
A Simplified and Dynamic Unified Structure

Mihai Bădoiu and Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory,
200 Technology Square, Cambridge, MA 02139, USA, {mihai,edemaine}@mit.edu

Abstract. The unified property specifies that a comparison-based search
structure can quickly find an element nearby a recently accessed element.
Iacono [Iac01] introduced this property and developed a static search
structure that achieves the bound. We present a dynamic search struc-
ture that achieves the unified property and that is simpler than Iacono’s
structure. Among all comparison-based dynamic search structures, our
structure has the best proved bound on running time.

1 Introduction

The classic splay conjecture says that the amortized performance of splay trees
[ST85] is within a constant factor of the optimal dynamic binary search tree for
any given request sequence. This conjecture has motivated the study of sublog-
arithmic time bounds that capture the performance of splay trees and other
comparison-based data structures. For example, it is known that the perfor-
mance of splay trees satisfies the following two upper bounds. The working-
set bound [ST85] says roughly that recently accessed elements are cheap to
access again. The dynamic-finger bound [CMSS00,Col00] says roughly that it
is cheap to access an element that is nearby the previously accessed element.
These bounds are incomparable: one does not imply the other. For example,
the access sequence 1, n, 1, n, 1, n, . . . has a small working-set bound (constant
amortized time per access) because each accessed element was accessed just
two time units ago. In contrast, for this sequence the dynamic-finger bound
is large (logarithmic time per access) because each accessed element has rank
distance n − 1 from the previously accessed element. On the other hand, the
access sequence 1, 2, . . . , n, 1, 2, . . . , n, . . . has a small dynamic-finger bound be-
cause most accessed elements have rank distance 1 to the previously accessed
element, whereas it has a large working-set bound because each accessed element
was accessed n time units ago.

In SODA 2001, Iacono [Iac01] proposed a unified bound (defined below) that
is strictly stronger than all other proved bounds about comparison-based struc-
tures. Roughly, the unified bound says that it is cheap to access an element
that is nearby a recently accessed element. For example, the access sequence
1, n2 +1, 2, n2 +2, 3, n2 +3, . . . has a small unified bound because most accessed el-
ements have rank distance 1 to the element accessed two time units ago, whereas
it has large working-set and dynamic-finger bounds. It remains open whether

splay trees satisfy the unified bound. However, Iacono [Iac01] developed the uni-
fied structure which attains the unified bound. Among all comparison-based data
structures, this structure has the best proved bound on running time.

The only shortcomings of the unified data structure are that it is static (keys
cannot be inserted or deleted), and that both the algorithms and the analysis are
complicated. We improve on all of these shortcomings with a simple dynamic
unified structure. Among all comparison-based dynamic data structures, our
structure has the best proved bound on running time.

2 Unified Property

Our goal is to maintain a dynamic set of elements from a totally ordered universe
in the (unit-cost) comparison model on a pointer machine. Consider a sequence
of m operations—insertions, deletions, and searches—where the ith operation
involves element xi. Let Si denote the set of elements in the structure just
before operation i (at time i). Define the working-set number ti(z) of an element
z at time i to be the number of distinct elements accessed since the last access
to z and prior to time i, including z. Define the rank distance di(x, y) between
elements x and y at time i to be the number of distinct elements in Si that fall
between x and y in rank order. A data structure has the unified property if the
amortized cost of operation i is O(lgminy∈Si

[ti(y) + di(xi, y) + 2]), the unified
bound. Intuitively, the unified bound for accessing an element xi is small if any
element y is nearby x in both time and space.

3 New Unified Structure

In this section, we develop our dynamic unified structure which establishes the
following theorem:

Theorem 1. There is a dynamic data structure in the comparison model on a
pointer machine that supports insertions and searches within the unified bound
and supports deletions within the unified bound plus O(lg lg |Si|) time (amor-
tized).

An interesting open problem is to attain the unified bound for all three
operations simultaneously.

