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Abstract. The number of probes needed by the best possible algorithm
for locally or globally optimizing a bivariate function varies substantially
depending on the assumptions made about the function. We consider
a wide variety of assumptions—in particular, global unimodality, uni-
modality of rows and/or columns, and total unimodality—and prove
tight or nearly tight upper and lower bounds in all cases. Our results in-
clude both nontrivial optimization algorithms and nontrivial adversary
arguments depending on the scenario.

1 Introduction

Many problems in geometry, in particular problems about the set of distances
among geometric objects (diameter, closest pairs, farthest pairs, etc.) can be seen
as finding a maximum in a two-dimensional array. This abstraction is used by
many algorithms, but one of the most remarkable results is probably the O(n)-
time algorithm for optimizing “totally monotone” n × n matrices of Aggarwal
et al. [1] and the application of this algorithm to many geometric proximity
problems. This work later found many applications as a general technique for
speeding up dynamic-programming algorithms. A survey of these applications
can be found in [4]. The motivation for our work came from the desire to under-
stand what matrix properties enable speeding a search from linear time down to
a polylogarithmic number of probes. For example, we want to know the weak-
est properties that would have to be expressed in order to find the closest pair
of points between two given convex polygons in logarithmic time [3]. Such an
understanding could lead to many generalizations, for example to other metric
spaces or variants of convexity.

The most general formulation of this discrete optimization problem is to
maximize a given function f : D → R over a discrete (finite) domain D. In
general, of course, this problem may require |D| probes to f . One approach
to making optimization more tractable is to be satisfied with finding a local
maximum, i.e., a point at which f attains a value larger than all “neighboring”
points, for some definition of neighborhoods. In particular, for the standard 1D
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domain D = {1, 2, . . . , n}, Fibonacci search [6] finds a local maximum using
logφ n + O(1) probes, where φ = (1 +

√
5)/2 is the golden ratio. Surprisingly,

the problem complexity grows exponentially in 2D, even for a square domain
D = {1, 2, . . . , n} × {1, 2, . . . , n}: independently, Llewellyn et al. [7,8], Althöfer
and Koschnick [2], and Mityagin [9] proved that Θ(n) probes to a function f
are sufficient and sometimes necessary to find any local optimum in an n × n
array D. (Unless otherwise specified, we use the 4-neighborhood {(i− 1, j), (i +
1, j), (i, j−1), (i, j +1)} of a point (i, j) in the square grid.) Thus weakening the
optimization problem to finding local maxima does not provide an exponential
speedup in higher dimensions like it did in 1D. See also [10] for a survey on local
optimization methods.

Another approach to making optimization more tractable is to add assump-
tions about the function f . Other than the monotonicity assumptions mentioned
above, the main example in the literature of which we are aware is a kind of Lip-
schitz condition: if f is integral Lipschitz in the sense that, between two neigh-
boring points x and y, f(x) and f(y) are integral and differ by at most L, then
it is possible to find a local maximum in O(L log n) probes [2]. Another simple
example is that, if we assume that f is unimodal (denoted “� unimodal”), i.e.,
it has exactly one local maximum, then finding local maxima and finding global
maxima are equivalent. One could hope that having this structural information
about the function would also help in finding that maximum. Unfortunately, a
careful reading of the construction in [9] of 2D functions f requiring Θ(n) probes
reveals they are in fact � unimodal.

We study the related condition that the 2D function f is unimodal in every
column (l unimodal) and/or in every row (↔ unimodal). These properties are
satisfied by e.g. convex functions, but are more general: for example, the distance
function between a point on a convex chain and a point on a monotone chain
satisfies one of these properties (in fact, it is l convex) but not the other. While
seemingly weaker than � unimodality, these properties are incomparable to uni-
modality, and in fact result in exponential speedup for finding local maxima.
We also study the stronger condition that a function is totally unimodal in the
sense that every submatrix is � unimodal. This property is the first that allows
us to find the (unique) local maximum of the array in O(log n) probes. Table 1
summarizes all of our results.

