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Abstract27

We analyze the computational complexity of the many types of pencil-and-paper-style puzzles28

featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a path29

in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle30

types place different constraints on the path: preventing some edges from being visited (broken31

edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain32

numbers of incident path edges (triangles); or forcing the regions formed by the path to be33

partially monochromatic (squares), have exactly two special cells (stars), or be singly covered34

by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show35

that any one of these clue types (except the first) is enough to make path finding NP-complete36

(“witnesses exist but are hard to find”), even for rectangular boards. Furthermore, we show that37

a final clue type (antibody), which necessarily “cancels” the effect of another clue in the same38

region, makes path finding Σ2-complete (“witnesses do not exist”), even with a single antibody39

(combined with many anti/polyominoes), and the problem gets no harder with many antibodies.40
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1 Introduction46

The Witness [9] is an acclaimed 2016 puzzle video game designed by Jonathan Blow (who47

originally became famous for designing the 2008 platform puzzle game Braid, which is un-48

decidable [5]). The Witness is a first-person adventure game, but the main mechanic of49

the game is solving 2D puzzles presented on flat panels (sometimes CRT monitors) within50

the game. The 2D puzzles are in a style similar to pencil-and-paper puzzles, such as Nikoli51

puzzles. Indeed, one clue type in Witness (triangles) is very similar to the Nikoli puzzle52

Slitherlink (which is NP-complete [10]).53

In this paper, we perform a systematic study of the computational complexity of all54

single-panel puzzle types in The Witness, as well as some of the 3D “metapuzzles” embedded55

in the environment itself. Table 1 summarizes our single-panel results, which range from56

polynomial-time algorithms (as well as membership in L) to completeness in two complexity57

classes, NP (i.e., Σ1) and the next level of the polynomial hierarchy, Σ2. Table 3 summarizes58

our metapuzzle results, where PSPACE-completeness typically follows immediately.59

broken edge hexagon square star triangle polyomino antipolyomino antibody
complexity

X ∈ L
X Xvertices NP-complete

Xvertices OPEN
Xedges NP-complete

X1 color ∈ P
X2 colors NP-complete

X1 color OPEN
Xn colors NP-complete

X NP-complete
X X NP-complete

X OPEN
X NP-complete

X X OPEN
X X NP-complete
X NP-complete
X NP-complete

X X X X X X X ∈ NP
X X X X X Xn ∈ NP

X X2 Σ2-complete
X X X1 Σ2-complete

X X X X X X X Xn ∈ Σ2
Table 1 Our results for one-panel puzzles in The Witness: computational complexity with

various sets of allowed clue types (marked by X). Allowed polyomino clues are either arbitrary (X),
or restricted to be monominoes (X ), vertical dominoes (X ), or rotatable dominoes (X ).

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.3
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For omitted proofs, see [1].60

Figure 1 A small Witness puzzle featuring
all clue types (left) and its solution (right).
(Not from the actual video game.)

Witness puzzles. Single-panel puzzles in61

The Witness (which we refer to henceforth as62

Witness puzzles) consist of an m×n full rectan-63

gular grid;2 one or more start circles (drawn as64

a large dot, ); one or more end caps (drawn as65

half-edges leaving the rectangle boundary); and66

zero or more clues (detailed below) each drawn67

on a vertex, edge, or cell3 of the rectangular grid.68

Figure 1 shows a small example and its solution.69

The goal of the puzzle is to find a path that70

starts at one of the start circles, ends at one of the end caps, and satisfies all the constraints71

imposed by the clues (again, detailed below). We focus on the case of a single start circle72

and single end cap, which makes our hardness proofs the most challenging.73

We now describe the clue types and their corresponding constraints. Table 2 lists the74

clues by what they are drawn on — grid edge, vertex, or cell — which we refer to as this75

edge, vertex, or cell. While the last five clue types are drawn on a cell, their constraint76

applies to the region that contains that cell (referred to as this region), where we consider77

the regions of cells in the rectangle as decomposed by the (hypothetical) solution path and78

the rectangle boundary.79

The solution path must satisfy all the constraints given by all the clues. (The meaning80

of this statement in the presence of antibodies is complicated; see Section 8.) Note, however,81

that if a region has no clue constraining it in a particular way, then it is free of any such82

constraints. For example, a region without polyomino or antipolyomino clues has no packing83

constraint.84

As summarized in Table 1, we prove that most clue types by themselves are enough85

to obtain NP-hardness. The exceptions are broken edges, which alone just define a graph86

search problem; and vertex hexagons, which are related to Hamiltonian path in rectangular87

grid graphs as solved in [6] but remain open. But vertex hexagons are NP-hard when88

we also add broken edges. For squares, we determine that exactly two colors are needed89

for hardness. For stars, we do not know whether one or any constant number of colors90

are hard. For triangles, we know that 1-triangles or 3-triangles alone suffice for hardness,91

but for 2-triangles the only hardness proof we know needs broken edges. For polyominoes,92

monominoes alone are easy to solve [8], but monominoes plus antimonominoes are hard, as93

are rotatable dominoes by themselves and vertical nonrotatable dominoes by themselves. All94

problems without antibodies or without (anti)polyominoes are in NP. Antibodies combined95

with (anti)polyominoes push the complexity up to Σ2-completeness, but no further.96

Witness metapuzzles. We also consider some of the metapuzzles formed by the 3D97

environment in The Witness, which interact with the 2D single-panel puzzles. See Section 998

for details of these interaction models. Table 3 lists our metapuzzle results, which are all99

PSPACE-completeness proofs following the infrastructure of [2] (from FUN 2014).100

2 While most Witness puzzles have a rectangular boundary, some lie on a general grid graph. This
generalization is mostly equivalent to having broken-edge clues (defined below) on all the non-edges of
the grid graph, but the change in boundary can affect the decomposition into regions. We focus here
on the rectangular case because it is most common and makes our hardness proofs most challenging.

