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Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

Zachary Abel∗ Erik D. Demaine†

Abstract

We prove that it is strongly NP-complete to decide
whether a given orthogonal polyhedron has a (nonover-
lapping) edge unfolding. The result holds even when
the polyhedron is topologically convex, i.e., is homeo-
morphic to a sphere, has faces that are homeomorphic
to disks, and where every two faces share at most one
edge.

1 Introduction

An edge unfolding of a polyhedron consists of cutting
the surface along a subset of its edges in such a way
that the surface can be unfolded into one planar piece
without overlap.1 Edge unfoldings have a long his-
tory, dating back to Albrecht Dürer in 1525; see [3].
The most famous open question is whether every con-
vex polyhedron has an edge unfolding, but nonconvex
polyhedra are even more interesting for practical man-
ufacturing applications. The theoretical study of such
unfoldings began at CCCG 1998 [2] and CCCG 1999 [1].
Biedl et al. [2] found some orthogonal polyhedra with
no edge unfoldings, but the examples had faces with
holes or two faces that shared two edges. Bern et al. [1]
found a triangulated polyhedron with no edge unfold-
ing that is homeomorphic to a sphere, implying that
the polyhedron is topologically convex—has the graph
(1-skeleton) of a convex polyhedron. In the journal ver-
sion of their CCCG 1999 paper [1], they asked for the
computational complexity of deciding whether a given
triangulated polyhedron has an edge unfolding.

In this paper, we settle the computational complex-
ity of the closely related problem of deciding whether a
topologically convex orthogonal polyhedron has an edge
unfolding. Specifically, we prove this Orthogonal Edge
Unfolding problem is strongly NP-complete.
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1We allow boundary edges to touch in unfoldings, requiring
only that the interior of the cut surface does not overlap itself.

2 Unique Coordinate Square Packing

The Square Packing problem asks, given n squares
s1, . . . , sn of side-lengths a1, . . . , an and a target dis-
tance d, whether there is some (non-overlapping) or-
thogonal packing of the squares si into a square of side-
length d. This is known to be strongly NP-complete [4].
We first show that we may impose a few simplifying
assumptions on the packings produced by this problem:

Definition 1 (Unique Coordinate Square Packing)
An instance of the Unique Coordinate Square Packing
(UCSP) promise problem has the form (d, (a1, . . . , an)),
where all values are positive integers and ai ≤ d− 2 for
each 1 ≤ i ≤ n. In a YES instance, there exists an or-
thogonal packing of n squares s1, . . . , sn of side-lengths
a1, . . . , an into the square D = [0, d] × [0, d] ⊂ R2

satisfying the following additional properties:
• all vertices of all squares in the packing have integer

coordinates,
• no two vertices of two different squares have the

same x- or y-coordinate, and
• no square in the packing touches the boundary of D.

In a NO instance, there does not exist any orthogonal
packing of the si into D.

Theorem 2 The Unique Coordinate Square Packing
problem is strongly NP-hard.

The simple but technical proof is omitted from this
extended abstract.

3 Overview

This section provides an overview of the detailed con-
structions to follow.

We first consider the problem of unfolding orthogonal
polyhedra with boundary in Section 4, proving hardness
by reduction from a UCSP instance (d, (a1, . . . , an)). We
construct a polyhedron B with boundary (Figure 3)
involving n squares bi with side-lengths ai (call these
“blocks”) surrounded by filler material. The polyhe-
dron is designed to force the blocks to unfold inside a
“cage” of shape d×d, such that an unfolding exists if and
only if there exists a square packing. (In the construc-
tion below, the blocks and cage are scaled up by a large
factor q.) As the unfolding must remain connected, we
use thin “wires” made from the filler material to “wind”
around the blocks and connect them to the boundary
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Figure 1: A depiction of an “atom,” the polyhedral sur-
face with 9× 9 square boundary that enables universal
wire unfolding as in Theorem 3. An atom is composed
of 125 unit-square faces.

of the cage. The un-needed filler material winds itself
out of the way. The univesally windable wires are de-
scribed and proved in Section 4.1, and the details of the
unfolding are presented in Sections 4.2, 4.3, and 4.4.

In Section 5 we reduce to orthogonal polyhedra with-
out boundary by extending B into a polyhedron C with
the property that C has an unfolding if and only if B
does. This is accomplished with two U-shaped polygons
(Figure 6) that must be separated from B to avoid over-
lap, which forces the extra material of C not to interfere
with the unfolding of B.