3.1 Data Structure

The bulk of our unified structure consists of Θ(lg lg |Si|) balanced search trees
and linked lists whose sizes increase doubly exponentially; see Fig. 1. Each tree

Tk, k ≥ 0, stores between 22
k

and 22
k+1

− 1 elements, ordered by their rank,
except that the last tree may have fewer elements. We can store each tree Tk
using any balanced search tree structure supporting insertions, deletions, and
searches in O(lg |Tk|) time, e.g., B-trees [BM72]. List Lk stores exactly the same

sorted
by
rank

sorted
by
time

T1

T2

T`−1

L0 L1 L2 L`−1 L`

T`

T0

Θ(22
1
) Θ(22

2
) Θ(22

`−1
) O(22

`
)Θ(22

0
)

finger
search
tree

all O(22
`
)

Fig. 1. Overview of our dynamic unified structure. In addition to a single finger search
tree storing all elements in the dynamic set Si, there are `+ 1 = Θ(lg lg |Si|) balanced
search trees and lists whose sizes grow doubly exponentially. (As drawn, the heights
accurately double from left to right.)

elements stored in Tk, but ordered by the time of access. We store pointers
between corresponding nodes in Tk and Lk.

Each element xmay be stored by several nodes in various trees Tk, or possibly
none at all, but x appears at most once in each tree Tk. Each tree node storing
element x represents an access to x at a particular time. At most one tree node
represents each access to x, and some accesses to x have no corresponding tree
node. We maintain the invariant that the access times of nodes in tree Tk are all
more recent than access times of nodes in tree Tk+1. Thus, the concatenation of
corresponding nodes in lists L0, L1, L2, . . . is also ordered by access time.

Our unified structure also stores a single finger search tree containing all
n elements. We can use any finger search tree structure supporting insertions,
deletions, and searches within rank distance r of a previously located element in
O(lg(r+2)) amortized time, e.g., level-linked B-trees [BT80]. Each node in tree
Tk stores a pointer to the unique node in this finger search tree corresponding
to the stored element.1

1 In fact, because nodes in the finger search tree may move (e.g., from a B-tree split),
each node in tree Tk stores a pointer to an indirect node, and each indirect node
is connected by pointers to the corresponding node in the finger search tree. The

3.2 Search

Up to constant factors, the unified property requires us to find an element x = xi
in O(2k) time if it is within rank distance 22

k

of an element y with working-set

number ti(y) ≤ 22
k

. We maintain the invariant that all such elements x are

within rank distance 3 · 22
k

of some element y′ in T0 ∪ T1 ∪ · · · ∪ Tk. (This
invariant is proved below in Lemma 1.)

At a high level, then, our search algorithm will investigate the elements in
T0, T1, . . . , Tk and, for each such element, search among the elements within

rank distance 3 ·22
k

for the query element x. The algorithm cannot perform this
procedure exactly, because it does not know k. Thus we perform the procedure
for each k = 0, 1, 2, . . . until success. To avoid repeated searching around the
elements in Tj , j ≤ k, we maintain the two elements so far encountered among
these Tj ’s that are closest to the target x, and just search around those two
elements. If any of the searches from any of the elements would be successful,
one of these two searches will be successful.

More precisely, our algorithm to search for an element x proceeds as shown
in Algorithm 1. The variables L and U store pointers to elements in the finger
search tree such that L ≤ x ≤ U . These variables represent the tightest known
bounds on x among elements that we have located in the finger search tree as
predecessors and successors of x in T0, T1, . . . , Tk. In each round, we search for
x in the next tree Tk, and update L and/or U if we find elements closer to x.

Then we search for x in the finger search tree within rank distance 3 · 22
k

of L
and U .

Thus, if x is within rank distance 3 · 22
k

of an element in T0 ∪ T1 ∪ · · · ∪ Tk,
then the search algorithm will complete in round k. The total running time of k
rounds is

∑k
i=0O(lg |Ti|) = O(2

k). Thus, the search algorithm attains the unified
bound, provided we have the invariant in Lemma 1 below.