3 We refer to the unit-square faces of the rectangular grid as cells, given that “squares” are a type of clue
and “regions” are the connected components outlined by the solution path and rectangle boundary.

FUN 2018



3:4 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

clue drawn on symbol constraint
broken edge edge The solution path cannot include this edge.
hexagon edge The solution path must include this edge.
hexagon vertex The solution path must visit this vertex.
triangle cell There are three kinds of triangle clues ( , , ).

For a clue with i triangles, the path must include
exactly i of the four edges surrounding this cell.

square cell A square clue has a color. This region must not
have any squares of a color different from this clue.

star cell A star clue has a color. This region must have ex-
actly one other star, exactly one square, or exactly
one antibody of the same color as this clue.

polyomino cell A polyomino clue has a specified polyomino shape,
and is either nonrotatable (if drawn orthogonally,
like ) or rotatable by any multiple of 90◦ (if drawn
at 15◦, like ). Assuming no antipolyominoes, this
region must be perfectly packable by the polyomino
clues within this region.

antipolyomino cell Like polyomino clues, an antipolyomino clue has a
specified polyomino shape and is either rotatable
or not. For some i ∈ {0, 1}, each cell in this re-
gion must be coverable by exactly i layers, where
polyominoes count as +1 layer and antipolyominoes
count as −1 layer (and thus must overlap), with no
positive or negative layers of coverage spilling out-
side this region.

antibody cell Effectively “erases” itself and another clue in this
region. This clue also must be necessary, meaning
that the solution path should not otherwise satisfy
all the other clues. See Section 8 for details.

Table 2 Witness puzzle clue types and the definitions of their constraints.

features complexity
sliding bridges PSPACE-complete

elevators and ramps PSPACE-complete
power cables and doors PSPACE-complete

Table 3 Our results for metapuzzles in The Witness: computational complexity with various
sets of environmental features.

2 Hamiltonicity Reduction Framework101

We introduce a framework for proving NP-hardness of Witness puzzles by reduction from102

Hamiltonian cycle in a grid graph G of maximum degree 3. Roughly speaking, we scale G103

by a constant scale factor s, and replace each vertex by a block called a chamber; refer to104

Figure 2. Precisely, for each vertex v of G at coordinates (x, y), we construct a 2r+1×2r+1105

subgrid of vertices {sx− r, . . . , sx + r}×{sy− r, . . . , sy + r}, and all induced edges between106
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(a) Instance of
grid-graph

Hamiltonicity

(b) A possible
solution to (a)

(c) Corresponding chambers and hallways

Figure 2 An example of the Hamiltonicity framework with r = 1 and s = 4.

them, called a chamber Cv. This construction requires 2r < s for chambers not to overlap.107

For each edge e = {v, w} of G, we construct a straight path in the grid from sv to sw,108

and define the hallway Hv,w to be the subpath connecting the boundaries of v’s and w’s109

chambers, which consists of s− 2r edges. Figure 2 illustrates this construction on a sample110

graph G.111

In each reduction, we define constraints to force the solution path to visit (some part of)112

each chamber at least once, to alternate between visiting chambers and traversing hallways113

that connect those chambers, and to traverse each hallway at most once. Because G has114

maximum degree 3, these constraints imply that each chamber is entered exactly once and115

exited exactly once. Next to one chamber on the boundary of G, called the start/end116

chamber, we place the start circle and end cap of the Witness puzzle. Thus any solution to117

the Witness puzzle induces a Hamiltonian cycle in G. To show that any Hamiltonian cycle118

in G induces a solution to the Witness puzzle, we simply need to show that a chamber can119

be traversed in each of the
(3

2
)
ways.120

3 Hexagons and Broken Edges121

Hexagons are placed on vertices or edges of the graph and require the path to pass through122

all of the hexagons. Broken edges are edges which cannot be included in the path. We show123

the positive result that puzzles with just broken edges are solvable in L, and the negative124

results that puzzles with just hexagons on edges are NP-complete and puzzles with just125

hexagons on vertices and broken edges are NP-complete. We leave open the question of126

puzzles with just hexagons on vertices (and no broken edges).127

I Lemma 1. Witness puzzles containing only broken edges, multiple start circles and mul-128

FUN 2018
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(a) Instance corresponding to Figure 2a (b) Solution corresponding to Figure 2b

Figure 3 Example of the Hamiltonicity framework applied to Witness with edge hexagons.

tiple end caps are in L.129

Proof. We keep two pointers and a counter to track which pairs of starts and ends we have130

tried. For each start and end pair we run an (s, t) path existence algorithm, which is in L. If131

any of these return yes, the answer is yes. Thus we’ve solved the problem with a quadratic132

number of calls to a log-space algorithm, a constant number of pointers, and a counter, all133

of which only require logarithmic space. J134

I Lemma 2. It is NP-complete to solve Witness puzzles containing only broken edges and135

hexagons on vertices.136

Proof. Hamiltonian path in grid graphs is a strict subproblem. J137

I Theorem 3. It is NP-complete to solve Witness puzzles containing only hexagons on edges138

(and no broken edges).139

Proof sketch. We use the Hamiltonicity framework; refer to Figure 3. Noting that two edge140

hexagons incident to the same vertex must be consecutively traversed by the solution path,141

we carefully force the solution path to traverse the boundary of every chamber separate from142

the decision of which hallways to use. As with other Hamiltonicity framework reductions,143

we force each chamber to be visited with an edge hexagon in its center and can deduce the144

corresponding Hamiltonian cycle in the original grid graph from the set of used hallways. J145

I Open Problem 1. Is there a polynomial-time algorithm to solve Witness puzzles containing146

only hexagons on vertices?147
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Figure 4 Boundary of the
Restricted Squares Problem.