4 Polyhedron With Boundary

In this section we show that the edge unfolding problem
for an orthogonal polyhedron with boundary is NP-hard.

4.1 Atoms and Universal Wire Unfolding

As described in the overview, we require “winding
wires” that can unfold into an arbitrarily chosen or-
thogonal path. We construct those here.

Define an atom as the polyhedral surface with
boundary in Figure 1, whose boundary is a 9×9 square.
The width of an atom is called the atomic width ,
wA = 9. Atoms are named thus since they are the
basic “winding wire” unit, and also due to their tiny
size relative to many constructions to follow.

For a finite or infinite grid G of u×u squares in the xy-
plane and integers i, j, write G[i, j]u for the (i, j)th cell
in G, i.e., the u×u cell positioned at (ui, uj). Similarly,
if e is a directed line segment of length ` and u evenly di-
vides `, express e as the union of `/u directed segments
of length u and let e[i]u be the ith such segment.

Define a wire W of length k in G as a simple path
of connected squares in G: specifically, a collection of
distinct squares ci = ci(W ) (0 ≤ i ≤ k − 1) in G and

distinct, oriented edges ei = ei(W ) (0 ≤ i ≤ k) such
that ei is the common edge of cells ci−1 and ci for each
1 ≤ i ≤ k − 1, edge e0 (the starting edge) is an edge
of the starting cell c0, and ek (the ending edge) is
an edge of the ending cell ck−1. Edge ei is oriented
to trace the boundary of ci−1 clockwise, or equivalently,
to trace the boundary of ci counterclockwise. (Use the
former condition for ek and the latter for e0.) It is con-
venient to discuss the medial path of a wire that con-
nects the centers of e0, c0, e1, . . . , ck−1, ek sequentially.
The wire turns right, straight, or left at square ci

if the medial path turns right, straight, or left there.
If W is a wire of wA×wA squares in the x, y-plane, we

can form the associated wire of atoms A(W ), a poly-
hedral surface with boundary, by replacing each square
ci with an atom ai pointing in the positive z-direction
such that atoms ai−1 and ai are connected along the
edge corresponding to ei. Each unit-length edge ei[s]1
(for 0 ≤ s ≤ wA − 1 = 8) corresponds to an edge of one
or two unit-square faces on A(W ).

Define a flatom2 as a wF×wF square where wF = 27
is the flatomic width . We will now show that wires
of atoms can be universally unfolded in the following
sense: roughly, any wire of k atoms can be unfolded
inside any desired wire of k flatoms, while ensuring that
the middle of each atom edge unfolds to the center of
the corresponding flatom edge (or one unit away from
center).

Theorem 3 Let W and W ′ be any two wires of length
k with side-lengths wA and wF respectively. Then for
each t ∈ {12, 13, 14} there is an edge unfolding of
the wire of atoms A(W ) that lies inside W ′ such that
e0(W )[4]1 (the middle unit edge of e0(W )) unfolds to
e0(W ′)[t]1 (i.e., the middle edge of e0(W ′) or one unit
away) and ek(W )[4]1 unfolds to ek(W ′)[u]1 for some
u ∈ {12, 13, 14}. Furthermore, this unfolding can be
accomplished so that t and u have the same (resp., dif-
ferent) parity when W and W ′ together have an even
(resp., odd) total number of left and right turns.

Proof. By induction on k, it suffices to prove only
the case k = 1. There are thus 27 cases: W turns
right, straight or left; W ′ turns right, straight, or left;
and e0(W )[4]1 unfolds to e1(W ′)[12]1, e1(W ′)[13]1, or
e1(W ′)[14]1. We label these unfoldings of an atom by a
quadruple [X, Y, t, u], where X, Y ∈ {L,S,R}3 indicate
the directions of the turns of wires W and W ′ respec-
tively, and t and u are as above. We must show that
each of the 27 tuples (X, Y, t) appears in some unfold-
ing [X, Y, t, u] with the required parity constraints on t
and u. Up to mirror-reflection and direction reversal,
only ten unfoldings are required4. Three of these are

2short for “flat atom”
3These are abbreviations for Left, Straight, and Right turns.
4For example, these ten suffice: [L, L, 13, 13], [L, L, 14, 12],
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(a) [L, L, 13, 13]. (b) [L, S, 14, 13]. (c) [R, L, 13, 13].

