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Degenerative Coordinates

in 22.5◦ Grid System

Tomohiro Tachi∗ Erik D. Demaine†

Abstract

We consider the construction of points within a square of paper
by drawing a line (crease) through an existing point with angle equal
to an integer multiple of 22.5◦, which is a very restricted form of the
Huzita–Justin origami construction axioms. We show that a point
can be constructed by a sequence of such operations if and only if its
coordinates are both of the form (m+n

√
2)/2` for integers m, n, and

` ≥ 0, and that all such points can be constructed efficiently. This
theorem explains how the restriction of angles to integer multiples
of 22.5◦ forces point coordinates to degenerate into a reasonably
controlled grid.

1 Introduction

Figure 1: Maekawa-gami: 22.5◦

grid.

The crease patterns for many origami
models are designed within an angular
grid system of 90◦/n, for a nonnegative
integer n. Precisely, in this system, ev-
ery (pre)crease passes through an ex-
isting reference point in the direction
of m(90/n)◦ for some integer m, and
every reference point is either (0, 0),
(1, 0), or an intersection of already con-
structed (pre)creases. For example, 45◦

(n = 2), 30◦ (n = 3), 22.5◦ (n = 4), 18◦

(n = 5), and 15◦ (n = 6) grid systems
are known to be useful for the design of
origami.
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In particular, the 22.5◦ grid system has been used for centuries—one
of the oldest example is the classic origami crane—and the system keeps
producing complex but organized origami expressions such as the Devil
(1980) by Jun Maekawa [Maekawa and Kasahara 83,Maekawa 07, pp. 146–
154] and the Wolf (2006) by Hideo Komatsu [Komatsu 06]. Toshikazu
Kawasaki calls this system “Maekawa-gami”. Figure 1 shows a square
filled with several precreases in the 22.5◦ grid system.

Why are these angular grid systems so useful? A striking feature of
Figure 1 is that there are many ways to construct the same point, and as
a consequence, many alignments among points and lines. Intuitively, this
degeneracy of the construction system helps tame the complexity of crease
patterns designed within the system.

In this paper, we formalize this notion of degeneracy and organized
complexity by characterizing the coordinates of reference points in the 22.5◦

grid system of the unit square as those points (x, y) with x, y ∈ D√2, where

D√2 =
{m + n

√
2

2`

∣∣∣ integers m, n, and ` ≥ 0
}

.

In particular, we establish degeneracy by proving that all constructible
points fall into D 2√

2
= D√2 × D√2, and establish universality by proving

that all points in D 2√
2

can be constructed. In the latter result, the number
of required operations is linear in the bit complexities of x and y, where
the bit complexity of a number m+n

√
2

2` ∈ D√2 is lg(2+ |m|)+ lg(2+ |n|)+ `.

1.1 Model

More precisely, we consider the following models of 22.5◦ grid construction.
The initial set of points can be either two marks on the x axis, {(0, 0),

(1, 0)}, or all four corners of the square, {(0, 0), (1, 0), (0, 1), (1, 1)}. The
choice between these two options does not affect the results; for the strongest
results, we use the former set for our construction, and the latter set for
proving degeneracy.

The grid-line construction is to draw a line through an existing point, at
an angle of k 22.5◦ with respect to the x axis, for an integer k ∈ {0, 1, . . . , 7}.
This line also defines newly constructed points by its intersections with all
other drawn lines.

A grid-line construction can be simulated by O(1) applications of Huzita–
Justin axioms. Recall that the Huzita–Justin axioms [Huzita and Scimemi 89,
Justin 89, Demaine and O’Rourke 07, chap. 19] include the ability to fold
the line through two given points, fold the perpendicular bisector of two
points, fold the angular bisector of two given lines, fold the perpendicular
to a given line passing through a given point, and two operations con-
structing tangents to parabolas. In fact, we need only two of these axioms:
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folding the angular bisector of two lines, and folding through a point and
perpendicular to a line. Then we can perform a grid-line construction by
constructing two lines through the point perpendicular to the two axes,
then bisecting one of the 90◦ angles once or twice to obtain the desired
integer multiple of 22.5◦.

To avoid this constant-factor overhead, our construction will simulta-
neously adhere to the constraints of both the 22.5◦ grid system and these
two Huzita–Justin axioms. Thus, every operation we perform in the con-
struction will bisect an angle at an existing point, or be perpendicular to
an existing line and through an existing point, and furthermore the con-
structed line’s angle with respect to the x axis will be an integer multiple
of 22.5◦. Note that these two operation types are indeed special cases of
grid-line constructions, in addition to corresponding to real origami con-
structions. We call these operations grid-line axioms.