(a) Unsolved gadget. (b) The unique solution path.

Figure 5 Unbreakable degree-3 vertex gadget

4 Squares148

Each square clue has a color and is placed on a cell of the puzzle. Each region formed by149

the solution path and puzzle boundary must have at most one color of squares. If a puzzle150

has only a single color of squares, no non-trivial constraint is applied.151

4.1 Tree-Residue Vertex Breaking152

Our reduction is from tree-residue vertex breaking [4]. Define breaking a vertex of degree153

d to be the operation of replacing that vertex with d vertices, each of degree 1, with the154

neighbors of the vertex becoming neighbors of these replacement vertices in a one-to-one way.155

The input to the tree-residue vertex breaking problem is a planar multigraph in which each156

vertex is labeled as “breakable” or “unbreakable”. The goal is to determine whether there157

exists a subset of the breakable vertices such that breaking those vertices (and no others)158

results in the graph becoming a tree (i.e., destroying all cycles without losing connectivity).159

This problem is NP-hard even if all vertices are degree-4 breakable vertices or degree-3160

unbreakable vertices[4].161

4.2 Squares with Squares of Two Colors162

I Theorem 4. It is NP-complete to solve Witness puzzles containing only squares of two163

colors.164

Concurrent work [8] also proves this theorem. However, we prove this by showing that165

the stronger Restricted Squares Problem is also hard, which will be useful to reduce from in166

Section 5.167

I Problem 1 (Restricted Squares Problem). An instance of the Restricted Squares Problem is168

a Witness puzzle containing only squares of two colors (red and blue), where each cell in the169

leftmost and rightmost columns, and each cell in the topmost or bottommost rows, contains170

a square clue; and of these square clues, exactly one is blue, and that square clue is not in a171

corner cell; and the start vertex and end cap are the two boundary vertices incident to that172

blue square; see Figure 4.173

I Theorem 5. The Restricted Squares Problem is NP-complete.174

Proof sketch. We reduce from tree-residue vertex breaking and construct gadgets for an175

unbreakeable degree 3 vertex (Figure 5) and a breakable degree 4 vertex (Figure 6) out of176

squares. We force the solution path to take an Euler tour of these gadgets, which can only177

be done if the underlying tree-residue vertex breaking graph is a tree. J178

FUN 2018
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(a) Unsolved gadget (b) Unbroken solution path. (c) Broken solution path.

Figure 6 Breakable degree-4 vertex gadget

5 Stars179

Star clues are in cells of a puzzle. If a region formed by the solution path and boundary of180

a puzzle has a star of a given color, then the number of clues (stars, squares, or antibodies)181

of that color in that region must be exactly two. A star imposes no constraint on clues with182

colors different from that of the star.183

I Theorem 6. It is NP-complete to solve Witness puzzles containing only stars (of arbitrarily184

many colors).185

Proof sketch. We reduce from the Restricted Squares Problem. For every square in the186

source instance, I, we use exactly one pair of stars of a distinct color corresponding to187

that square, as well as ten auxiliary colors. Figure 7 shows the high level structure of the188

reduction. A subrectangle, S, of the puzzle is designated for recreating I. For each pair189

of stars corresponding to a square, we place one of the two stars on the boundary of the190

puzzle, and the other in S in the same position as the corresponding square in I. The solution191

path will be forced to divide the overall puzzle into exactly two regions—an “inside” and192

an “outside”—such that all of the boundary stars corresponding to red squares are on the193

outside and all of the boundary stars corresponding to blue squares are on the inside. Then,194

inside of S, the solution path must ensure that all stars corresponding to red squares are195

in the outside region and all stars corresponding to blue squares are in the inside region, or196

else the star constraint will be violated. Then the solution path inside of S must correspond197

exactly to a solution path in I. J198

I Open Problem 2. Is it NP-complete to solve Witness puzzles containing only a constant199

number of colors of stars?200

6 Triangles201

Clue types Complexity
0 P [10]
1 NP-complete [Theorem 7]
2 Open
3 NP-complete [Theorem 8]
4 P [trivial]
0 and 2 NP-complete
Table 4 Summary of Slitherlink / Witness tri-

angle constraints. New results are bold.

Triangles are placed in cells. The number202

of solution path edges adjacent to that cell203

must match the number of triangles. This is204

similar to Slitherlink, which is known to be205

NP-complete [10]; however the proof in [10]206

relies critically on being able to force zero207

edges around a cell using 0-clues, which are208

not available in The Witness. We character-209

ize all possibile combinations of constraints210

of these types for grid graphs. Table 4 summarizes what is known.211
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2

2

2

22 2

1 1

1 1 11 3

3

3

3

3 3

4 4

4 4R−1R B−1 B

squares instance

Figure 7 The boundary of the reduction. Each visual (color, number) pair represents a distinct
color in the constructed instance. All stars depicted as blue correspond to blue squares in the source
instance and must be in the inside region. Stars depicted as red correspond to red squares and must
be in the outside region. The other stars enforce this.