A notion related to a totally unimodal matrix is a unique-sink orientation
of the m × n grid graph, as considered for arbitrary-dimensional grids in [5].
However, the latter notion is less restrictive: essentially, unique-sink orientations
capture only relative comparisons between adjacent vertices, whereas total uni-
modality captures comparisons between arbitrary vertices in a total order. The
relative comparisons of unique-sink orientations may not even be realizable by
a total order because of directed cycles in the orientation. When restricted to
the two-dimensional case, the algorithms of [5] have running time O(m+n); our
totally unimodal algorithms are exponentially faster (but less general).

In the next section, we show how total properties of matrices can be expressed
as a set of forbidden partial orders in submatrices. This characterization allows



Assumption Local optimization Global optimization

None ≤ min · (lg max
min + 4) + O(lg max) [9] ≤ m · n [obvious]

≥ min{min, max/2} [9] ≥ m · n [obvious]
Totally +j ≤ min · (lg max

min + 4) + O(lg max) [9] O(min(1 + lg max
min )) [1]

monotone ≥ logφ max [Lem. 7] Ω(min(1 + lg max
min )) [1]

� unimodal ≤ min · (lg max
min + 4) + O(lg max) [9] same as local

≥ min{min, max/2} [9]
l unimodal ≤ logφ m logφ n + O(lg n) [Lem. 8] ≤ n logφ m + O(n) [Lem. 12]

≥ 1
4 lg m lg n − O(lg m lg lg n) if m ≤ n [Thm. 1] ≥ n logφ m − O(n) [Lem. 13]

≥ 1
4 lg2 n − O(lg n lg lg n) if m ≥ n [Thm. 1]

�, l same as l unimodal same as local
unimodal

l, ↔ ≤ 3
lg φ lg2 min + O(lg max) [Thm. 2] ≤ min(logφ max + O(1)) [Lem. 12]

unimodal ≥ 1
4 lg2 min − O(lg max lg lg max) [Thm. 3] Ω(min) [Lem. 14]

≥ logφ max [Lem. 7]

�, l, ↔ same as �, l unimodal same as local
unimodal
�, l, ↔ uni- same as �, l, ↔ unimodal same as local
modal & tot-
ally +i, +j
monotone
Totally O(lg max) [Thm. 4] same as local
unimodal ≥ logφ max [Lem. 7]

Table 1. Worst-case bounds on the number of probes required to maximize a
function f : {1, 2, . . . ,m}×{1, 2, . . . , n} → R. In the bounds, max = max{m,n}
and min = min{m,n}.

us to determine easily which combinations of properties imply which others. We
then proceed to present nearly tight bounds for finding a local or global maxi-
mum for most combinations of properties: in l unimodal functions (Section 4),
in l,↔ unimodal functions (Section 5), and in totally unimodal functions (Sec-
tion 6). Finally, in Section 7, we analyze a natural random probing strategy and
show that it falls in between the last two strategies.

2 Forbidden Submatrix Partial Orders

In this section we show how several properties of real-valued functions on the
m × n grid, or equivalently a real m × n matrix, can be expressed by finite
forbidden substructures.

For any matrix property P, we say that a matrix is totally P if every of its
submatrices has property P. In this section, we show how many total properties
for matrices can be expressed as a finite set of constant-size partial orders that are
forbidden to occur in any submatrix. This characterization of total properties
gives an easy way to determine which combination of properties imply which
other.

(a) (b) (c) (d)

Fig. 1. Forbidden 2 × 2 submatrices for total
monotonicity. Arrows point to larger elements.

Monotone. Let i(j) be the
row index of the maximum
in column j. A matrix is +j
monotone if j ≤ j′ implies



i(j) ≤ i(j′). A matrix is to-
tally +j monotone if every
submatrix is +j-monotone. It can be shown [1] that it is sufficient to consider
only 2 × 2 matrices. Thus to obtain the class of totally +j monotone matrices,
we just have to forbid the configuration shown in Figure 1(a).

Total monotonicity can be defined in all four directions: +j, −j, −i, and +i.
The corresponding four forbidden configurations are shown in Figure 1(a–d).

A matrix is totally monotone if it forbids any one of these four configurations.

