Higher-Order Concurrency in Java*

Erik D. Demaine
Dept. of Computer Science
Unwersity of Waterloo
Waterloo, Ontario, Canada N2L 3G1

eddemaine @Quwaterloo.ca

Abstract. In this paper we examine an extension to Hoare’s Communicating Se-
quential Processes model called higher-order concurrency, proposed by Reppy. In
this extension, communication algorithms (or events) are first-class objects and can
be created and manipulated dynamically. In addition, threads are automatically
garbage collected and channels are first-class, that is, they can be passed over other
channels. We describe the design of a Java package that implements the main features
of higher-order concurrency, with similar ease-of-use to Reppy’s Concurrent ML sys-
tem. Our implementation can be easily extended to use a distributed system, which
is a major limitation with Concurrent ML. We also hope to bring the idea of higher-
order concurrency to a wider audience, since it is extremely powerful and flexible, but
currently only well known to the programming-languages community.

1 Introduction

CSP (Communicating Sequential Processes) [6] and its derivative occam [12] initiated
the area of concurrent programmaing, which i1s now a large area of research. In partic-
ular, they introduced important concepts, including synchronous communication over
channels and non-deterministic choice, that provide a useful abstraction of message
passing. Recently, Welch and Wood [13] have explored adding higher-level communica-
tion primitives in the KRoC 0.8beta release of occam [14].

Briefly, CSP provides message passing by basic send and receive primitives. They
are synchronous in that the send/receive operations wait for matching receive/sends
to continue. The destination or source passed to one of these primitives is specified
by a channel. A channel is a uni-directional connection between two processes. They
effectively correspond to the port abstraction, that is. one of several message queues
on a particular process, but are much more convenient to program with. The non-
deterministic choice operation (called alt in occam) does one out of a list of sends and
receives, whichever has a matching partner first.

Reppy [10] proposed an extension to the basic CSP model called higher-order concur-
rency. One way to view this extension is that synchronous-communication operations,
which we call events, can be more than just a send, a receive, or a choice of sends and
receives. Rather, an event could consist of doing several subevents in sequence. The

*This work was supported by the Natural Sciences and Engineering Research Council (NSERC).

idea is that you can then build up arbitrarily complex events by combining primitive
events (sends and receives) with both non-deterministic choice and sequences.

1.1 First-Class Events

In the higher-order-concurrency model. events are first-class objects. that is, events can
be dynamically created, stored in variables, and passed to/returned from functions, as
if they were more conventional objects like integers or booleans. Instead of writing a
function to perform some communication (e.g., implement a protocol), one can write
a function that returns an event describing how to do this communication. Events
can be executed when desired via the sync operation. The advantage of having an
“Intermediate form” of events is that the event returned by the function can now be
manipulated (i.e., combined with other events) before it is executed. If the function
carried out the communication directly, there would be no way in general to manipulate
it without changing the code.

A simple example is communicating with a distributed database that may replicate
data (for example, DNS servers). A program may wish to query a number of database
servers for the same information, and use the result that comes first (this corresponds to
a non-deterministic choice). Presumably, the distributed database comes with a client
function that allows a program to make a query to a server and get a response. If the
function returns an event, we can simply call the function once for each server we want
to query, use the choose combinator! (making another event e), and call sync(e). On
the other hand. if the function sends the request and then waits for a reply (instead
of immediately returning an event explaining how to do so), then we would have to
modify the routine to support several transactions at once, resulting in messy, difficult-
to-understand /debug code. This is especially the case when each server uses a different,
complex protocol.

One may question whether complex protocols can actually be described using few
event combinators. Indeed, the higher-order-concurrency model provides very few fea-
tures, but they are provided in an extremely flexible (first-class) way. In his PhD thesis
[10], Reppy showed that the following forms of communication could be constructed
(of course, the solutions also involve creating threads). In other words, he was able to
construct event values from scratch that represent the following advanced concurrent
features:

e Buffered channels (asynchronous communication)

e Multicast channels and thus multicast operations

e Condition variables (write-once variables)

o Ada-style rendezvous, plus allowing nested transactions
e Locks and semaphores

e Multilisp futures

1A combinator, from functional-language terminology, is a function that takes values of a particular
type and “combines” them into a new value of that type. For example, the compose operation (o) is
a combinator on functions.