Figure 2: Three of the ten required unfoldings of an atom inside a flatom. Each unfolding is labeled with [X, Y, t, u]
as described in the proof of Theorem 3. Solid black lines indicate cuts, dotted lines are valley folds, and dashed lines
are mountain folds. Gray lines are uncreased edges.

illustrated in Figure 2, with the remaining seven to be
included in the full version. �

4.2 The Construction

Here we specify the polyhedron with boundary used in
the reduction. The remainder of Section 4 is devoted to
proving its correctness.

It will be useful to package atoms into a molecule :
a 2 × 2 grid of atoms whose boundary is a wM × wM

square, where wM = 2wA = 18. Much of the reduction
below uses a molecule as a basic unit of construction.

Begin with a Unique Coordinate Square Packing in-
stance (d, (a1, . . . , an)). Define q = 25 · 34 · nd (a large
scale factor), and let qM = q/wM be the number of
molecules that fit across a distance q. Also set t =
(n+1+a1+· · ·+an)qM , and p = 500(4dqM t+t2)+3wA;
these choices will be explained shortly. Define the poly-
hedron with boundary B(d, (a1, . . . , an)) as the sur-
face shown in Figure 3, to be described in more detail
presently. The diagram is oriented so that the positive
x and y directions are right and up respectively, and z
is out of the page.

The face Ffloor in Figure 3a is a single polygon formed
by creating a wF × p hole, Hdrain, and a dq × dq hole,
Hcage, in a large square of size ` = p + dq + wA. The
two faces F 1

pipe and F 2
pipe, of widths 2wA and wA respec-

tively, exactly fill Hdrain. Five (not flat!) polyhedral
surfaces Tbottom, Tleft, Tmid, Tright, Ttop, shown in detail
in Figure 3b, form the sides of the tower , T , which
connects along the boundary of Hcage. The polyhedral
surface Tbottom, whose boundary is a dq×twM rectangle,
is a dqM×t grid of molecules facing away from the tower

[L, S, 12, 13], [L, S, 14, 13], [S, L, 14, 13], [S, L, 12, 13], [S, S, 13, 13],
[S, S, 12, 12], [R, L, 13, 13], [R, L, 14, 12].

except for the n square faces b1, . . . , bn—called bricks—
of side-lengths qa1, . . . , qan, where brick bi is positioned
at (q, (i + a1 + · · ·+ ai−1)q) relative to the bottom-left
corner of Tbottom. (For Tbottom, “right” and “up” refer
to the positive x and z directions, respectively, as in
Figure 3b.) The parameter t was chosen so that these
bricks exactly fit with q separation from each other and
from the bottom and top edges. Recall that ai ≤ d− 2
for each i, so there is at least q separation between each
brick and the right edge of Tbottom. The other four sides
of T , which have dimensions dq × twM or dq × dq, are
completely tiled with outward-facing molecules.

A single molecule has surface area 500, so the to-
tal surface area of T is strictly less than what the sur-
face area would be if each brick were also tiled with
molecules, namely 500(4dqM t+ t2) < p−3wA. Further-
more, the height of a molecule (out of the plane of its
boundary) is 7, so the projection of T onto the plane
containing Ffloor extends beyond Hcage by only seven
units. In particular, this projection lies strictly in the
interior of the bounding box of Ffloor, and is at least
p− 7 > wA units away from the top edge of Ffloor.

We will show in the next two subsections that
B(d, (a1, . . . , an)) has an edge unfolding if and only if
(d, (a1, . . . , an)) is a YES instance of UCSP. One direc-
tion is straightforward:

Lemma 4 If (d, (a1, . . . , an)) is a UCSP instance
and B(d, (a1, . . . , an)) has an edge unfolding, then
(d, (a1, . . . , an)) is a YES instance.

