θ(logN) physical scans per update in the worst
case.

In this section, we show how to reduce the number of physical scans to O(1)
per operation in the worst case. Our structure does not use an implicit binary-
tree structure on top of the array as in [4, 17]. Instead, we always rebalance in
intervals to the right of the updated element. This algorithm requires a different
analysis because we can no longer charge costs to internal nodes in the binary
tree. Nonetheless, we show that the same performance bounds are achieved,
thereby proving the following theorem:

Theorem 4. There is a cache-oblivious data structure supporting traversals of k
elements in O(dk/Be) memory transfers and O(1) physical scans, and insertions
and deletions in O(d(log2 N)/Be) amortized memory transfers and O(1) physical
scans. Each update moves O(log2 N) amortized elements. More generally, a block

of k consecutive elements can be inserted or deleted in O(d(log2(N/k))/Be).

The algorithm works as follows. We consider rebalancing intervals in the
circular array, where the smallest interval has size logN and the intervals increase
as powers of two up to Θ(N). The density of an interval is the fraction of space
occupied by elements. Let h = logN − log logN be the number of different
interval sizes. Associated with each interval are two density thresholds which are
guidelines for the acceptable densities of the interval. (The density of an interval
may deviate beyond the thresholds, but as soon as the deviation is “discovered,”
the densities of the intervals are adjusted to be within the thresholds.)

The density thresholds are determined by the size of the interval. We denote
the upper and lower density thresholds of an interval of size (logN)2j by τj and
ρj , respectively. These thresholds satisfy ρh < ρh−1 < · · · < ρ1 < ρ0 < τ0 < τ1 <
. . . < τh. The values of the densities are determined according to an arithmetic
progression. Specifically, let τ0 = α < 1 and let τh = 1. Let δ = (τh − τ0)/h.
Then define density threshold τk to be τk = τ0 + k · δ. Similarly, let ρ0 = β < α
and ρh = γ < β. Let δ′ = (ρ0 − ρh)/h. Then define density threshold ρ to be
ρ = ρ− k · δ′.

The insertion and deletion algorithms work as follows. We begin with the
interval of size logN starting at the updated element. If the density of the interval
is outside its density thresholds, we grow the interval rightward to double its size.
Then we evenly space all of the elements within the interval.



11

5 Traversals in the DAM Model

The standard traversal structure on a DAM model can be applied recursively to
support a multilevel memory hierarchy:

Theorem 5. For any constant c > 1, there is a data structure on an `-level
memory hierarchy supporting traversals of k elements in O(dc`k/Bie) memory
transfers at level i, and insertions and deletions in O(c` + 1/(c − 1)`) memory
transfers.

An important consequence of this theorem is that this approach does not
apply when the memory hierarchy has ω(1) levels, because of the exponential
blowup in space and consequently the exponential decrease in density.

To support operations in O(1) physical scans, we modify the approach from
Section 4. We divide the data into blocks of size Θ(B), and store them in a
circular array of blocks. Within each block, the elements are unsorted, but there
is a total order among the blocks. Thus, the rank of each element in the circular
array is within O(B) of its actual rank. When we traverse k elements, the block
access pattern is sequential, even though the element access pattern is not. Thus
traversals use O(1) physical scans.

An insertion or deletion may cause the block to become too full or too empty,
that is, cause a split and/or merge. Splitting or merging blocks means that we
must insert or delete a block into the circular array. We maintain the order
among the Θ(N/B) blocks by employing the algorithm in Section 4. The same
bound as before applies, except that we now manipulate Θ(N/B) blocks of size
Θ(B) instead of N individual elements. Each insertion or deletion of a block
moves O(B log2(N/B)) elements for a cost of O(log2(N/B)) memory transfers;
but such a block operation only happens every Ω(B) updates. Thus, we obtain
the following theorem:

Theorem 6. There is a data structure supporting traversals of k elements

in O(dk/Be) memory transfers and O(1) physical scans, and insertions and

deletions in O(d(log2(N/B))/Be) amortized memory transfers and O(1) phys-
ical scans. Each update moves O(log2(N/B)) amortized elements. More gen-

erally, a block of k consecutive elements can be inserted or deleted in

O(d(k log2(N/max{B, k}))/Be).

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. CACM, 31(9):1116–1127, Sept. 1988.

2. L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In STOC, 2002.

3. M. A. Bender, R. Cole, E. D. Demaine, and M. Farach-Colton. Two simplified
algorithms for maintaining order in a list. In ESA, 2002.

4. M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious search trees.
In FOCS, 2000.



12

5. M. A. Bender, E. D. Demaine, and M. Farach-Colton. Efficient tree layout in a
multilevel memory hierarchy. In ESA, 2002.

6. M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. In SODA, 2002.

7. G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary
trees of small height (extended abstract). In SODA, 2002.

8. P. Dietz. Maintaining order in a linked list. In STOC, 1982.
9. P. Dietz, J. I. Seiferas, and J. Zhang. A tight lower bound for on-line monotonic
list labeling. In SWAT, 1994.

10. P. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In SWAT, 1990.
11. P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In

STOC, 1987.
12. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. Overcoming the memory

bottleneck in suffix tree construction. In FOCS, 1998.
13. W. R. Franklin. Padded lists: Set operations in expected O(log logN) time. IPL,

9(4):161–166, 1979.
14. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In FOCS, 1999.
15. J. Gray and G. Graefe. The five minute rule ten years later. SIGMOD Record,

26(4), 1997.
16. M. Hofri and A. G. Konheim. Padded lists revisited. SICOMP, 16:1073, 1987.
17. A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority

queues. In S. Even and O. Kariv, editors, ICALP, 1981.
18. R. Ladner, J. Fix, and A. LaMarca. Cache performance analysis of algorithms. In

SODA, 1999.
19. A. LaMarca and R. E. Ladner. The influence of caches on the performance of

sorting. Journal of Algorithms, 31:66–104, 1999.
20. R. Melville and D. Gries. Controlled density sorting. IPL, 10:169–172, 1980.
21. D. Patterson and K. Keeton. Hardware technology trends and database opportu-

nities. In SIGMOD, 1998. Keynote address.
22. H. Prokop. Cache-oblivious algorithms. Master’s thesis, MIT, 1999.
23. V. Raman. Locality preserving dictionaries: theory and application to clustering

in databases. In PODS, 1999.
24. S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms. In SODA,

2000.
25. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging

rules. CACM, 28(2):202–208, 1985.
26. D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32(3):652–686, July 1985.
27. A. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica,

21(1):101–112, May 1984.
28. J. S. Vitter. External memory algorithms. LNCS, 1461, 1998.
29. D. E. Willard. Maintaining dense sequential files in a dynamic environment. In

STOC, 1982.
30. D. E. Willard. Good worst-case algorithms for inserting and deleting records in

dense sequential files. In SIGMOD, 1986.
31. D. E. Willard. A density control algorithm for doing insertions and deletions in a

sequentially ordered file in good worst-case time. Information and Computation,
97(2):150–204, Apr. 1992.

32. J. Zhang. Density control and on-line labeling problems. Technical Report TR481,
University of Rochester, Computer Science Department, Dec. 1993.