2 Construction

In this section, we give a universal construction algorithm for points in
D 2√

2
:

Theorem 1 We can construct any point in D 2√
2

by a sequence of grid-line
axioms whose length is linear in the bit complexities of the two coordinates.

The construction constructs each coordinate of the target point sepa-
rately. Thus we focus mostly on the construction of a single number in D√2,
as measured by the distance from the origin of a point along the x axis. To
perform such a construction, we combine several gadgets for constructing
individual numbers and performing arithmetic on numbers:

1. Root gadget: Construct the number
√

2
2 . The gadget essentially

reflects the diagonal down to the axis (Figure 2(a)).

2. Half gadget: Given a positive number a, construct a/2. The gadget
uses 45◦ lines to construct the midpoint (Figure 2(b)). Note that, given all
of the Huzita–Justin axioms, we could instead simply use a perpendicular
bisector to construct the desired point.

3. Double gadget: Given a positive number a, construct 2 a. The
gadget essentially reflects a copy of a (Figure 2(c)).

4. Add gadget: Given two positive numbers a and b, construct a + b.
The gadget essentially reflects a copy of the smaller integer to the right of
the larger integer (Figure 2(d)).
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(0, 0) (1, 0)(√2/2, 0)

(a) Root gadget.

1
2

3

(0, 0) (a, 0)(a/2, 0)

(b) Half gadget.

1

2
3

(0, 0) (a, 0) (2a, 0)

(c) Double gadget.

1 5

2

4

3

(0, 0) (a, 0) (b, 0) (a+b, 0)

(d) Add gadget.

1

2
3

54

(0, 0) (b, 0) (a, 0)(a−b, 0)

1

2
3

5 4

(0, 0) (b, 0) (a, 0)(a−b, 0)

(e) Subtract gadget.

1

2

3

(0, 0)(−a, 0) (a, 0)

(f) Negate gadget.

1

24

3

(0, 0) (a, 0)

(a, b)

(b, 0)

(g) Combine gadget.

Figure 2: Gadgets. Before applying any gadgets, we construct the x axis
from the given points (0, 0) and (1, 0), and construct the y axis as perpen-
dicular to the x axis through (0, 0).

5. Subtract gadget: Given two positive numbers a and b with a > b,
construct a − b. The gadget computes a/2 and then essentially reflects b
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around a/2, which gives 2(a/2) − b = a − b. (Figure 2(e)). In fact, the
construction has two cases, depending on whether b ≤ a/2 or b ≥ a/2

6. Negate gadget: Given a positive number a, construct −a. The
gadget essentially reflects a to the left of the y axis (Figure 2(f)).

Lemma 2 We can construct any number in D√2 by a sequence of grid-line
axioms whose length is linear in the bit complexity of the number.

Proof: Consider a number x = (m + n
√

2)/2` ∈ D√2.
We construct |m| using a standard repeated doubling trick (analogous to

repeated squaring [Cormen et al. 09, Sect. 31.6]). If |m| is even, recursively
construct |m|/2 and then use the double gadget. If |m| is odd, recursively
construct (|m| − 1)/2, then use the double gadget to obtain |m| − 1, and
then use the add gadget to add 1. In the base cases, we already have the
constant 0 and 1. The number of operations is O(lg(2 + |m|)).

Similarly, we can construct |n|
√

2 by using
√

2 instead of 1 as a base
case. We can construct

√
2 via the root gadget followed by the double

gadget. The number of operations is O(lg(2 + |n|)).
Finally, we combine the two values |m| and |n|

√
2 using an add or

subject gadget to obtain |m + n
√

2|, then use the half gadget ` times to
construct |x|, and then use the negate gadget if x is negative. (We can
negate only at the end because the other gadgets are designed for positive
numbers.) 2

Proof of Theorem 1: Consider a point p = (x, y) ∈ D 2√
2
, where x =

(mx+nx

√
2)/2`x) and y = (my+ny

√
2)/2`y ). We use Lemma 2 to construct

the numbers x and y along the x axis. Then we copy the value y onto the
y axis using a 45◦ line, and then find the intersection of two perpendiculars
to find the point p, as shown in Figure 2(g). 2

For points in the unit square, we can restrict to working within the
square of paper:

Lemma 3 We can construct any number in [0, 1] ∩ D√2 by a sequence of
grid-line axioms, with all intermediate points in [0, 1], whose length is linear
in the bit complexity of the number.