I Open Problem 3. Is it NP-complete to solve Witness puzzles containing only 2-triangle212

clues (and no broken edges)?213

6.1 One Triangle Clues214

Proving hardness of Witness puzzles containing only 1-triangle clues is made challenging215

by the fact that it is impossible to (locally) force turns on the interior of the puzzle. In216

particular, any rectangular interior region can be locally satisfied by a solution path which217

either traverses every second row of horizontal edges in the region or every second column of218

vertical edges in the region regardless of the configuration of 1-triangle clues in the region.219

Therefore, any local arguments we want to make about gadgets on the interior of the puzzle220

will need to admit the possibility of local solutions which are comprised of just horizontal221

or vertical paths straight through.222

I Theorem 7. It is NP-complete to solve Witness puzzles containing only 1-triangle clues.223

Proof sketch. We reduce from positive 1-in-3SAT, making use of the fact that the solution224

path must be a single closed path. We force the solution path to traverse all horizontal225

edges except for on the interior of gadgets, in which the solution path is allowed to connect226

adjacent horizontal path segments in a controlled manner (see Figure 8 for one key gadget),227

such that doing so corresponds to a solution to the source 1-in-3SAT instance. J228

6.2 Three Triangle Clues229

I Theorem 8. It is NP-complete to solve Witness puzzles containing only 3-triangle clues.230

Proof sketch. We use the Hamiltonicity framework. Adjacent 3-triangle clues must be231

traversed consecutively by the solution path, so we can use them to for the solution path to232

trace the boundary of each chamber. Figure 9 shows the construction of a chamber. J233
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3:10 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

(a) Unsolved. (b) “All” or “active”
solution.

(c) “Nothing” or “inactive”
solution.

Figure 8 All-or-nothing gadget.

(a) Unsolved. (b) One possible solution, using the left and
bottom edges.

Figure 9 A chamber with edges to the left, right, and below.

7 Polyominoes234

This section covers various types of polyomino and antipolyomino clues. Polyomino clues can235

generally be characterized by the size and shape of the polyomino and whether or not they236

can be rotated ( vs. ). For each region, it must be possible to place all polyominoes and237

antipolyominoes depicted in that region’s clues (not necessarily within the region) so that238

for some i ∈ {0, 1}, each cell inside the region is covered by exactly i more polyomino than239

antipolyomino and each cell outside the region is covered by the same number of polyominoes240

and antipolyominoes. We give several negative results showing that some of the simplest241
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(anti)polyomino clues suffice for NP-completeness.242

Concurrent work [8] shows that Witness puzzles with squares of two colors for which243

every cell contains a square clue can be solved in polynomial time. Interestingly, such244

puzzles are equivalent to puzzles with only monominoes, by replacing one color of square245

with monominoes and the other color with blank cells. The only constraint on the two puzzle246

types is that there can be no region with a mix of square colors or, equivalently, monomino247

clues and blank cells. However, the question of whether puzzles with only monominoes and248

broken edges can be solved in polynomial time is still open.249

7.1 Rotatable Dominoes250

...

{

{

{{

Figure 10 Overview of the rotatable
dominoes NP-completeness proof.

251

I Theorem 9. It is NP-complete to solve Witness252

puzzles containing only rotatable dominoes.253

Proof sketch. We reduce from Rectilinear Steiner254

Tree: given n points with integer coordinates (x′i, y′i)255

in the plane, i ∈ {1, 2, . . . , n}, and given an integer k,256

decide whether there exists a rectilinear tree connect-257

ing the n points having total length at most k. As258

illustrated in Figure 10, we embed the tree in the259

cells of a Witness puzzle, putting a domino clue at260

each vertex of the tree, which the solution path must261

therefore visit. The total number of dominoes is proportional to k, such that with careful262

counting, the area enclosed by the solution path must “look like” a tree of length exactly k263

in the original Steiner tree instance. J264

7.2 Monominoes + Antimonominoes265

I Theorem 10. It is NP-complete to solve Witness puzzles containing only monominoes266

and antimonominoes.267

Proof sketch. The reduction is very similar to that of Theorem 9, except that the vertices of268

the Steiner tree contain antimonomino clues, and most of the other cells contain monomino269

clues. We force the solution path to partition the puzzle into two regions, an “outside” region270

which is entirely covered by monominoes, and an “inside” region which contains exactly as271

many antimonominoes as monominoes, thereby satisfying both. We show that doing this272

corresponds to a solution to the Steiner tree source instance. J273

7.3 Nonrotatable Dominoes274

I Theorem 11. It is NP-complete to solve Witness puzzles containing only nonrotatable275

vertical dominoes.276

Proof sketch. We reduce from planar rectilinear monotone 3SAT [7]. Refer to Figure 11.277

We construct variable “wires” which are comprised of dominoes arranged on a diagonal278

which the solution path must enclose in one of two settings. Each clause needs to “connect”279

to at least one of its literals, but can only get close enough to do so if the corresponding280

variable is set appropriately. J281

I Open Problem 4. Is there a polynomial-time algorithm to solve Witness puzzles containing282

only monominoes and broken edges?283
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(a) The puzzle. (b) The solution.

Figure 11 A Witness puzzle produced from (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬y) and its
solution (x and y are false, z is true). Shaded cells show the domino tiling on the path’s interior.

8 Antibodies284

An antibody ( ) eliminates itself and one other clue in its region. For the antibody to be285

satisfied, this region must not be satisfied without eliminating a clue; that is, the antibody286

must be necessary. An antibody may be colored, but its color does not restrict which clues287

it can eliminate.4 Very few Witness puzzles contain multiple antibodies, making the formal288

rules for the interactions between antibodies not fully determined by the in-game puzzles.289

We believe the following interpretation is a natural one: each antibody increments a count290

of clues that must necessarily be unsatisfied for their containing region to be satisfied. If291

there are k antibodies in a region, then there must be k clues which can be eliminated such292

that those k clues were unsatisfied and all other clues were satisfied; furthermore, there must293

not have been a set of fewer than k unsatisfied clues such that all other clues are satisfied5.294

Antibodies cannot eliminate other antibodies. The choice of clue to eliminate need not be295

unique; for instance, a region with three white stars and one antibody is satisfied, even296

though the stars are not distinguished. Formally:297

I Definition 12 (Simultaneous Antibodies). A region with k antibody clues is satisfied if and298

only if there exists a set S of k non-antibody clues such that eliminating all clues in S and299

4 Antibody color matters when checking if the antibody is necessary; a region containing only a star and
an antibody of the same color is unsatisfied because the antibody is not necessary.