When the search algorithm finds x, it records this most recent access by
inserting a node storing x into the smallest tree T0. This insertion may cause T0
to grow too large, triggering the overflow algorithm described next.

3.3 Overflow

It remains to describe what we do when a tree Tk becomes too full; see Algo-

rithm 2. The main idea is to promote all but the most recent 22
k

elements from
Tk to Tk+1, by repeated insertion into Tk+1 and deletion from Tk. In addition,

we discard elements that would be promoted but are within 22
k+1

of other pro-
moted elements. Such discards are necessary to prevent excessive overflows in the
future. The intuition of why discards do not substantially slow future searches is

that, for the purposes of searching for an element x within rank distance 22
k+1

of elements in Tk+1, it is redundant up to a factor of 2 to have more than one

former pointers never change, and the latter pointers can be easily maintained when
nodes move in the finger search tree.

Algorithm 1. Searching for an element x.

• Initialize L← −∞ and U ←∞.
• For k = 0, 1, 2, . . . :a

1. Search for x in Tk to obtain two el-
ements Lk and Uk in Tk such that
Lk ≤ x ≤ Uk.

2. Update L ← max{L,Lk} and U ←
min{U,Uk}.

3. Finger search for x within the rank

ranges [L,L+3·22k

] and [U−3·22k

, U].
4. If we find x in the finger search tree:

(a) Insert x into tree T0 and at the
front of list L0, unless x is already
in T0.

(b) If T0 is too full (storing 221

ele-
ments), overflow T0 as described
in Algorithm 2.

(c) Return a pointer to x in the finger
search tree.

a If we reach a k for which Tk does not
exist, then k = Θ(lg lgn) and we can
afford to search in the global finger tree.

Algorithm 2. Overflowing a tree Tk.

1. Remove the 22k

most recently accessed
elements from list Lk and tree Tk.

2. Build a balanced search tree T ′

k and a

list L′

k on these 22k

elements.
3. For each remaining element z in Tk, in

rank order, if the predecessor of z in Tk

(among the elements not yet deleted)

is within rank distance 22k+1

of z, then
delete z from Tk and Lk.

4. For each remaining element z in Lk, in
access-time order:
(a) Search for z in Tk+1.
(b) If found, remove z from Lk+1.
(c) Otherwise, insert z into Tk+1.

5. Concatenate Lk and Lk+1 to form a
new list Lk+1.

6. Replace Lk ← L′

k; Tk ← T ′

k.
7. If Tk+1 is now too full (stores at least

22k+2

elements), recursively overflow
Tk+1.

element in Tk+1 within a rank range of 22
k+1

. This intuition is formalized by the
following lemma:

Lemma 1. All elements within rank distance 22
k

of an element y with working-

set number ti(y) ≤ 22
k

are within rank distance 3 · 22
k

of some element y′ in
T0 ∪ T1 ∪ · · · ∪ Tk.

Proof. We track the evolution of y or a nearby element from when it was last
accessed and inserted into T0, to when it moved to T1, T2, and so on, until
access i. If the tracked element y′ is ever discarded from some tree Tj , we continue

by tracking the promoted element within rank distance 22
j+1

of y′. The tracked
element y′ makes monotone progress through T0, T1, T2, . . . because, even if y′

is accessed and inserted into T0, the tracked node storing y′ is not deleted.
The tracked node also cannot expire from Tk (and get promoted or discarded),

because at most 22
k

distinct elements have been accessed in the time window
under consideration, so y′ must be among the first 22

k

elements in the list Lk
when it reaches Lk. Therefore, y

′ remains within rank distance 22
k

+ 22
k−1

+
· · · + 22

1

+ 22
0

of y, so we obtain the stronger bound that all elements within

rank distance 22
k

of y are within rank distance 2 · 22
k

+ 22
k−1

+ · · ·+ 22
1

+ 22
0

of an element y′ in T0 ∪ T1 ∪ · · · ∪ Tk.