(a) (b) (c) (d)

Fig. 2. Forbidden submatrices for total uni-
modality. (a) l unimodality; (b) ↔ unimodality.

l or ↔ unimodal. Note that
l or ↔ unimodality are to-
tal properties. Each property
has a single forbidden config-
uration, as shown in Figure
2(a, b). Of course, l,↔ uni-
modality is given by forbid-
ding both of these configura-
tions.

Totally unimodal. A matrix is totally unimodal if every submatrix is � uni-
modal, i.e., every submatrix has a unique local maximum. This property has
four forbidden configurations, shown in Figure 2(a, b, c, d).

Lemma 1. If a matrix is l,↔ unimodal and totally +j,−i monotone (or totally
−j,+i monotone), then it is totally unimodal.

Lemma 2. A matrix is totally unimodal if and only if it is l,↔ unimodal, and
every 2× 2 submatrix is � unimodal.

Corollary 1. If a matrix is totally unimodal, then it is �, l,↔ unimodal.

3 Elimination Lemmas

This section develops a battery of lemmas for guaranteeing that the solution we
desire is not in a particular region, or more precisely, that at least one desired
solution is in the remaining region. Different lemmas apply to different scenarios
of assumptions made on the function, while one lemma is generic.

We consider the following more general (non-matrix) setting. A discrete do-
main D is a finite set along with a notion of adjacency (defined by a graph
on the finite set). As mentioned, we mainly focus on the square grid domain
D = {1, 2, . . . ,m} × {1, 2, . . . , n}, primarily with 4-adjacency—two points are
adjacent if their `1 distance is 1—but several of our definitions and basic results
apply more generally.

A local maximum of a function f : D → R is a point p of the domain D
such that all points adjacent to p have strictly smaller f values than p. In other
words, a point is a local maximum if all incident edges (adjacencies) are downhill



(in f). In this paper we assume that adjacent points have distinct f values;
otherwise, a constant function f satisfies all (nonstrict) unimodality properties
but is impossible to optimize in less than |D| probes.

The following lemmas allow us to restrict the region in which we must search
for a local maximum. In particular, given various configurations and/or uni-
modality assumptions on f , our goal is to identify elements that are effectively
eliminated by a constant number of probes, in the sense that the remaining
uneliminated region contains a local maximum.

The first lemma is useful in particular when the region in which we are
searching disconnects into multiple components. In general, a region R of a
discrete domain D is a subset of D. The skin of a region R is the set of points
in the domain D that are not in R but are adjacent to points in R.

Lemma 3. For a function f : D → R, if the maximum f value over a region R
of the domain D is larger than the f values of all points on the skin of R, then
R contains a local maximum of f .

The next lemma shows that, in the l-unimodal case, whenever an algorithm
makes a probe it can probe a vertically adjacent point (losing at most a factor of
2 in probe count) and eliminate either the top or bottom “half” of the column,
depending on which of the two points has a larger f value. Define (≤ i, j) =
{(i′, j) | i′ ≤ i} and similarly for (?i, j) and (i, ?j) for ? ∈ {≤,≥, <, >}.

Lemma 4. Suppose f : {1, 2, . . . ,m} × {1, 2, . . . , n} → R is l unimodal and
suppose that region R contains a local maximum. If f(i, j) > f(i + 1, j), then
R \ (> i, j) contains a local maximum. Similarly, if f(i, j) < f(i + 1, j), then
R \ (≤ i, j) contains a local maximum.

The next lemma shows an analogous result for �, l,↔ unimodality, except
that the constant factor loss is now at most 3, and the eliminated elements are
nearly an entire quadrant. (The entire quadrant can be eliminated at a cost of
at most a factor of 5.) Define (≤ i,≤ j) = {(i′, j′) | i′ ≤ i, j′ ≤ j} and similarly
for (?i, ¿j) for ?, ¿ ∈ {≤,≥, <, >}.