Proof: Consider a number x = (m + n
√

2)/2` ∈ D√2 with 0 ≤ x ≤ 1. Let
s = 1+max{lg |m|, lg(|n|

√
2)} be the smallest integer such that |m|/2s ≤ 1

2

and (|n|
√

2)/2s ≤ 1
2 . First we construct S = 1/2s by s half gadgets. Then

we apply the construction in Lemma 2 but using S in place of 1. Because
all numbers in this construction are at most |m| + |n|

√
2, but everything

is scaled by 1/S, all intermediate values are in [0, 1]. Thus we obtain
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(m + n
√

2)/2`+s. Finally we scale back up using s double gadgets. (For
practicality, we could have saved min{`, s} half/double gadget pairs, but
this only affects the constant factor.) The total number of operations is
O(lg(2 + |m|) + lg(2 + |n|) + `) because s = O(lg(2 + |m|) + lg(2 + |n|)). 2

Theorem 4 We can construct any point in [0, 1]2 ∩ D 2√
2

by a sequence
of grid-line axioms, with all intermediate points in [0, 1]2, whose length is
linear in the bit complexities of the two coordinates.

Proof: Simply follow the proof of Theorem 1 but using Lemma 3 in place
of Lemma 2. 2

3 Degeneracy

In this section, we show the degeneracy in the grid system: all constructible
points are restricted within D 2√

2
.

Theorem 5 Every point constructible by a sequence of grid-line construc-
tions, starting from the corners of a unit square, is in D 2√

2
.

The proof is by induction. In the base case, we start from the four
points at the corners of the square, {(0, 0), (1, 0), (0, 1), (1, 1)}, which are in
D 2√

2
. For the induction step, we prove that any newly constructed points by

grid-line constructions from points in D 2√
2

are also in D 2√
2
. In order to cull

duplicate combinations, we first extend the system to allow 45◦ rotation.

Lemma 6 Points in D 2√
2

are closed under k 45◦ rotation about the origin,
for any k ∈ {0, 1, . . . , 7}.

Proof: For a point (x, y) ∈ D 2√
2
, its 45◦ rotation (x′, y′) is given by

[
x′

y′

]
=

[√
2

2 −
√

2
2√

2
2

√
2

2

] [
x
y

]
.

Because D√2 is closed under addition, subtraction, and multiplication, x′

and y′ are in D√2. By induction, a point produced by k 45◦ rotation is in
D 2√

2
. 2

Lemma 7 Two lines made by grid-line constructions from points in D 2√
2

have their intersection point in D 2√
2
.
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Proof: Consider two grid-line constructions from points in D 2√
2
, say, line

L0 from point (x0, y0) and line L1 from point (x1, y1). For i ∈ {0, 1}, we
can define line Li as points (x, y) satisfying si(x − xi) + ti(y − yi) = 0,
where (si, ti) is a vector perpendicular to the line and thus ti/si is the
slope. For the lines to have an intersection, they must not be parallel, i.e.,
s0t1 − s1t0 6= 0. The intersection point (x, y) is given by{

s0(x− x0) + t0(y − y0) = 0
s1(x− x1) + t1(y − y1) = 0,

(1)

which can be represented in matrix form as[
s0 t0
s1 t1

] [
x
y

]
=
[
s0x0 + t0y0

s1x1 + t1y1

]
.

By Cramer’s Rule, the solution is given by[
x
y

]
=

1
s0t1 − t0s1

[
t1 −t0
−s1 s0

] [
s0x0 + t0y0

s1x1 + t1y1

]
. (2)

Because D√2 is closed under multiplication and addition, it suffices to show
that 1/(s0t1 − t0s1) is in D√2 for any combination of vectors (s0, t0) and
(s1, t1).

There are eight possible orientations for each vector (si, ti) in the 22.5◦

system, given by representative vectors

(s, t) ∈ {(1, 0), (1,−1 +
√

2), (1, 1), (−1 +
√

2, 1),

(0, 1), (1−
√

2, 1), (−1, 1), (−1,−1 +
√

2)}. (3)

Note that we do not need to list the negations of these vectors, as it suffices
to capture all line slopes, not signed directions, for the line equations in (1).