Since these constructs are abstracted into events. they can be further manipulated. For
example, we can non-deterministically choose between multiple Ada entry calls. We
could also obtain lock A or lock B. whichever is available first; this is particularly useful
for resolving deadlock. This is clearly not possible with other concurrent languages
unless there is built-in support for these specific operations, but it is a fortunate side
effect of higher-order concurrency.

The power of typical concurrent-programming languages can be measured by how
many features it provides. On the other hand, if a concurrent-programming language
provides first-class event abstraction, it does not have to “guess” what concurrent struc-
tures the user might want. If the language does not support a needed construct. users
can build it themselves. Users do not have to make do with the provided forms of
communication; instead, they can build up their own forms from existing ones, and
use them as if they were built-in. Assuming they do this in the spirit of higher-order
concurrency, they can then make new constructs from others they have built.

Another important feature of the higher-order concurrency model is garbage collec-
tion of threads. The system monitors channels, and marks them as dead if there are
no threads currently “at the other end” of the channel. that is, communications on
this channel will necessarily block forever. Whenever a thread executes an event that
only involves dead channels, it can be proven that the thread will block forever, and
hence it can be discarded. This greatly simplifies non-deterministic communication and
end cases; for example, the programmer does not need to worry about sending “kill”
messages to so-called “daemon” threads that implement the above constructs.

1.2 Goals

Reppy implemented the higher-order-concurrency model in the Concurrent ML (CML)
system [9, 11]. CML is implemented in the sequential language Standard ML (SML)
via user-level threads. There are two major disadvantages of implementing higher-order
concurrency in this way.

First of all, SML is not in common use except for programming-language research.
This has the consequence that CML is not wide-spread, even though it has an incredible
amount of flexibility that makes it a top-ranking concurrent language. It would be
advantageous to bring the concurrency features to a more popular language such as C
or Java.

Second, there are no possibilities for exploiting a parallel computer, even though CML
programs often have a high level of concurrency. If we can use system-level threads or
operating-system processes, then we can put parts of the program on separate proces-
sors. SML has little support for distributed systems, whereas most of the development
in this area has been done in languages such as C, and more recently in Java 1.1 with
Remote Method Invocation (RMI).

In previous work [1], we implemented several features of higher-order concurrency
in the Parallel Virtual Machine (PVM) [3] using a base language of C. Unfortunately,
because of the base language. the package is somewhat inconvenient to use because
events and channels have to be deleted explicitly. There is also an implicit problem
because processes cannot be parameterized, disallowing some things that are possible
in CML.

In this paper, we look at how higher-order concurrency can be implemented in Java.

Java [4] provides garbage collection of objects and full subtyping. In addition, it has
support for concurrency, and will soon have effective support for distributed systems.
As we shall show, this makes it particularly suitable for implementing higher-order con-
currency in a way that it is extremely convenient to use. Java is a good “replacement”
for ML, since it provides a sufficient number of features, while staying (in principle)
more efficient since it avoids expensive features such as closures and continuations.

While we have as yet only implemented a multi-threaded. single-process version of
higher-order concurrency. we have designed the package using a system model that
1s very close to a distributed system. We consider threads to be completely separate
in the sense that the only way they can communicate is through mailboxes, which is
essentially message passing. Hence, the system should be easy to modify to use multiple
computers in parallel.

The main goal of this paper is to bring the capabilities of higher-order concurrency
to a larger community. In this way. we hope that more people will realize the useful
generality of the approach, and that the ideas will become more widespread. We feel
that garbage collection of processes and first-class events and channels offer a powerful
and easy-to-use abstraction for concurrent programming that does not significantly
harm performance.

Similar to CSP and occam. it is relatively easy to reason theoretically about programs
written in the higher-order-concurrency model. using the formal semantics defined by
Reppy [11]. Hence, we are also helping to bridge the gap between theoretically based
languages and Java.

1.3 Related Work

No one else, to our knowledge, has implemented higher-order concurrency in a language
other than ML. Hence, the idea of bringing it to a wider audience is entirely new. While
the Distributed ML project [8] has extended Concurrent ML to use multiple processors,
it only supports synchronous channels within the same process; one can only use “port
groups” (a form of asynchronous multicast channels) for interprocess communication.
We feel that changing the available concurrency abstractions, depending on the location
of the threads that want to communicate, is an unfortunate approach.

Hilderink et al. [5] examine implementing CSP in Java. While our implementation
of higher-order concurrency could be considered a generalization of this work, the ap-
proaches are entirely different.