Lemma 5. Suppose f : {1, 2, . . . ,m} × {1, 2, . . . , n} → R is �, l,↔ unimodal
and suppose that region R contains a local maximum. Consider a point (i, j)
in R. If f(i, j) > f(i + 1, j) and f(i, j) > f(i, j + 1), then R \ [(≥ i,≥ j)− (i, j)]
contains a local maximum. (Unless (i, j) is also a local maximum, i.e., we also
have f(i, j) > f(i− 1, j) and f(i, j) > f(i, j − 1), even R \ (≥ i,≥ j) contains a
local maximum.) Similarly, if f(i, j) > f(i + 1, j) and f(i, j) < f(i, j + 1), then
R \ (≥ i,≤ j) contains a local maximum; if f(i, j) < f(i + 1, j) and f(i, j) >
f(i, j+1), then R\(≤ i,≥ j) contains a local maximum; and if f(i, j) < f(i+1, j)
and f(i, j) < f(i, j + 1), then R \ (≤ i,≤ j) contains a local maximum.

Finally, we prove a more powerful quadrant elimination lemma for totally
unimodal functions, where we can compare to nonadjacent points because total
unimodality allows us to consider induced submatrices.



Lemma 6. Suppose f : {1, 2, . . . ,m} × {1, 2, . . . , n} → R is totally unimodal
and suppose that region R contains a local maximum. Consider two points (i, j)
and (i′, j′) with i < i′ and j < j′, suppose that R is already disjoint of the
cornerless quadrants (≤ i,≤ j)− (i, j) and (≥ i′,≥ j′)− (i′, j′), and suppose that
f(i − 1, j) < f(i, j) and f(i, j − 1) < f(i, j), If f(i′, j) > f(i, j) and f(i′, j) >
f(i′, j′), then R \ (≤ i,≥ j′) contains a local maximum. If f(i, j′) > f(i, j) and
f(i, j′) > f(i′, j′), then R \ (≥ i′,≤ j) contains a local maximum. If neither
of these conditions hold, then R \ ((≤ i,≥ j′) ∪ (≥ i′,≤ j)) contains a local
maximum.

Before proceeding to more difficult upper and lower bounds, we prove a simple
logarithmic lower bound in the most specific case of totally unimodal functions:

Lemma 7. Any comparison-based algorithm for finding a local maximum in a
totally unimodal function must make at least logφ max{m,n} − O(1) probes in
the worst case.

4 l Unimodal

4.1 Local Optimization

Lemma 8. There is an algorithm that, given a l unimodal m× n matrix, finds
a local optimum after ≤ logφ n logφ m + O(log n) probes.

Theorem 1. For every algorithm that correctly finds a local optimum in an
m×n l unimodal matrix, there is an adversary that (a) generates a l unimodal
function with a unique local optimum, and (b) forces the algorithm to make
≥ 1

4 lg m lg n − O(lg m lg lg n) probes if m ≤ n, and ≥ 1
4 lg2 n − O(lgn lg lg n) if

m > n.

Proof. The adversary gives the algorithm extra information, which can only
help. Whenever the algorithm probes the value at a particular point (i, j), the
adversary reveals not only that value, but also the slope of that value in that
column, i.e., whether the mode in that column j is above or below that point
(i, j). Furthermore, if the mode of column j is above the probe point (i, j),
then the adversary reveals all values in the column j below the point (i, j);
symmetrically, if the mode is below the probe point, the adversary reveals all
values above the point in its column. If the algorithm discovers the mode of
column j, the adversary reveals all values in the column j. Thus we maintain
the invariant that every column that is not totally revealed has some revealed
values in the topmost few rows, some revealed values in the bottommost few
rows, and the algorithm knows that the mode of the column is somewhere in
between.

If the unrevealed region ever becomes disconnected, the adversary reveals
all values in all connected components except the largest connected component.
Thus we maintain the invariant that the unrevealed region is connected. We
also maintain the invariant that the algorithm cannot discover the unique local



optimum until every value has been revealed. Together these two invariants
make the goal of the algorithm to disconnect the unrevealed region; otherwise,
the algorithm must make at least one probe per column, for a total of at least
n probes.