5 Whether or not a clue is satisfied is usually determined only by the solution path; however, in the case
of polyominoes and antipolyominoes, there might be several choices of packings which satisfy different
sets of clues.
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all k antibodies leaves the region satisfied, and there does not exist a set S′ of non-antibody300

clues with |S′| < k such that eliminating all clues in S′ and only |S′| of the antibodies leaves301

the region satisfied.302

I Theorem 13. Witness puzzles containing all clue types except polyominoes and antipoly-303

ominoes are in NP.304

Proof sketch. Other than antibodies, polyominoes, and antipolyominoes, whether or not a305

clue is satisfied can be easily determined from the solution path. Thus, checking whether306

an antibody which eliminates such a clue is necessary is easy. J307

I Theorem 14. Witness puzzles containing all clue types except antipolyominoes and for308

which at least one solution eliminates at most one polyomino in each region are in NP.309

Proof sketch. If at least one polyomino is eliminated in a region containing at least two310

polyominoes and the region is satisfied as a result, then the region can’t be satisfied without311

deleting at least one polyomino because the total area of the polyominoes is greater than312

that of the region, and therefore there is no packing. J313

I Theorem 15. Witness puzzles containing any set of clue types (including polyominoes,314

antipolyominoes, and antibodies) are in Σ2.315

Proof. Solving this Witness puzzle requires picking clues for antibodies to eliminate and316

finding a path which respects the remaining clues, such that the regions cannot be satisfied317

if only a subset of antibodies are used to eliminate clues. Membership in Σ2 requires an318

algorithm which accepts only when there exists a certificate of validity for which there is319

no certificate of invalidity (i.e., one alternation of ∃x∀y). A certificate of invalidity allows320

a polynomial-time algorithm to check whether an instance of a given problem is false. Our321

certificate of validity is a solution path, a mapping from antibodies to eliminated clues, and322

a packing witness for any region with at least one uneliminated polyomino. Our certificate323

of invalidity is the solution path (from the certificate of validity), a mapping of a subset of324

the antibodies to eliminated clues, and a packing witness for any region with at least one325

uneliminated polyomino.326

Our verification algorithm begins checking the certificate of validity by verifying the327

packing witnesses and checking that the antibody mapping specifies distinct eliminated328

clues in the same region as each antibody. Then we remove all antibodies, polyomino and329

antipolyomino clues, and eliminated clues from the Witness puzzle and run the algorithm330

given in the proof of Theorem 13 to verify that the remaining clues in each region are satisfied331

under the solution path.332

To verify the certificate of invalidity, we again check its packing witnesses and its (par-333

tial) antibody mapping. Then we remove the used antibodies, polyomino and antipolyomino334

clues, and eliminated clues from the Witness puzzle. We replace any unused colored anti-335

bodies with stars of their color if they are in the same region as an (uneliminated) star of336

that color, then remove any remaining antibodies. We run the polynomial-time algorithm337

given in the proof of Theorem 13 on the resulting Witness puzzle. Our algorithm accepts if338

and only if the certificate of validity is valid and all certificates of invalidity are invalid. J339

Finally, we will show that Witness puzzles in general are Σ2-complete. We will proceed340

in two steps, first considering puzzles which have two (or more) antibodies which might be341

eliminating polyominoes in the same region, and then considering puzzles which have only342

one antibody but both polyominoes and antipolyominoes. In both cases, we will reduce from343

Adversarial-Boundary Edge-Matching, a one-round two-player game defined as follows:344
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I Problem 2 (Adversarial-Boundary Edge-Matching). A signed color is a sign (+ or −) together345

with an element of a set C of colors. Two signed colors match if they have the same element346

of C and the opposite sign. A tile is a unit square with a signed color on each of its edges.347

An n × (2m) boundary-colored board is an n × (2m) rectangle together with a signed348

color on each of the unit edges along its boundary. Given such a board and a multiset T of349

2nm tiles, a tiling is a placement of the tiles at integer locations within the rectangle such350

that two adjacent tiles have matching colors along their shared edge, and a tile adjacent351

to the boundary has a matching color along the shared edge. There are two types of tiling352

according to whether tiles can only be translated or can also be rotated.353

The adversarial-boundary edge-matching game is a one-round two-player game played on354

a 2n ×m boundary-colored board B and a multiset T of 2nm tiles. Name the unit edges355

along B’s top boundary e0, e1, . . . , e2n from left to right. During the first player’s turn, for356

each even i = 0, 2, 4, . . . , 2n − 2, the first player chooses to leave alone or swap the signed357

colors on ei and ei+1. During the second player’s turn, the second player attempts to tile the358

resulting boundary-colored board B′ such that signed colors on coincident edges (whether359

on tiles or on the boundary of B′) match. If the second player succeeds in tiling, the second360

player wins; otherwise, the first player wins.361

The adversarial-boundary edge-matching problem is to decide whether the first player has362

a winning strategy for a given adversarial-boundary edge-matching game; that is, whether363

there exists a choice of top-boundary swaps such that there does not exist an edge-matching364

tiling of the resulting boundary-colored board.365

I Lemma 16. Adversarial-boundary edge-matching is Σ2-hard, with or without tile rotation,366

even when the first player has a losing strategy.367

Proof sketch. We reduce from from QSAT2, which is the Σ2-complete problem of decid-368

ing a Boolean statement of the form ∃x1 : ∃x2 : · · · : ∃xn : ∀y1 : ∀y2 : · · · : ∀yn :369

f(x1, x2, . . . , xn; y1, y2, . . . , yn) where f is a Boolean formula using and (∧), or (∨), and/or370

not (¬). We convert this formula into a circuit, lay out the circuit on a square grid, and371

implement each circuit element as a set of tiles, one tile for each valid state (truth table row)372

of that element. The first player’s boundary-edge swaps encode a setting of true or false for373

the first player’s variables. Then, as part of solving the edge-matching problem, the second374

player must exhibit a setting of their variables that makes the formula false; otherwise the375

first player wins. J376

I Theorem 17. It is Σ2-complete to solve Witness puzzles containing two antibodies and377

polyominoes.378

Proof. We reduce from adversarial-boundary edge-matching with the guarantee that the379

first player has a losing strategy. We create a Witness puzzle containing two antibodies.380