We have developed several protocols to support synchronous communication over one-
to-many and many-to-one channels with non-determinism. This is by no means new.
The deadlock-free version of the protocol in Section 5 resembles the protocol described
in [7], although the latter uses extra threads. Our two algorithms that only use a two-
message cycle per user-level message (one deadlock-prone, the other deadlock-free) are
new.

1.4 Outline

In the following four sections, we look at various components of higher-order concur-
rency. and show how they can be implemented in Java. Section 6 gives an example

public interface ThreadCode {
public void threadCode (void);
1

Figure 1: The ThreadCode interface.

construction, demonstrating that the described system is easy to use. We conclude in
Section 7.

2 Threads

In the higher-order-concurrency model, threads are described by functions that take no
parameters and return void (in C/Java terminology), which represent their code. Java
does not support references to functions; instead, we must place the code for a particular
thread in a class, and pass an instance of the class. We have the ability to store state in
non-static data of the instance, representing a closure (functional-language terminology
for code with a corresponding environment or state).

These “code classes” are represented by implementing the ThreadCode interface (Fig-
ure 1). The static HOC.spawn routine, which creates a thread running the specified code,
then simply creates an HOCThread object, which extends java.lang.Thread. whose run
routine simply calls the associated threadCode function. The reason for this level of
indirection (instead of the user simply specifying a java.lang.Runnable object), is that
we can now call our own initialization code, and call cleanup code (described further
in Section 4) when the thread exits. The thread exits either by returning from the
threadCode function or by throwing java.lang.ThreadDeath, which can be caught via
try/catch.

3 Mailboxes

As mentioned in Section 1.2. we completely separate threads and only allow them to
communicate via mailboxes. We define two types of mailboxes: a CMailbox for control
messages used in the protocol described in Section 5, and a Mailbox that is used for
sending user-level messages. In this section we describe the latter type, because they
do strictly more than CMailboxes.

In the next section, we will see that channels must be modified when they are com-
municated to other threads (through channels); note that channels, like events, are
also first-class objects. Since the type Chan is a class (as are all non-trivial types in
Java), the Mailbox can only store a reference to the channel, or whatever object is
being communicated.

Java provides run-time type information, so the Mailbox can determine if the object
is indeed a Chan, in which case it can “morph” it into a different channel. We will see
that we need a two-phase morphing process; the sending thread must “pre-morph” the
channel, and the receiving thread must “morph” it and return the morphed channel.
More generally, we provide the Morphing interface (Figure 2) which Chan implements;
if the object being communicated implements Morphing, then the preMorph and morph

public interface Morphing {
public void preMorph (Thread dest);
public Morphing morph (Thread src);

}

Figure 2: The Morphing interface. preMorph is called on the sending thread. morph
(called on the receiving thread) should return an object of the same type as this.

methods are called at appropriate points during communication. Note that this is
transparent to the user, because it is all done at the Mailbox level (unless the user
“cheats” and communicates objects without using mailboxes (channels), in which case
morphing must be done by hand).

An important problem arises, however. Suppose the user passes a java.util.Vector
or java.util.Hashtable to another thread. These data structures (which store general
java.lang.Objects) potentially include Morphing objects. This can be abstracted as
follows: the object being passed is a tree, where each non-leaf is a container, and each
leaf is not. We wish to examine each leaf, and morph it if it implements Morphing,
which involves changing the reference stored in the parent container.

We implement this by providing static functions HOC.morph and HOC.preMorph that
can be applied to arbitrary java.lang.0Objects. which check if the object implements
Morphing, and if so call its morph and preMorph methods. respectively. Hence, any object
that contains general objects can implement Morphing, and simply call HOC.preMorph
and HOC.morph on each subobject it includes. Since we do not want to modify the Java
class library, we currently have to handle java.util.Vector and related built-in Java
types as special cases, by checking if the object is one of these types.

The end result is that passing objects is simple, while creating classes that may
contain Morphing objects is now more complicated. Such a complication is necessary,
however, if we wish to pass channels over channels, as we shall now see.

4 Channels and Ports

While the higher-order-concurrency model provides many-to-many channels, that is.
there can be an arbitrary number of senders and receivers on a channel (Figure 3(a)),
this is difficult to implement in a distributed system, and would be very inefficient.
Hence, we provide many-to-one and one-to-many channels with classes M2oChan and
02mChan. respectively, which both extend the abstract class Chan. Using first-class
events, one could build many-to-many channels (Figure 3(b)) and treat them as if
they were a built-in feature, except that you would have to use different transmit and
receive functions to create primitive events for them.