The main task of the adversary is to decide whether a probe point is above
or below the mode of that column, and then to choose the revealed values below
or above the probe point. The adversary bases its decision on matching the
“nearest” previous decision, according to the `1 distance function. Naturally,
the distance between a point (i, j) and the top horizontal wall is i, and the
distance to the bottom wall is m + 1− i.

Suppose that the algorithm probes the point (i, j). If point (i, j) is closer to
a horizontal wall than every revealed point, then the adversary reveals all values
in column j between (i, j) and the nearest wall, specifying that the mode is in
the other direction. Otherwise, the adversary specifies (i, j) to be above or below
the mode in its column j according to whether the revealed point (i∗, j∗) nearest
to (i, j) is above or below the mode in its column j∗. Then the adversary reveals
all unrevealed values starting from (i, j) in the opposite direction to the mode
in column j. (In the special case described below that the algorithm discovers
the mode among these revealed values, the specification that the mode is above
or below (i, j) is false; in this case the adversary reveals all values in column j.)

The adversary chooses the revealed values as follows. Suppose that the algo-
rithm probes (i, j) and say that the adversary decides that probe point (i, j) is
below the mode in its column j. If the to-be-revealed points keep the unrevealed
region connected, then the adversary repeatedly reveals that the bottommost
unrevealed value in column j is one more than the largest previously revealed
value, until reaching point (i, j). In this way the revealed values increase in an
integer sequence from the bottommost unrevealed value to (i, j). Equivalently,
the adversary reveals every unrevealed point (i′, j) below (i, j) in column j to
have value m−d more than the largest previously revealed value, where d = i−i′

is the Manhattan distance between the unrevealed point (i′, j) and the probe
point (i, j).

On the other hand, if the to-be-revealed points disconnect the unrevealed
region, then we either keep unrevealed the component left of column j or the
component right of column j, whichever has the largest number of unrevealed
columns. Assume the component left of column j is to be kept unrevealed, and
let j′ be the rightmost unrevealed column in the matrix. We reveal the entries in
the columns from column j′ to column j as follows: when revealing the entries of
column j′′, j′ ≥ j′′ ≥ j, we identify an entry (i′′, j′′) adjacent to an unrevealed
entry in column j′′−1. We set (i′′, j′′) to be the mode of column j′′, and reveal all
entries in that column, by repeatedly revealing the topmost entry with one more
than the previously revealed value until (i′′ − 1, j′′) is revealed, then repeatedly
revealing the bottommost entry with one more than the previously revealed value
until (i′′, j′′) is revealed, then proceed to reveal the entries of column j′′ − 1 in
the same manner, until column j is completely revealed. This strategy ensures
that whenever a point is revealed, it is connected to a yet unrevealed point, and



so there is an increasing path from any entry in the table to the unique local
optimum which is the last value to be revealed. Thus we obtain:

Lemma 9. The only point to become a local maximum according to the adver-
sary is the mode of the final column to become completely revealed.

Lemma 10. The algorithm must make min{n, lg m} probes before the unre-
vealed region first disconnects into multiple connected components.

Lemma 11. The nearest point or horizontal wall to a point (i, j) is in a column
j′ such that |j − j′| ≤ m.

Finally we conclude the proof of Theorem 1. Consider an algorithm that
makes fewer than lg n lg m probes. As mentioned above, the algorithm must dis-
connect the unrevealed region or else it is doomed to make at least n probes.
Lemma 10 says that the algorithm must make at least min{n, lg m} probes for
the first disconnection. Consider the final probe that caused the disconnection.
By the pigeon-hole principle, the (lg n lg m)m consecutive columns including and
to the right of this final probe must have a gap of at least m consecutive empty
columns, because there are at most lg n lg m probes total. We remove columns
starting from the final probe up to but not including this gap of m consecutive
empty columns. Similarly, we remove at most (lg n lg m)m columns to the left of
the final probe up to but not including a gap of m consecutive empty columns.
Thus we obtain two subproblems (one left and one right) that by Lemma 11 act
completely independently from each other and from the probes causing the dis-
connection, as far as probes made so far. We recursively consider the subproblem
corresponding to the larger connected component that remains. This recursive
subproblem is a rectangle with m rows and n′ ≥ bn/2c − (lg n lg m)m columns.
The recursive subproblem may have already been probed, but we can consider
such probes as happening after this subproblem. Thus the recursion applies until
n′/2 < (lg n lg m)m.