We will force the solution path to split the puzzle into two regions, with both antibodies381

in the same region and with part of the solution path encoding top-boundary swaps. In382

the construction, it will be easy to find a solution path satisfying all non-antibody clues383

when both antibodies are used to eliminate clues, but the antibodies themselves are only384

satisfied if they are necessary. When only one antibody is used, the remaining polyominoes385

in one of the regions, together with the solution path, simulate the adversarial-boundary386

edge-matching instance. The remaining polyominoes cannot pack the region (necessitating387

the second antibody and making the Witness solution valid) exactly when the adversarial-388

boundary edge-matching instance is a YES instance. (In the context of The Witness, the389

human player is the first player in an adversarial-boundary edge-matching game, and The390

Witness is the second player.)391
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Figure 12 The intended packing of the puzzle after eliminating the medium polyomino (not
to scale). The left and right board-frame polyominoes slot inside the large polyomino, and the
monominoes fill the holes in the left board-frame polyomino. The stamps fill in their matching
handle slots in the large polyomino, leaving only the boundary-colored board for the simulated
adversarial-boundary edge-matching instance.

Encoding signed colors. We encode signed colors on the edges of polyominoes in392

binary as unit-square tabs (for positive colors) or pockets (for negative colors) [3, Figure 7].393

If the input adversarial-boundary edge-matching instance has c colors, we need dlog2(c+1)e394

bits to encode the color6. To prevent pockets at the corners of a tile from overlapping, we395

do not use the 2× 2 squares at each corner to encode colors, so tiles are built out of squares396

with side length w = dlog2(c + 1)e+ 47.397

Clue sets. We consider the clues in the Witness puzzle to be grouped into two clue398

sets, A and B, which we place far apart on the board. We will argue that any valid solution399

path must partition the puzzle into two regions, such that each set is fully contained in one400

of the regions. Figure 12 shows (the intended packing of) most of the polyomino clues.401

Clue set A contains:402

Two antibodies.403

2nw− q monominoes, where q is the total number of pockets minus the total number of404

tabs across the “dies” of the “stamps” in clue set B (see below). There are 2n stamps405

each having up to dlog2(c + 1)e tabs or pockets, so the total number of monominoes is406

6 We cannot use 0 as a color because we need at least one tab or pocket to determine the sign.
7 At the cost of introducing disconnected polyomino clues, we could leave only one pixel at each corner
out of the color encoding; that pixel is disconnected when the colors on its edges both have pockets
next to it.
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Figure 13 The medium polyomino, with boundary-colored holes matching each tile polyomino.

between 2nw − 2ndlog2(c + 1)e = 8n and 2nw + 2ndlog2(c + 1)e = 4nw − 8n inclusive.407

A w × w square polyomino for each of the 2nm tiles in the adversarial-boundary edge-408

matching instance. The edges of each polyomino are modified with tabs and pockets409

encoding the signed colors on the corresponding edges of the corresponding tile. Call410

the upper-left corner of the w × w square the key pixel of that polyomino (even if tabs411

caused other pixels to be further up or to the left).412

A “medium” sized polyomino formed from a 2n(w + 3) − 1 × m(w + 3) + 3 rectangle413

polyomino; see Figure 13. Cut a hole out of this rectangle in the image of each tile414

polyomino, aligning the key pixel of each tile polyomino to a 2n×m grid with upper-left415

point at the fourth row, second column of the rectangle and w +3 intervals between rows416

and columns. Regardless of the pattern of tabs and pockets on each tile, this spacing417

ensures at least two rows of pixels above the top row of tile-shaped holes, at least one418

row on each other side, and at least one row between adjacent holes. Then add pixels419

above the upper-leftmost and upper-rightmost pixel of the rectangle (the horns) and420

below the middle-bottommost pixel of the rectangle (the tail). Finally, cut 2nw pixels421

out of the top row of the rectangle starting from the third pixel; this cutout is the stamp422

accommodation zone.423

Two board-frame polyominoes. Again, starting from a 2n(w + 3) − 1 × m(w + 3) + 3424

rectangle polyomino, add horns and tail pixels in the same locations. Then cut out425

a 2nw × mw rectangle whose upper-left pixel is the third pixel in the top row of the426

rectangle. The left, right and bottom edges of this cutout are modified with tabs and427

pockets encoding the signed colors on the corresponding sides of the boundary-colored428

board in the adversarial-boundary edge-matching instance. Split the polyomino vertically429

along the column of edges immediately to the right of the tail pixel.430

Finally, for each monomino in this clue set, cut a pixel out of the left board-frame431

polyomino, starting from the second-bottommost pixel in the second column, continuing432

across every other column, then continuing with the fourth-bottomost pixel in the second433

column, and so on. The left board-frame polyomino has width nw + 3n, we cut pixels434

out of every other column, and we do not cut holes in its left or right columns, so we435

cut pixels out of nw+3n−2
2 columns. Below the mw-tall cutout and allowing two rows to436

ensure cut pixels do not join with pockets encoding signed colors along the edges of the437