The advantage of one-to-many [many-to-one] channels is the notion of a fixed? owner,
namely the unique sender [receiver|. The owner creates the first copy of the channel,
and more copies are created by sending the channel to other threads. The membership

2There is no fundamental reason why the owner cannot be moved around dynamically; indeed, this is
supported in some concurrent-programming languages such as Fortran-M [2]. However, it complicates
the protocols, and is likely an inefficient and uncommon operation.

Senders Receivers

O ()

\Q Extra

process
(a) (b)

Figure 3: (a) A many-to-many channel. Attempting to send on a channel will block
until one of the receivers attempts to receive a message from the channel, and vice
versa. When there are multiple willing senders and/or receivers, the behavior is non-

HOC

deterministic, although we draw it as a queue here. (b) Implementing a many-to-many
channel as a many-to-one and one-to-many channel with an extra process in between.

of a channel is the set of all other threads that are “connected” to the channel (that is,
they have copies of the channel).
There are three major properties that we want channels to possess:

1. The owner must maintain the membership of each channel. First, some of the
protocols described in Section 5 require this information. Second, it is important
to know when the membership is empty, because at this point the channel is
considered dead, that is, the owner will never succeed at sending/receiving on
it. We use this information to garbage-collect threads when they sync on an
event that only involves dead channels, since it will necessarily wait forever; this
is a feature of higher-order concurrency that greatly simplifies programming (an
example is given is Section 6).

2. We must detect when the owner has discarded all of its references to the channel,
because it means that the members cannot succeed in communicating over the
channel. We call the channel dead in this situation as well, since it can no longer
be used for communication. Hence. this information is necessary for garbage
collection of threads.

3. There must be a mechanism for members to name the channel when communicat-
ing to the owner. This is required for protocol reasons; for example, if a thread
wishes to send a message on the channel. it must tell the owner. It is important
that the owner knows information about the channel given just its name, so that
(for example) it can notify the sender if the channel is dead (i.e., the owner has
discarded its references).

Let us first demonstrate why it is necessary to morph channels, even with a shared
address space. If we do not, the owner and every member will have a reference to a
common Chan object (Figure 4(a)). In Java, we can only detect when the object has
zero references (by overriding the finalize method). Hence, conditions (1) and (2) are
not satisfied; we can only detect when both the owner has discarded its references and
there are no members.

Even with channel morphing, there is still a problem. As shown in Figure 4(b),
condition (3) is not satisfied, since there is no way for the owner (thread a) to find its

Figure 4: Possible ways to organize channels. In this example, thread a s the owner
of a channel with members b and c. Small rectangles denote variables, and rounded
rectangles denote channels. Thick lines denote reference (pointer) assoctation, whereas
thin lines denote conceptual linking, that is, channels that know the port’s id. (a) No
morphing. (b) No ports. (c) Final design with an id-to-port mapping.

copy of the channel using the id (a,5). We can add a hash table to provide such an
association (as in Figure 4(c)), but this violates condition (2), since there is always a
reference to the owner’s copy of the channel (stored in the hash table).

Therefore, we need to split up the owner’s copy of a channel into two objects, a
Chan (as usual) and a Port (Figure 4(c)). The port maintains membership and persists
until there are no copies left of the channel. Condition (3) is satisfied since there is
an id-to-port mapping, control messages refer to the port id, and channels store their
corresponding port id (and the owner thread). Garbage collection of the Chans, that is,
the copies of the channel, can be detected. and will cause notifications to be sent to the
Port. We can hence easily detect if the membership is empty, and can easily determine
if the owner has discarded its copy, and therefore conditions (1) and (2) are satisfied.
Note that each copy of the channel has its own id so that members can distinguish
between requests from the owner even when there are multiple copies of the channel on
the same thread.

One assumption that we make is that, if a thread sends a channel to its owner, the
owner treats this new copy as if it was a member. This way, once the owner discards
the initial copy of the channel. it will never get another one. Hence, the channel is
permanently dead once the owner discards its copy, which makes it easy for a member
to detect if the channel is dead (the member essentially asks the owner if it has discarded

its copy yet).