Therefore we obtain the lower bound of min{n′, lg m} probes, where n′ ≥
2(lg n lg m)m, at each of lg(n/(2(lg n lg m)m)) levels of recursion. In total we
obtain a lower bound of (lg m)(lg(n/m)− 1− lg lg n− lg lg m) ≥ lg m lg(n/m)−
O(lg m lg lg n). If m ≤

√
n, then the lower bound is ≥ 1

2 lg m lg n−O(lg m lg lg n).
If m >

√
n, we perform the same argument on a submatrix with m′ =

√
n rows.

The lower bound then becomes ≥ lg m′ lg(n/m′) − O(lg m′ lg lg n) ≥ 1
4 lg2 n −

O(lgn lg lg n). In particular, if
√

n ≤ m ≤ n, we obtain the lower bound ≥
1
4 lg m lg n−O(lg m lg lg n). 2

4.2 Global Optimization

Lemma 12. There is an algorithm that, given a l unimodal m×n matrix, finds
its global optimum after at most n logφ m + O(n) probes.

Lemma 13. Any algorithm that, given a l unimodal m × n matrix finds its
global optimum must perform at least n logφ m−O(n) probes.



5 l, ↔ Unimodal

Theorem 2. There is an algorithm that finds a local optimum in a l,↔ uni-
modal m× n matrix after at most (3/ lg φ) lg2 min + O(lg max ) probes.

Proof. Assume without loss of generality that m ≤ n. First find the maxi-
mum element on row m/2, among elements in columns in/m, i = 1, . . . ,m, in
lgφ m time. (Ratios are implicitly rounded to integers, affecting only lower-order
terms.) This finds two elements jn/m and (j + 1)n/m on columns separated by
n/m elements. We can now eliminate from the search one of the two quadrants
left of (m/2, jn/m) and one of the two quadrants right of (m/2, (j + 1)n/m).
Then find the maximum on columns jn/m and (j + 1)n/m using Fibonacci
search, and evaluate the right and left neighbors of those two maxima. We now
know a local max is either (I) to the left of column jn/m, (II) between columns
jn/m and (j + 1)n/m or (III) to the right of column (j + 1)n/m. Since one
quadrant has been eliminated to the left of column jn/m and one quadrant has
been eliminated to the right of column (j + 1)n/m, the size of the submatrix to
recurse in is (m/2) × n in cases (I) and (III), or m × (n/m) in case (II). Thus,
cases (I) and (III) can only happen lg m times, and case (II) can only happen
lg n/ lg m times. Each step performs 3 lgφ m + O(1) probes, so the total number
of probes is (3/ lg φ)(lg2 m + lg n) + O(1)(lg m + lg n/ lg m). 2

Theorem 3. For every algorithm that correctly finds a local maximum in an
m × n l,↔ unimodal, totally +j, +i monotone matrix, there is an adversary
that (a) generates such a function with a unique local maximum, and (b) forces
the algorithm to make 1

4 lg2 min −O(lg min lg lg min) probes.

Lemma 14. Any algorithm that, given a l,↔ unimodal m× n matrix finds its
global maximum must perform at least min{n, m} probes.

6 Totally Unimodal

Theorem 4. There is an algorithm that, given a totally unimodal m×n matrix,
finds its global maximum after O(lg n + lg m) probes.

Proof. The algorithm performs successive probes and eliminates regions of the
matrix known not to contain the local maximum. At every step of the algorithm,
the unrevealed region will be a cross inside a submatrix, i.e., the algorithm
maintains four indices i1, i2, j1, j2, with i1 +1 < i2 and j1 +1 < j2 such that the
unique local maximum is known not to be in the quadrants (≤ i1,≤ j1), (≥ i2,≤
j1), (≤ i1,≥ j2), (≥ i2,≥ j2). Furthermore, we maintain the invariant that the
apex of each of those four quadrants is the maximum value in the quadrant, e.g.
for the first quadrant, that f(i1 − 1, j1) < f(i1, j1) and f(i1, j1 − 1) < f(i1, j1).
We call this the apex invariant. The rectangular area with corners (ik +1, jl +1)
for k, l ∈ {1, 2} is called the center of the cross, and is surrounded by four legs.
We will sometimes refer to T shapes or L shapes instead of the cross, those are
just crosses for which one or two of the legs is empty, respectively.