3.4 Overflow Analysis

To analyze the amortized cost of the overflow algorithm, we consider the cost of
overflowing Tk into Tk+1 for each k separately. To be sure that we do not charge
to the same target for multiple k, we introduce the notion of a coin ck which can
be used to pay for one node to overflow from Tk to Tk+1 as well as for the node
to later be discarded from Tk+1. A coin ck cannot pay for overflows or discards
at different levels. We assign coin ck an intrinsic value of Θ(2k) time units, but
twice what is required to pay for a node to overflow and be discarded, so that
whenever paying with a coin ck we are also left with a fractional coin 1

2ck.

For each k, we consider the time interval after the previous overflow from Tk
into Tk+1 up to the next overflow from Tk into Tk+1. At the beginning of this

time interval, we have just completed an overflow involving Θ(22
k+1

) elements
each with a ck coin. From the use of these coins we obtain fractional coins of
half the value, which we can combine to give two whole ck coins to every node of

T0, T1, . . . , Tk, because there are only
∑k
j=0 2

2j

= O(22
k

) = o(22
k+1

) such nodes.

Consider a search for an element x during the time interval between the
previous overflow and the next overflow of Tk. Suppose x was found at round
` of the search algorithm. The cost of searching for x is O(2`) time. We can
therefore afford to give x two cm coins for each m ≤ `. We also award x with
fractional coins (6/22

m

)cm for each m > `, which have total worth o(1). We

know that x was within rank distance 3 ·22
`

of an element y in T0∪T1∪ · · ·∪T`.
If ` < k, we assign y as the parent of x. (This assignment may later change if we
search for x again.)

Now consider each element x that gets promoted from Tk to Tk+1 when Tk
next overflows. If x has not been searched for since the previous overflow of Tk,
then it was in T0 ∪ T1 ∪ · · · ∪ Tk right after the previous overview, so x has two
coins ck. If the last search for x terminated in round ` with ` ≥ k, then x also
has two coins ck. In either of these cases, x uses one of its own ck coins to pay
for the cost of its overflow (and wastes the other ck coin).

If x is within rank distance 22
k+1

of a such an element y in T0 ∪ T1 ∪ · · · ∪ Tk
with two ck coins, then y must not be promoted during this overflow. For if
y expires from Tk during this overflow, then at most one of x and y can be
promoted (whichever is larger), and we assumed it is x. Thus, x can steal one of
y’s ck coins and use it for promotion. Furthermore, y can have a ck coin stolen
at most twice, once by an element z < y and once by an element z > y, so we
cannot over-steal. If y remains in T0∪T1∪· · ·∪Tk, its ck coins will be replenished
after this overflow, so we also need not worry about y.

If x has no nearby element y with two ck coins, we consider the chain con-
necting x to x’s parent to x’s grandparent, etc. Because every element without
a ck coin has a parent, and because we already considered the case in which an

element with a ck coin is within rank distance 22
k+1

of x, the chain must extend

so far as to reach an element with rank distance more than 22
k+1

from x. Because
every edge in the chain connects elements within rank distance 3 · 22

k

, the chain

must consist of at least 22
k+1

/(3 · 22
k

) = 22
k

/3 elements within rank distance

22
k+1

of x. Because each of these elements has a parent, they must have been
searched for since the last overflow of Tk, and were therefore assigned fractional

coins of (6/22
k

)ck. As before, none of these elements could be promoted from
Tk during this overflow because they are too close to the promoted element x.

Thus, x can steal a fractional coin of (3/22
k

)ck from each of these 22
k

/3 ele-

ments’ fractional (6/22
k

)ck coins. Again, this stealing can happen at most twice

for each fractional (6/22
k

)ck coin, so we do not over-steal.
Therefore, a promoted element x from the overflow of Tk can find a full coin

ck to pay for its promotion. The O(2k) cost of discarding an element x from Tk
can be charged to the coin ck−1 that brought x there, or if k = 0, to the search
that brought x there. This concludes the amortized analysis of overflow.