Proof. Fix some unfolding of B = B(d, (a1, . . . , an)).
Let F 1∗

pipe be the bottom height-1 subrectangle of F 1
pipe,

and similarly for F 2∗
pipe, and consider the polyhedral sur-

face B∗ obtained by replacing F 1
pipe and F 2

pipe with F 1∗
pipe

and F 2∗
pipe. The unfolding of B induces an unfolding of
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(a) The global structure of surface B. Faces Ffloor, F 1
pipe, and

F 2
pipe are each a single polygon, but tower T is mostly covered

with molecules as detailed in part (b). For ease of viewing, the
image here is not drawn to scale: the width of the two pipes is
significantly smaller than the width of the tower T , for example.

b1

b2

bn Tmiddle

TrightTleft

Tbottom

Ttop

f0

q

q

q

qa1

qa2

qan

(b) A detail of the tower, T . Each surface of T is entirely tiled
with molecules except for Tbottom, which has bricks b1, . . . , bn—
each a single square face—arranged as shown.

Figure 3: Detailed depiction of polyhedral surface B.

B∗. In this unfolding of B∗, all of T ∪ {F 1∗
pipe, F

2∗
pipe}

unfolds into Hcage ∪Hdrain: indeed, p was chosen to en-
sure that the surface area of T ∪{F 1∗

pipe, F
2∗
pipe} is strictly

less than p, so there is not enough material to reach
the top of Hdrain. It follows that each brick bi unfolds
into Hcage ∪ Hdrain, and since Hdrain is too narrow for
the bricks, each bi unfolds into Hcage. So there exists
a packing of the bi (with side-lengths ai · q) into Hcage

(with side-length d · q), which proves the Lemma. �

4.3 Wiring the Tower

Think of Tbottom as a grid of molecules, with origin (0, 0)
at its lower left corner. In this section we demonstrate
how to connect each brick to the bottom-left corner of
the tower by a chain of molecules. For convenience, we

ensure all such chains have the same length, L.
Brick bi is positioned at (q, yiq) where

yi = i + a1 + · · · + ai−1. Let fi (1 ≤ i ≤ n) be
the lower edge of bi, oriented left-to-right, and let f0

be the lower edge of Tbottom, also oriented left-to-right.
For 1 ≤ i ≤ n define ui = Tbottom[6i, 0]wM

; these are
lined along the left of f0 in Tbottom, spaced 6 molecules
apart. Also let vi = Tbottom[q, yi−1]wM

be the molecule
just under the lower left corner of bi in Tbottom.

Lemma 5 For any permutation σ of {1, . . . , n}, there
exist n non-overlapping wires W1, . . . ,Wn of molecules
in Tbottom such that each wire Wi has length exactly L =
4ndqM and connects c0(Wi) = ui to cL(Wi) = vσi, with
starting and ending edges along f0 and fσ(i) respectively.
Furthermore, no wire touches the two leftmost columns
of molecules on Tbottom, and finally, the complement of
the bricks bi and wires Wi in Tbottom forms a single
edge-connected polyomino of molecules.

b1

b2

b3

b4

(a) In the first
step, overlap-
ping wires are
drawn from ui

to vσ(i) with
just one right
turn.

b1

b2

b3

b4

(b) Wires are
modified with
detours around
bricks to avoid
intersections.

b1

(c) Finally, each wire Wi is
modified with zig-zags in the
empty aσ(i)qM/2 × qM/2 grid
next to brick bσ(i) in order to
bring its length up to exactly
L = 4ndqM .

Figure 4: The three steps in the construction of molecule
wires Wi of Lemma 5. The figures correspond to σ(1) =
3, σ(2) = 1, σ(3) = 2, and σ(4) = 4.

Proof. Provisionally define each Wi as the wire that
goes straight up from ui and turns right to vσ(i), as
in Figure 4a. As defined, these wires may intersect:
the horizontal segment of Wi hits the vertical segment
of Wj when i < j but σ(i) > σ(j). To fix these,
for each i, take all wires Wj that hit the horizontal
part of Wi and insert a detour around brick bi as il-
lustrated in Figure 4b, keeping a 1-molecule gap be-
tween two detouring wires, and between these wires and
bi. Because qM > 4n, there is ample room for the de-
tours. Before the detours, each wire had length less than
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t+qM = (n + 2 + a1 + · · ·+ an) qM ≤ 2ndqM , and each
of fewer than n detours adds at most 2dqM molecules,
so the total length of each Wi is less than 4ndqM . Fur-
thermore, by the parity of the positions of ui and vσ(i),
Wi has even length.