The algorithm then performs a constant number of probes which will reduce
the unrevealed area of the matrix by a constant factor. This will be done in one
of four ways: (a) by reducing the width of the cross (i2 − i1 and j2 − j1) by
half, (b) by transforming the cross into an L shaped region which is a constant
fraction smaller than the original cross, but whose center might not be contained
in the original center, or (c) by transforming the cross into an L shaped region
whose center (which might not be contained in the original center) has area at
least one quarter of the total unrevealed area.

Let im = b(i1 + i2)/2c and jm = b(j1 + j2)/2c. We first probe (im, jm) and
its four neighbors. Either (im, jm) is the local maximum, or by Lemma 5, one
of its four quadrants can be eliminated. Assume that the eliminated quadrant
is (≥ im,≥ jm), the other cases are handled symmetrically. Next, we apply
the Lemma 6 on entries (i1, j1) and (im, jm). For this, we probe the entries
(i1, jm) and (im, j1). Assume that f(i1, jm) > f(im, j1), the other case is handled
symmetrically. Then the quadrant (≥ im,≤ j1) can be eliminated from the
search. Furthermore, if the apex (im, j1) is the minimum of that quadrant, then
the quadrant satisfies the apex invariant. If it does not, then we still know
that f(im, j1) is smaller than one of f(i1, j1) and f(im, jm), otherwise rows i1
and im and columns j1 and jm form a 2 × 2 matrix with 2 local optima. If
f(im, j1) < f(i1, j1), then f(im + 1, j1) < f(im, j1) but f(im, j1 − 1) > f(im, j1)
since the apex invariant is not satisfied. This implies f(im, j1 + 1) < f(im, j1)
and applying Lemma 5, quadrant (≥ im,≥ j1) can be eliminated. Those two
eliminated quadrants together remove all rows ≥ im. Likewise, if f(im, j1) <
f(im, jm), then the quadrant (≤ im,≤ j1) can be eliminated and so all columns
≤ j1 can be removed.

At this point, we have eliminated at least two quadrants, and the left, right
and bottom legs have had their width divided by 2, and the bottom or left leg
might have been eliminated. We now probe the four neighbors of (i1, jm) (whose
value is know from the previous step), and apply Lemma 5 to eliminate one of
its four quadrants. We now have four cases to consider.

If quadrant (≤ i1,≥ jm) is eliminated, then we have achieved goal (a): we
have a new cross of half the width (where one of the legs may have been elimi-
nated), so the area of all four legs is multiplied by 1

2 , and the area of the center
is multiplied by 3

4 .
If quadrant (≤ i1,≤ jm) is eliminated, then we apply Lemma 6 to quadrants

(≤ i1,≤ jm − 1) and (≥ im,≥ jm). This eliminates either (≤ i1,≥ jm − 1) in
which case all rows ≤ i1 can be removed, or (≥ im,≤ jm), in which case all rows
≥ im can be removed. In both cases, the unrevealed region is a T shape, a cross
with one leg cut, and all legs have had their width multiplied by a factor 1

2 , so
we have again achieved goal (a).

If quadrant (≥ i1,≥ jm) is eliminated, then all columns ≥ j2 are eliminated.
We then apply Lemma 6 to quadrants (≤ i1,≤ j1) and (≥ i1 + 1,≥ jm). This
further eliminates either (≤ i1,≥ jm) or (≥ i1+1,≤ j1). In the first case, all rows
≥ jm can be removed and we obtain a T shaped unrevealed region, which is a
cross with one leg cut off, and all legs have had their width multiplied by a factor



1
2 , so we have again achieved goal (a). In the second case, the unrevealed region
becomes L shaped: the left leg has been removed with quadrant (≥ i1 +1,≤ j1),
the right leg was already removed, so what remains is the top leg, the center of
the cross divided in two vertically and the bottom leg divided by two vertically.
So unless the top leg contained more than half of the area unrevealed at the
beginning of this step, we have eliminated at least one quarter of the total
unrevealed area, and so we have achieved goal (b). Otherwise, if the top leg
contained more than half of the area unrevealed at the beginning of this step,
then the center of the new L shape contains more than half of the top leg, and
so more than one quarter of the total unrevealed area, reaching goal (c).