4.1 Maintaining Channel Membership

Let us discuss the control messages needed to maintain channel membership. If a
member’s Chan is garbage collected, i.e., a member has discarded its copy of the channel,
then the member sends a REMOVE message to indicate this. We cannot use such a simple
method to add members when we communicate channels to other threads, however.
Suppose that threads only told the owner when they received channels. Then the
following scenario leads to an unfortunate situation: the sending thread, currently the
only member, sends the Chan and immediately discards it (causing a REMOVE message).
Potentially, the REMOVE message arrives before the receiver sends its ADD message, mean-
ing that the port thinks there are no members for a period of time. Hence. the port

may be destroyed, even though there is still a member.

A similar race condition occurs if only the sending thread notifies the owner, assuming
arbitrary network delays. Hence, both the sender and receiver have to notify the owner,
in such a way that the owner ignores the second ADD message that arrives. This involves
some precise manipulation of data structures that is purely an implementation detail.
Details can be found in [1].

5 Events

Let us first overview the event combinators that we implement. As we have indicated,
choose returns an event representing the non-deterministic choice of a list of events
(either an array or a java.util.Vector). The remaining combinators, wrap, guard, and
wrapAbort, are for constructing sequences.

wrap takes an event and a function with a single parameter and return value of
type java.lang.Object, and returns a new event. Applying sync to the wrapped event
corresponds to syncing the subevent, and returning the function’s value when given
the subevent’s result as a parameter. (The result of a transmit event is null, and the
result of a receive event is the object received.) If we assume the function performs the
“rest of the sequence.” then we have implemented a sequence event, where we commit
to completing the entire sequence once the first part (the subevent) completes. (The
notion of commitment is important when the event is placed in a choose.)

guard takes a function and returns an event representing it. Applying sync to the
“guarded function” causes the function to be called; the guard event is effectively re-
placed by the event that the function returns, for the duration of that call to sync. If
the function spawns a thread to do the “previous part of the sequence” and returns the
last part, then we commit only after the entire sequence completes. By mixing wrap
and guard, we can place the commit point in an arbitrary position in a sequence of
events [10].

Finally, wrapAbort takes an event and a function, and returns an event that is equiv-
alent to the subevent, unless the event is not completed (e.g., it was in a choose event
and a different subevent completed first), in which case a thread is spawned to evaluate
the function. This is useful for representing non-atomic transactions that consist of a
sequence of operations with a commit point near the end. Typically, a guarded function
returns a wrapAbort event to clean up what it started in the background.

It should be obvious how to define interfaces that represent the closures (functions and
state) given to the above combinators. An abort function is equivalent to a ThreadCode
(Figure 1), and the others are similar.

We represent events by an abstract class Event, and represent primitive (communi-
cation) events by an abstract class CommEvent. The entire class hierarchy below Event
1s shown in Figure 5.

Every event type must define two routines: possible and complete. possibleis called
before the sync operation “starts” (i.e., before it tries to complete primitive events).
For primitive events, this must add the event to a specified vector. complete is called
after a primitive event completes; both a reference to the completed primitive event and
its result are passed to the complete function. The return value is a pair of a boolean
and an object. The boolean should be true if and only if the event is an ancestor of

CommEvent | | Choose | | Wrap| | Guard | (WrapAbort
() (Choose) (Wrap) (Guard

(Transmit) (Receive]

Figure 5: The class hierarchy below Event.

the completed primitive event. The object is the result computed so far. It is easy to
define the described event types using possible and complete.

As mentioned above, the sync operation collects a list of the primitive events. that is,
the leaves in the “event tree.” A primitive event type must implement four additional
operations, notify, attempt, finish, and abort. which correspond to phases in the
protocol that is currently implemented. In the beginning. a notify message is sent, for
each primitive event executed by member threads, to the channel’s owner.

After each control message is received and processed. sync “attempts” each primitive
event. For primitive events executed by owners, this succeeds if a notify message has
been received (and it has not been cancelled with an abort message); in this case, the
owner half-commits (i.e., it commits to determining if this transaction will succeed)
and sends a request message. For other primitive events. attempt succeeds if a request
message has been received, in which case the thread sends a grant message and fully
commits. A grant message for an event e causes the owner to fully commit to e, whereas
an abort message causes it to decommit from a previous half-commitment to e (if one
exists). Fully committing to e corresponds to aborting other primitive events and
calling finish on e (which sends or receives a user-level message). When a thread is
half-committed, it does not attempt any primitive events.