We now bring the length of each Wi up to exactly L =
4ndqM . The aiqM× qM

2 grid of molecules to the left of bi

is empty, its bottom edge is adjacent to wire Wi, and the
top and left edges are not adjacent to any wires. This
grid has even width qM/2, and by zig-zagging up and
down in this region as shown in Figure 4c, we can add
any even number of molecules up to aiq

2
M/2 > L. This

indeed allows each wire to reach its destination with
total length exactly L. Finally, the left two columns
of molecules were not touched by the wires, and the
1-molecule gaps inserted above ensure that the comple-
ment of the bricks and wires remains connected. �

Now think of T (partially unfolded as in Figure 3b)
as a grid of atoms, not molecules. Edges f0, f1, . . . , fn

are as defined above, and let g be the bottom edge of
F 1

pipe ∪ F 2
pipe of length 3wA, oriented left to right.

Lemma 6 It is possible to write T as an interior-
disjoint union of the following pieces:
• bricks b1, . . . , bn,
• wires X1, . . . , Xn of atoms where each Xi has length

exactly 4L and connects the bottom-right corner of
molecule ui (with starting edge along f0) to the
top-right corner of molecule vσ(i) (with ending edge
along fσ(i)), and

• a wire X0 connecting (Tbottom[1, 0]wA
, f0[1]wA

) to
edge g[1]wA

along with its adjacent atom on Ttop.

Proof. Let wires of molecules Wi be as in Lemma 5.
Wire Xi is obtained from Wi by starting at the
bottom-right atom in molecule ui and ensuring that
c4k(Xi), . . . , c4k+3(Xi) are the four atoms in molecule
ck(Wi) for each 0 ≤ k ≤ L − 1. This can be done
uniquely, and by parity, this wire Xi will terminate at
the top-right atom of molecule vσ(i).

It remains to construct X0. Let W0 be the wire of
molecules in T that starts at Tbottom[0, 0]wM

and traces
the left edge of Tbottom, the bottom, left, and top edges
of Tleft, and the left edge of Ttop up to its top-left
corner. Let X ′

0 be the length-four wire of atoms that
traces c0(W0) as in Figure 5, and define X ′′

0 as the
wire of atoms that follows the rest of W0 as in the
Figure. Let G be the region of T outside of the bricks
b1, . . . , bn and wires X1, . . . , Xn, X ′

0, X
′′
0 ; by Lemma 5,

G forms a connected polyomino of molecules. Lemma 5
guarantees that molecules G[1, 0]wM

and G[1, 1]wM
are

in G, so pick any spanning tree S of the molecules in
G in which these two molecules are connected. The
desired wire of atoms X0 is obtained by traversing X ′

0,
walking all the way around S to the starting edge of
X ′′

0 , and then following X ′′
0 . �

wM

wA

X
′

0

X′′

0

Figure 5: A closeup of the bottom-left corner of Tbottom

illustrating how to write G as a wire of atoms as in the
proof of Lemma 6. This wire, X0, is formed by travers-
ing the four atoms of wire X ′

0, then walking around the
spanning tree S, and finally following atom-wire X ′′

0 .

4.4 Unfolding Surface B

We are now able to prove the converse of Lemma 5:

Lemma 7 If (d, (a1, . . . , an)) is a YES instance of
UCSP, then B(d, (a1, . . . , an)) has an edge unfolding.

Proof. Think of Hcage as a dqF × dqF grid of flatoms,
where qF = q/wF , with origin in the lower-left corner.
Let f0 and fi (1 ≤ i ≤ n) be the bottom edges of Hcage

and brick bi respectively, as above. Pick a packing of
squares with side-lengths a1, . . . , an into [0, d]2 with all
the guarantees of the YES-promise of UCSP, and say
the ith square is positioned at (xi, yi). Scale this up
to a packing of bricks bi into Hcage, with bi positioned
at (xiqF wF , yiqF wF ). Since the bricks bi do not meet
each other or the edges of Hcage, there is at least a
qF -flatom separation between them. For 1 ≤ i ≤ n,
define the flatoms hi = Hcage[4i, 0]wF

(along f0) and
ki = Hcage[xiqF , yiqF − 1]wF

(just under edge fi).
Since the coordinates y1, . . . , yn are all different, let

σ be the permutation so that yσ(1) > yσ(2) > · · · >
yσ(n). It is possible to construct non-overlapping wires
Z1, . . . , Zn of flatoms in Hcage \

⋃n
i=1 bi where wire Zi

connects flatom hi with its bottom edge to flatom kσ(i)

with its top edge, and each wire has length exactly L.
This can be accomplished with a method very similar
to the proof of Lemma 5, so we omit these details.