Instead of checking every pair of slopes (
(
8
2

)
= 28 patterns), we can

reduce the possible combinations down to 10 cases by using Lemma 6 to
perform k 45◦ rotation in advance. Namely, if one of the lines has angle
k 45◦ for an integer k, then we rotate by −k 45◦ to give that line orientation
(1, 0), and obtain seven possible cases for the other line (Figure 3, left);
and if both lines have angles that are not integer multiples of 45◦, then we
rotate so that one of them is 22.5◦ and obtain three cases for the other line
(Figure 3, right).

Table 1 computes 1/(s0t1−t0s1) for each of these ten cases. In all cases,
the value is in D√2, so (x, y) ∈ D 2√

2
. 2

Proof of Theorem 5: Consider a sequence of grid-line constructions
`1, `2, . . . , `n. By definition, each `k is a line through an existing point,
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(0,1)

(1,3)(1,5)

(1,7)

(0,2)(0,3)(0,4)(0,5)(0,6)

(0,7)

Figure 3: Possible combinations of directions after suitable k 45◦ rotation.
Labels refer to indices into the list (3) of possible (s, t) vectors, starting at
index 0.

case (s0, t0) (s1, t1) 1/(s0t1 − t0s1)
(0, 1) (1, 0) (1,−1 +

√
2) 1 +

√
2

(0, 2) (1, 0) (1, 1) 1
(0, 3) (1, 0) (−1 +

√
2, 1) 1

(0, 4) (1, 0) (0, 1) 1
(0, 5) (1, 0) (1−

√
2, 1) 1

(0, 6) (1, 0) (−1, 1) 1
(0, 7) (1, 0) (−1,−1 +

√
2) 1 +

√
2

(1, 3) (1,−1 +
√

2) (−1 +
√

2, 1) (1 +
√

2)/2
(1, 5) (1,−1 +

√
2) (1−

√
2, 1) (2 +

√
2)/22

(1, 7) (1,−1 +
√

2) (−1,−1 +
√

2) (1 +
√

2)/2

Table 1: Case analysis of slopes. The leftmost column refers to labels in
Figure 3.

either an original corner of the square {(0, 0), (1, 0), (0, 1), (1, 1)}, or defined
by an intersection between two lines `i and `j for i, j < k.

We claim by induction that each line `k is a grid-line construction from
a point in D 2√

2
. If `k is constructed from a corner of the unit square,

this claim follows because (0, 0), (1, 0), (0, 1), (1, 1) ∈ D 2√
2
. Otherwise, `k is

constructed from the intersection of two lines `i and `j with i, j < k. By
induction on k, both `i and `j are grid-line constructions from points in
D 2√

2
. Thus Lemma 7 applies, and the intersection point defining `k is in

D 2√
2
.
Finally, the points formed by the sequence of grid-line constructions

`1, `2, . . . , `n are the intersections between two lines `i and `j . By the
claim above, Lemma 7 applies to show that every such point is in D 2√

2
. 2
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4 Conclusion

We have characterized the degeneracy of points constructible in the 22.5◦

grid system. The restricted form we establish for constructible coordinates
indicates that there are many possible ways to construct a point, which
should tend to lead to fortuitous alignments of creases. For example, these
alignments make it easier to choose creases so that they meet at vertices of
degree at least 4, as necessary for flat foldability, whereas without a grid
system, generically chosen lines would meet only in pairs and would not
satisfy Kawasaki’s condition for local flat foldability. Furthermore, our al-
gorithms show that any desired point in the grid system can be constructed
efficiently using just two types of origami operations, in a sequence of length
linear in the bit complexity of the coordinates. These results provide math-
ematical support for why practical origami design uses grid systems.

A simple extension of our theory is to the situation of 22.5◦ grid-line con-
structions starting from a length ratio of (m+n

√
2)/(m′+n′

√
2), for some

integers m, n,m′, n′. For example, Maekawa’s wani (alligator/crocodile)
[Maekawa and Kasahara 83] starts by dividing the paper side in thirds,
and then works on the 22.5◦ grid. This situation commonly results from
the origami design process (e.g., grafting or adjusting flap lengths), because
it effectively adjusts the size of the square of paper. Our theory can cap-
ture these situations simply by viewing the square as having side length
m′ + n′

√
2 instead of 1, that is, by scaling all coordinates by a factor of

m′ + n′
√

2, thereby placing the constructed points back on the 22.5◦ grid.
An obvious direction for future research is characterizing 90◦/n grid

systems for n 6= 4. In particular, modern origami design has explored
the 15◦ grid system lately. For results in this direction, see the follow-up
paper [Butler et al. 10].
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