cutout, we can cut pixels out of 3w−1
2 rows (or 3w

2 , depending on parity). This allows438

up to ( nw+3n−2
2 )( 3w−1

2 ) = n(w−4)2+2w(nw−3)+13n+2
4 + 4nw− 8n pixels to be cut out, but439

there are at most 4nw − 8n monominoes, so we can always cut enough pixels without440

interfering with any other cuts.441

Clue set B contains:442
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A stamp polyomino for each of the 2n edge segments of the top edge of the boundary-443

colored board. Each stamp is composed of a w × 2 rectangle modified to encode the444

signed color on the corresponding edge segment (called the die), a pixel centered above445

that rectangle, and a 2× h rectangular handle whose bottom-right pixel is immediately446

above that pixel, where h = max(m(w + 3) + 7, n). Stamps corresponding to 1-indexed447

edge segments 2i and 2i + 1 have pockets encoding i in binary cut into the left edge of448

their handle, starting from the second-to-top row of the handle.449

A “large” sized polyomino built from a 2n(w+3)+1×t rectangular polyomino, where t is450

the total area of all other polyominoes so far defined. Modify this polyomino by cutting451

out the middle pixel of the bottom row, the 2n(w + 3)− 1×m(w + 3) + 3 horizontally-452

centered rectangle immediately above that removed pixel, and the pixels above the upper-453

left and upper-right removed pixels. (That is, cut out space for the medium polyomino,454

including the horns and tail but not including the stamp accommodation zone.) Then455

cut out the image of each stamp in the order of their corresponding edge segments in456

the adversarial-boundary edge-matching instance, aligning the leftmost-bottom pixel of457

the first stamp’s die two pixels to the right of the upper-left removed pixel and aligning458

successive dies immediately adjacent to one another.459

Puzzle. The Witness puzzle is a 2n(w + 3) + 1× t rectangle. The start circle and end460

cap are at the middle two vertices of the bottom row of vertices.461

Placement of A clues. We place a monomino from clue
set A in the cell having the start circle and end cap as vertices,
then place an antibody above that monomino, surrounded by a
monomino in each of its other three neighbors. We then place
the other antibody, surrounded by monominoes in its neighbor-
ing cells, three cells above the first antibody. (See Figure 14.)
It is always possible to surround the antibodies in this way be-
cause there are at least 8n monominoes. We place the remaining
clues from clue set A inside the 2n(w + 3) − 1 ×m(w + 3) + 3
rectangle one row above the bottom of the puzzle; this is always
possible because |A| ≤ 4nw − 8n + 2nm + 5.

Figure 14 Because both
antibodies are surrounded by
monominoes, any region con-
taining an antibody also con-
tains at least one monomino.

Placement of B clues. We place the large polyomino clue in the upper-left cell of the462

board and the stamp clues in the 2n cells to its right.463

Argument. In any valid solution to the resulting puzzle, the large polyomino is not464

eliminated. If it were, it must be in the same region as an antibody. Because each antibody465

is surrounded by monomino clues, the number of polyomino clues in this region is strictly466

greater than the number of antibodies, so the region must be packed by the non-eliminated467

polyomino clues. The nearest (upper) antibody is t − 4 columns and nw + 3n rows away468

from the large polyomino clue, so this region has area at least t. Recall that t is the total469

area of all polyomino clues except the large polyomino. If the large polyomino is eliminated,470

there is no way to pack this region, even if all other polyomino clues are used.471

The large polyomino is as wide and as tall as the entire puzzle, so it has a unique472

placement. The large polyomino intersects its bounding box everywhere except one unit-473

length edge aligned with the start vertex and end cap, so any valid solution path can only474

touch the boundary at the start and end. Thus the solution path divides the puzzle into at475

most two regions (an inside and an outside).476

Suppose the solution path places the entire puzzle into a single region; that is, suppose477

the solution path proceeds (in either direction) from the start vertex to the end cap without478

leaving the boundary. Then by the assumption that the first player has a losing strategy479
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in the input adversarial-boundary edge-matching instance, we can pack the region while480

eliminating only one clue. The large polyomino’s placement is fixed. We eliminate the481

medium polyomino, place the two board-frame polyominoes inside the large polyomino, and482

place the monominoes in the pixels cut out of the left board-frame polyomino. It remains to483

place the stamps and tiles. By the assumption, there is a losing set of top-boundary swaps;484

we swap the corresponding pairs of stamps when placing them into the cutouts in the large485

polyomino, and then place the tiles in the remaining uncovered area bordered by the board-486

frame polyominoes and stamp dies. Because we satisfied all non-antibody constraints after487

eliminating only one clue, the unused antibody is unsatisfied, so any solution path resulting488

in a single region is not a valid solution to the puzzle. Thus there are exactly two regions.489

The cells containing the stamp clues are covered by the large polyomino, so any valid490

solution places the stamps in the same region as the large polyomino. The handles of the491

stamps are taller than the cutout in the bottom-middle of the large polyomino, so they492

must instead be placed in the stamp-shaped cutouts in the large polyomino. The pockets493

cut into the left edges of the handles ensure that stamps can only swap places corresponding494

to top-boundary swaps in the adversarial-boundary edge-matching instance.495

All clues in set A are in the other region. The monomino clue in the cell having both the496

start circle and end cap as vertices cannot be in the same region as the large polyomino (else497

the path could not divide the puzzle into two regions). Because each antibody is surrounded498

by monomino clues, the number of polyomino clues in this region is strictly greater than499

the number of antibodies, so the region must be packed by the non-eliminated polyomino500

clues. When both antibodies are used to eliminate clues, they must eliminate both board-501

frame polyominoes, and when only one is used, it must eliminate the medium polyomino;502

any other elimination leaves polyomino clues with too much or too little area to pack the503

area of the puzzle not yet covered by the large polyomino or the stamps. Thus either the504

medium polyomino or both board-frame polyominoes will not be eliminated. The medium505

polyomino and board-frame polyominoes have unique placements within the large polyomino506

determined by the horns and tail. The intersection of the outlines of these placements covers507

all the A clues, so they are all in the same other region.508

By this division of the clues into regions, any valid solution path traces the inner bound-509

ary of the large polyomino and the dies of the stamps (possibly after swapping some pairs). It510

remains to show that the solution path is valid exactly when the implied set of top-boundary511

swaps is a winning strategy in the adversarial-boundary edge-matching instance.512