This protocol is summarized in Figure 6. It is subject to deadlock if the communica-
tion pattern is cyclic, and involves three to four control messages for each synchronous
communication (two is clearly optimal). We have designed a deadlock-free version,
a version that uses only two message cycles per synchronous communication, and a
deadlock-free version of the latter protocol. Unfortunately, we do not have sufficient
space to describe them in this paper; we expect to have a separate paper ready soon.

6 Example

In this section, we show how general semaphores can be easily implemented in the
described system, with events to represent the up and down operations (Figure 7).
With this we can perform a non-deterministic choice between downing two semaphores.
We could also, for example, non-deterministically either down two semaphores in se-
quence, or down a different two semaphores in sequence. using wrapAbort to up the first
semaphore in a failed sequence.

We shall go over the code itself and illustrate its features as we go. A semaphore
object (Semaphore) is implemented using a thread (SemaphoreThread) that is dedicated
to maintaining the semaphore count. The Semaphore constructor demonstrates how the
“first” channels are created (over which we can pass other channels): if the true flag

Sender Receiver Sender Receiver

Figure 6: The successful and unsuccessful scenarios in the described protocol for a
many-to-one channel. HC, C, and DC stand for half-commit, commat, and decommit,
respectively.

is passed to HOC.spawn, then a channel to and from the child is created, and returned
as an array of two Chans. The child can retrieve its copies of the channels by calling
HOC.getParentChans, which returns a (morphed copy of) the same array. The Semaphore
constructor uses the channel from the child (stored in entry 1) to obtain two many-to-
one channels that the SemaphoreThread creates, which are stored in the private variables
of the Semaphore object.

The up and down operations on the Semaphore correspond to sending a (null) message
on the up and down channels that the SemaphoreThread continually tries to receive on.
The SemaphoreThread uses a Wrap event so that sync returns the Integer 1 when up
succeeds, and -1 when down succeeds. Normally, it will sync on a non-deterministic
choice between the two possibilities of up and down, but when the semaphore value is
zero, 1t only allows an up operation. By splitting the up and down operations into two
channels, it is simple to disable the down operation and block threads that attempt to
down, without requiring a complex request-reply structure.

One useful property of the SemaphoreThread is that it will automatically disappear
when no copies of the corresponding Semaphore object exist. Thus, garbage collection
of threads avoids the need of sending a “kill” message to destroy the SemaphoreThread
once it is no longer needed.

We chose this example because it shows how easy it is to code with higher-order
concurrency. Recently, semaphores were added to the KRoC occam compiler because
they are annoying to implement in occam, and difficult to implement efficiently [14].
With higher-order concurrency, it is easy for the user to build concurrency structures
and use them as if they were built-in. The distributed-semaphore implementation in
Figure 7 1s also likely nearly as efficient as possible.

The Java package is somewhat more difficult to use than CML because users must
implement Morphing for nearly every concurrent structure they build. As we noted
earlier, this is a necessary inconvenience, since we need to morph channels that may be
nested within structures that the user communicates to other threads. One alternative
is to access information available within the Java Virtual Machine (JVM) and traverse
the data structures this way. We believe that this is not the right approach unless
such information can be accessed in a standard way; this is unlikely to happen, since it
endangers data encapsulation.

import hoc.*;
public class Semaphore implements Morphing {
private Chan downCh, upCh;
public Semaphore (int value) {
Chan[] child = HOC.spawn (new SemaphoreThread (value), true);
downCh = child[1].accept ();
upCh = child[1].accept ();
}
private Semaphore (Chan downCh, Chan upCh) {
this.downCh = downCh;
this.upCh = upCh;
}
public Event down () {
return new Transmit (downCh, null);
}
public Event up () {
return new Transmit (upCh, null);
}
public void preMorph (Thread dest) {
HOC.preMorph (downCh, dest);
HOC.preMorph (upCh, dest);
}
public Morphing morph (Thread src) {
return new Semaphore (HOC.morph (downCh, src), HOC.morph (upCh, src));
}
}
final class SemaphoreThread implements ThreadCode {
int value;
SemaphoreThread (int value) {
this.value = value;
}
public void threadCode () {
Chan[] parent = HOC.getParentChans ();
Chan downCh = new M2oChan ();
Chan upCh = new M2oChan ();
parent[1].send (downCh);
parent[1].send (upCh);
Event down = new Wrap (new Receive (downCh), new ReturnInt (-1));
Event up = new Wrap (new Receive (upCh), new ReturnInt (1));
Event both = new Choose (down, up);
while (true) {
Integer i = (Integer) sync ((value <= 0 ? up : both));
value += i.intValue ();

}
¥
final class ReturnInt implements WrapFunc {
private int i;
ReturnInt (int i) {
this.i = 1i;
}
Object wrapFunc (Object obj) {
return new Integer (i);

}

Figure 7: Implementation of semaphores using higher-order-concurrency features.