Now we can describe the unfolding of B =
B(d, (a1, . . . , an)). Using permutation σ defined here,
apply Lemma 6 to B to obtain n + 1 wires of atoms
X0, X1, . . . , Xn. Each brick bi will unfold to its position
(xiq, yiq) in the UCSP unfolding above. For each 1 ≤
i ≤ n, wires Xi and Zi were designed so that their ini-
tial edges are centered on the same unit-length segment
along f0: e0(Xi)[4]1 = f0[108i+13]1 = e0(Zi)[13]1, and
similarly their final edges are centered in the same place
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on fσ(i): e4L(Xi)[4]1 = fσ(i)[13]1 = e4L(Zi)[13]1. Fur-
thermore, wires Xi and Zi have the same length, 4L,
and each has an even number of left and right turns be-
cause their initial and final edges are parallel. It is thus
possible, by Lemma 3, to unfold wire Xi into the region
of Hcage described by Zi while keeping Xi connected
to both Ffloor and bσ(i) along edges f0[108i + 13]1 and
fσ(i)[13]1 respectively.

It remains to describe the unfolding of X0, F 1
pipe and

F 2
pipe. In Hcage, the wires Z1, . . . , Zn do not intersect

leftmost column of modules, so define Z0 as the wire of
flatoms in Hcage ∪ Hdrain that starts at Hcage[0, 0]wF

with its bottom edge and proceeds straight up into
Hdrain with a total length equal to the length of X0.
By Lemma 3, we may unfold X0 into Z0 while keeping
the center of its initial edge connected to Ffloor at f0[13]1
and the center of its final edge connected to F 1

pipe∪F 2
pipe

along g[13]1. In the unfolding, therefore, F 1
pipe ∪ F 2

pipe

simply slides up relative to Ffloor and partially juts out
of the top of Hdrain. �

5 Eliminating the Boundary

With the construction from the previous section, we are
ready for the main result:

Theorem 8 The Orthogonal Edge Unfolding problem
is strongly NP-complete.

Proof. This problem is in NP because any unfolding
has integer coordinates and can thus be checked to be
non-overlapping in polynomial time.

For hardness, we reduce from UCSP. For an instance
(d, (a1, . . . , an)) of UCSP, define B = B(d, (a1, . . . , an))
as above, whose boundary is a square of side-length
`. Define the closed, orthogonal polyhedron C =
C(d, (a1, . . . , an)) as specified in Figures 6a and 6b. The
tower T (and the molecules on the tower) do not inter-
sect the other faces of C, so this is a simple polyhedron.
We will show C has an edge unfolding if and only if
(d, (a1, . . . , an)) is a YES instance.

If (d, (a1, . . . , an)) is a YES instance, then by
Lemma 7, there is an unfolding of B that fits inside the
bounding box of Ffloor except for F 1

pipe ∪ F 2
pipe which

sticks above the top edge. Then Figure 6b shows that
this unfolding extends to an unfolding of all of C.

On the other hand, suppose C has an edge unfolding.
Let t1 be the edge shared by F 1

pipe and U1, and similarly
for t2. The shapes of U1 and U2 were chosen to force
these two edges to be cut in the unfolding of C: indeed,
if t1 were not cut, then F 1

pipe and U1 would overlap in the
plane; the argument for t2 is the same. It follows that
the unfolding of C induces a connected unfolding of B,
so by Lemma 4, (d, (a1, . . . , an)) is a YES instance. �

(a) The faces U1 and U2 must be cut away from B in any unfolding
of C in order to avoid overlapping Ffloor, F 1

pipe, or F 2
pipe.

ℓ

2wA

ℓ− 3wA

ℓ

U1
U2

(b) A partial unfolding of C showing that any unfolding of B
extends to an unfolding of C.

Figure 6: The polyhedron C = C(d, (a1, . . . , an)) with-
out boundary.
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Geometry, Montréal, Canada, August 1998.

[3] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, July 2007.

[4] J. Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young,
and F. Y. L. Chin. Packing squares into a square. Journal
of Parallel and Distributed Computing, 10(3):271–275,
1990.