When using both antibodies to eliminate the board-frame polyominoes, the remaining513

polyominoes always pack their region. The medium polyomino’s placement is fixed by the514

horns and tail; the stamp accommodation zone ensures this placement is legal regardless515

of the pattern of tabs on the dies of the stamps. The tile polyominoes fit directly into the516

cutouts in the medium polyomino and there are exactly enough monominoes to fill in the517

uncovered area in the stamp accommodation zone and the pockets of the dies.518

The solution path is only valid if both antibodies are necessary. When using one antibody519

to eliminate the medium polyomino, the board-frame polyominoes’ position is forced by the520

horns and tail. The monominoes are the only way to fill the single-pixel holes in the left521

board-frame polyomino and there are exactly enough monominoes to do so. Then the dies of522

the stamps and the edges of the rectangular cutout in the board-frame polyominoes models523

the boundary-colored board of the input adversarial-boundary edge-matching instance (see524

Figure 12). The tile polyominoes cannot pack this area, necessitating the second antibody525

and making the solution path valid, exactly when the set of top-boundary swaps is a winning526

strategy in the adversarial-boundary edge-matching instance. J527
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I Theorem 18. It is Σ2-complete to solve Witness puzzles containing one antibody, poly-528

ominoes and antipolyominoes.529

Proof sketch. As in the proof of Theorem 17, we reduce from adversarial-boundary edge-530

matching, and the reduction is similar. The primary difference is that the medium polyomino531

is also the singular board-frame polyomino. Besides the antibody and the tile polyominoes532

(same as before), clue set A contains an antipolyomino called the antikit shaped like a 1-533

pixel-wide tree with the tile polyominoes (as antipolyominoes) at the leaves and a polyomino534

shaped like the 1-pixel-wide tree (the sprue). The medium polyomino has the kit polyomino535

attached to its right side and a cutout for the sprue and for the boundary-colored board.536

The stamps must be placed in the large polyomino as in the previous proof. When the537

antibody eliminates the medium polyomino, the antikit annihilates the sprue and tile poly-538

ominoes, leaving no (anti)polyominoes in the inner region (so it is trivially satisfied). When539

the antibody is not used, the antikit annihilates the kit-shaped part of the medium polyomino540

and the sprue fits in the cutout in the medium polyomino, leaving only a boundary-colored541

board for the tile polyominoes to be placed. Placing the tile polyominoes is impossible, ne-542

cessitating the antibody and making the solution path valid, exactly when the top-boundary543

swaps are a winning strategy in the adversarial-boundary edge-matching instance. J544

By Theorem 14, Theorem 17 and Theorem 18 are tight.545

9 Metapuzzles546

In this section, we analyze several of the metapuzzles that appear in The Witness. Meta-547

puzzles are puzzles which have one or more puzzle panels as a sub-component of the puzzle,548

and in which solving the puzzle panel affects the surrounding world in a way that depends549

on the choice of solution that was used to solve the panel.550

9.1 Sliding Bridges551

The marsh area contains sliding bridges. In this metapuzzle, each bridge has a corresponding552

puzzle panel, and solving the puzzle causes the bridge to move into the position depicted by553

the outline of the solution path. The following theorem demonstrates that, regardless of the554

difficulty of the puzzle panels (i.e., even if it is easy to find all solutions of each individual555

panel), it is PSPACE-complete to solve sliding bridge metapuzzles.556

I Theorem 19. It is PSPACE-complete to solve Witness metapuzzles containing sliding557

bridges.558

Proof sketch. We straightforwardly construct the one-way and door gadgets of [2], which559

are known to be sufficient for PSPACE-completeness. J560

9.2 Elevators and Ramps561

Another metapuzzle which appears in The Witness consists of groups of platforms that move562

vertically at one or both ends to form an elevator or ramp, controlled by the path drawn563

on puzzle panels. Because the player cannot jump or fall in The Witness, the player can564

walk onto an elevator platform only if it is at the same height as the player. The player565

can adjust the height of the platforms from anywhere with line-of-sight to the controlling566

panel, including while on the platforms themselves. Besides the sawmill, the other building567

in the quarry contains a ramp and an elevator. The marsh contains a single puzzle with a568
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3× 3 grid of elevators controlled by two identical panels; as a metapuzzle, our puzzle could569

be built out of multiple marsh puzzles with two platforms and one panel each.570

I Theorem 20. It is PSPACE-complete to solve Witness metapuzzles containing elevator571

reconfiguration, even when each panel controls at most one elevator.572

Proof sketch. We construct one-way and door gadgets similar to Theorem 19. J573

9.3 Power Cables and Doors574

In the introductory area of The Witness, there are panels with two solutions, each of which575

activates a power cable. Activated cables can power one other panel (allowing it to the576

solved) or one door (opening it). If a cable connected to a door is depowered, the door577

closes. Cables cannot be split and panels can power at most one cable at a time.578

I Theorem 21. It is PSPACE-complete to solve Witness metapuzzles containing power579

cables and doors.580

Proof sketch. Again we construct one-way and door gadgets, with the slight complication581

that all powered doors in The Witness are initially closed, so we need to give the player a582

way to open exactly the set of doors which are initially open in the source instance. J583
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