7 Conclusion

In this paper we have described the design of an implementation of higher-order con-
currency in Java. It provides first-class events and channels, and automatic garbage
collection of threads. We have achieved an ease-of-use similar to that in Concurrent
ML. The result is a concurrent-programming language where users can build up their
own constructs and use them as if they were built-in. It is easily extendible to use a
distributed system, unlike CML.

While Java programs are currently slow, the package is still very useful. Concur-
rency is a highly useful paradigm for building interactive systems [9], which is a major
focus with Java. A version supporting threads running on separate computers is nec-
essary when the program is run in a distributed environment, for example groupware
applications.

The speed of concurrency support is clearly not relevant, since it depends on the un-
derlying Java Virtual Machine implementation, and currently Java cannot compare to
other run-time environments (ignoring concurrency). However, the networking overhead
is of particular concern, especially when we consider slow networks. The currently im-
plemented protocol requires three to four messages per user-level message, but we have
developed a protocol that achieves two message cycles per user-level message. which is
optimal. Hence, the package should be very efficient in a distributed environment.

Acknowledgment

We wish to thank David Taylor for valuable comments on the paper.

References

[1] Erik D. Demaine. Higher-order concurrency in PVM. In Proceedings of the Clus-
ter Computing Conference. Atlanta. Georgia, March 1997. World Wide Web.
http://www.mathcs.emory.edu/ " ccc97.

2| Ian Foster and K. M. Chandy. Fortran M: A language for modular parallel pro-
guag
gramming. Journal of Parallel and Distributed Computing, 26(1):21-35, 1995.

[3] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang., Robert Manchek, and
Vaidy Sunderam. PVM: Parallel Virtual Machine — A User’s Guide and Tutorial
for Networked Parallel Computing. The MIT Press, Cambridge, MA, 1994.

[4] James Gosling and Henry McGilton. The Java language environment. White
paper, Sun Microsystems. Inc., 1996.

[5] G.H. Hilderink, J. F. Broenink, W. Vervoort, and A. W. P. Bakkers. Communicat-
ing Java threads. In Proceedings of the Parallel Programmaing and Java Conference

(WoTUG20). 10S Press (Netherlands), April 1997.

[6] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666-677, August 1978.

7]

[10]

[11]

[12]

[13]

[14]

Frederick Knabe. A distributed protocol for channel-based communication with
choice. Technical Report ECRC-92-16, European Computer-Industry Research
Centre, Munchen. Germany, 1992.

Clifford Dale Krumvieda. Distributed ML: Abstractions for efficient and fault-
tolerant programming. Technical Report TR93-1376, Cornell University, August
1993. PhD thesis.

John H. Reppy. CML: A higher-order concurrent language. In Proceedings of the
SIGPLAN’91 Conference on Programming Language Design and Implementation,
pages 293-305, Toronto, June 1991.

John H. Reppy. Higher-order concurrency. PhD thesis, Dept. of Computer Science,
Cornell University, June 1992.

John H. Reppy. Concurrent ML: Design. application, and semantics. In Pro-
gramming Concurrency, Simulation and Automated Reasoning, Lecture Notes in
Computer Science, Berlin, 1993. Springer-Verlag.

SGS-THOMSON Microelectronics Limited. occam 2 Reference Manual. Prentice
Hall International Ltd.. 1988.

P. H. Welch and D. C. Wood. Higher levels of process synchronisation in oc-
cam. World Wide Web. http://www.hensa.ac.uk/parallel/occam /projects/occam-
for-all /hlps/.

D. C. Wood and P. H. Welch. The Kent Retargetable occam Compiler. In
B. O'Neill, editor, Parallel Processing Developments, Proceedings of the 19th
WoTUG Technical Conference, pages 143-166, Nottingham-Trent University,
March 1996. I0S Press (Netherlands).