3.5 Insert

To insert an element x, we first call a slight variation of the search algorithm
from Section 3.2 to find where x fits in the finger search tree. Specifically, we
modify Step 4 to realize when the search has gone beyond x, at which point
we can find the predecessor and successor of x in the finger search tree. Then,
as part of Step 4, we insert x at that position in the finger search tree in O(1)
amortized time. We execute Steps 4(a–c) as before, inserting x into tree T0 and
list L0.

Because this algorithm is almost identical to the search algorithm, we can use
essentially the same analysis as in Section 3.4. More precisely, when we insert
an element x, suppose we find where x fits during round ` of the algorithm
Then we assign x a parent as before, and award x two cm coins for each m ≤ `
and fractional coins (6/22

m

)cm for each m > `. The only new concern in the
amortized analysis is that the rank order changes by an insertion. Specifically,
the rank distance between an element z and its parent y can increase by 1 because
of an element x inserted between z and y. In this case, we set z’s parent to x
immediately after the insertion, and the proof goes through. Thus, the amortized
cost of an insertion is proportional to the amortized cost of the initial search.

3.6 Delete

Finally we describe how to delete an element within the unified bound plus
O(lg lg |Si|) time. Once we have found the element x to be deleted within the
unified bound via the search algorithm, we remove x from the finger tree in O(1)
time and replace all instances of x in the Tk’s with the successor or predecessor
of x in the finger tree. To support each replacement in O(1) time, and obtain
a total bound of O(lg lg |Si|),

2 we maintain a list of back pointers from each
element in the finger tree to the instances of that element as tree nodes in the

2 We maintain the invariant that the number of trees Tk is at most 1+lg lg |Si| simply
by removing a tree Tk if k becomes larger than lg lg |Si|. Such trees are not necessary
for achieving the unified bound during searches.

Tk’s. If more than one node in the same tree Tk ever points to the same element,
we remove all but one of them.

The amortized analysis is again similar to Section 3.4, requiring only the
following changes. Whenever we delete an element x and replace all its instances
by its rank predecessor or successor y, element y inherits all of x’s coins and
takes over all of x’s responsibilities in the analysis. We can even imagine x and
y as both existing with equal rank, and handling their own responsibilities, with
the additional advantage that if either one gets promoted the other one will
be discarded (having the same rank) and hence need not be accounted for. An
edge of a chain can only get shorter by this contraction in rank space, so the

endpoints remain within rank distance 3 · 22
k

as required in the analysis. The
unified bound to access an element z may also go down because it is closer in
rank space to some elements, but this property is captured by the removal of
x in the finger tree, and hence finger searches are correspondingly faster. Each
tree Tk might get smaller (if both x and y were in the same tree), requiring us

to break the invariant that Tk stores at least 22
k

elements. However, we use this
invariant only in proving Lemma 1, which remains true because the working-set
numbers ti(z) count accesses to deleted elements and hence do not change.

Acknowledgments

We thank John Iacono for helpful discussions.

References

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of
large ordered indexes. Acta Informatica, 1(3):173–189, February 1972.

[BT80] Mark R. Brown and Robert Endre Tarjan. Design and analysis of a
data structure for representing sorted lists. SIAM Journal on Computing,
9(3):594–614, 1980.

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the
dynamic finger conjecture for splay trees. Part I: Splay sorting logn-block
sequences. SIAM Journal on Computing, 30(1):1–43, 2000.

[Col00] Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The
proof. SIAM Journal on Computing, 30(1):44–85, 2000.

[Iac01] John Iacono. Alternatives to splay trees with O(log n) worst-case access
times. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 516–522, Washington, D.C., January 2001.
[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary

search trees. Journal of the ACM, 32(3):652–686, July 1985.