Finally, if quadrant (≥ i1,≤ jm) is eliminated, then all columns ≥ j1 are
eliminated. We then apply Lemma 6 to quadrants (≥ i1 + 1,≤ jm) and (≤ i1,≥
j2). This further eliminates either (≤ i1,≤ jm) or (≥ i1 + 1,≥ j2). In the first
case, all rows ≤ jm can be removed and we obtain an L shaped unrevealed
region, which is a cross with two legs cut off, and all legs have had their width
multiplied by a factor 1

2 , so we have again achieved goal (a). In the second
case, the unrevealed region becomes L shaped, containing just the top leg and a
quarter of the original center. As in the previous case, if the top leg contained
less than half of the area unrevealed at the beginning of this step, we have
eliminated at least one quarter of the total unrevealed area, and so we have
achieved goal (b). Otherwise, if the top leg contained more than half of the area
unrevealed at the beginning of this step, then the center of the new L shape
contains more than half of the top leg, and so more than one quarter of the total
unrevealed area, and we have reached goal (c).

To conclude, note that every step performs a constant number of probes.
After each elimination step, if goals (a) or (b) are reached, then one quarter of
the unrevealed area has been eliminated. If goal (c) is attained, then the first set
of probes of the next step eliminates one quarter of the area of the center of the
cross, which is in this case at least one sixteenth of the total unrevealed area.
So in all cases, two consecutive steps eliminate a constant fraction of the area,
so the total number of steps is O(lg(mn)). 2

7 Random Probing Algorithm

In this section we analyze a natural family of uniform probing strategies for
finding a local optimum in an l,↔ unimodal function. We specify and analyze
the strategy only in the case of totally unimodal functions, where of course
the algorithm finds the global maximum. Our lower bound on the strategy’s
performance also applies to any generalization of this algorithm to l,↔ unimodal
functions. Our upper bound is specific to totally unimodal functions.

The uniform probing algorithm for totally unimodal functions works as fol-
lows. Initially, we set the region R to the entire domain D = {1, 2, . . . ,m} ×
{1, 2, . . . , n} of the function f . At each step, the algorithm chooses a point (i, j)
uniformly at random from the remaining region R. Then the algorithm makes
three samples to eliminate a quadrant except for its corner (i, j), according to



Lemma 5. If the remaining region R′ contains just one point, then it is the unique
maximum; otherwise the algorithm continues.

Theorem 5. Uniform probing makes Θ(ln2 max ) expected probes in a totally
unimodal function.

8 Conclusion

We expect many of our results to generalize to several other scenarios. In par-
ticular, we expect similar bounds in d dimensions, at least in the case of an
n×n×· · ·×n matrix, where logarithmic bounds remain logarithmic and squared-
logarithmic bounds grow to logd. We also believe that our results generalize
to local maxima defined in terms of size-8 neighborhoods instead of the 4-
neighborhoods we use. For example, as with 4-neighborhoods, total unimodality
with 8-neighborhoods can be characterized as forbidding a finite set of partial
orders on constant-size submatrices. More generally, it would be interesting to
characterize the complexities achievable for all possible forbidden submatrices.
In our work, we have seen how combining various unimodality conditions with
the total monotonicity conditions of [1] yields surprising results. In particular,
combining l,↔ unimodality with total (+i,−j) or (−i,+j) monotonicity im-
plies total unimodality (Lemma 1), and so an O(log n) optimization algorithm,
while combining l,↔ unimodality with total (+i, +j) or (−i,−j) monotonicity
has an Ω(log2 min) lower bound (Theorem 3).
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