
Arboral Satisfaction:

Recognition and LP Approximation

Erik D. Demainea,1, Varun Ganesana, Vladislav Kontsevoia, Qipeng Liua, Quanquan Liua,
Fermi Maa, Ofir Nachuma, Aaron Sidforda, Erik Waingartena, Daniel Zieglera

aMassachusetts Institute of Technology

Abstract

A point set P is arborally satisfied if, for any pair of points with no shared coordinates, the
box they span contains another point in P . At SODA 2009, Demaine, Harmon, Iacono, Kane,
and Pǎtrascu proved a connection between the longstanding dynamic optimality conjecture
about binary search trees and the problem of finding the minimum-size arborally satisfied
superset of a given 2D point set [1].

We study two basic problems about arboral satisfaction. First, we develop two non-
trivial algorithms to test whether a given point set is arborally satisfied. In 2D, both of
our algorithms run in O(n log n) time, and one of them achieves O(n) runtime if the points
are presorted; we also show a matching Ω(n log n) lower bound in the algebraic decision
tree model. In d dimensions, our algorithm runs in O(dn log n + n logd−1 n) time. Second,
we study a natural integer linear programming formulation of finding the minimum-size
arborally satisfied superset of a given 2D point set, which is equivalent to finding offline
dynamically optimal binary search trees. Unfortunately, we conclude that the linear pro-
gramming relaxation has large integrality gap, making it unlikely to find an approximation
algorithm via this approach.

Keywords: algorithms, analysis of algorithms, computational geometry, data structures

1. Introduction

Arborally Satisfied Point Sets

The dynamic optimality problem asks whether there is a single binary search tree that is,
up to constant factors, as good as all other binary search trees on all access sequences. This
problem originated with Sleator and Tarjan’s invention of splay trees [2]. They conjectured
that, for any binary search tree algorithm serving a sequence X of accesses to n items at
cost C, a splay tree serves the same access sequence X at cost O(n + C). More generally,
any binary search tree with this property is called dynamically optimal.

∗I am corresponding author
Email address: edemaine@mit.edu (Erik D. Demaine)

Preprint submitted to Information Processing Letters September 25, 2017

Demaine, Harmon, Iacono, Kane, and Pǎtrascu [1] showed that dynamically optimal
binary search trees are equivalent to a purely geometric problem about 2D point sets: given
a point set P , find an O(1)-approximation to the smallest superset P ′ ⊇ P that is arborally
satisfied in the sense that every two points in P ′, not on a common horizontal or vertical
line, span a rectangle containing another point in P ′. The equivalence comes from viewing
one dimension (x) as time and the other dimension (y) as key value. The input point set
P = (1, x1), (2, x2), . . . , (m,xm) represents the set X = 〈x1, x2, . . . , xm〉 of accesses. The
desired point set P ′ represents the (key values of) nodes that are touched (visited) by the
binary search tree algorithm during each access. The superset relation P ′ ⊇ P represents
that the binary search tree must in particular touch the accessed node.

Demaine et al. [1] showed that, for any binary search tree algorithm servicing access
sequence X, the set P ′ of pairs (t, y), where node y is touched while serving the tth access
xt, is arborally satisfied. Conversely, they showed that any arborally satisfied superset
P ′ ⊇ P can be converted into a binary search tree algorithm that touches exactly the nodes
at times specified by P ′, and thus has total cost |P ′|. The offline optimal binary search
tree is therefore equivalent to the smallest arborally satisfied superset P ′ ⊇ P , and an
O(1)-approximation corresponds to dynamic optimality. There is also a natural notion of
online algorithms for finding arborally satisfied supersets which corresponds (up to constant
factors) to online binary search tree algorithms, but this will not be relevant here.

Our Results

We study two basic problems about arborally satisfied point sets as a combinatorial
structure of fundamental importance to binary search tree data structures.

First, we develop the first nontrivial algorithms to test the arboral satisfaction property
of a given point set. In Section 2, we develop a geometric algorithm resembling a sweep line
which runs in O(n log n) time. In Section 3, we give an alternate O(n log n) algorithm that
relies on the correspondence between arboral satisfaction and binary search tree algorithms.
This algorithm runs in O(n) time if the points are presorted. In Section 4, we give a matching
Ω(n log n) lower bound on testing arboral satisfaction in the algebraic decision tree model, by
a reduction from set equality. In Section 5, we consider an extension of arboral satisfaction
to d dimensions for d > 2, and give an O(dn log n + n logd−1 n)-time algorithm for testing
arboral satisfaction.

Second, we consider a linear programming relaxation approach to approximating the
minimum-size arborally satisfied superset (offline optimal binary search tree). The cur-
rent best polynomial-time approximation algorithm achieves an approximation ratio of
O(log log n) [3]; for dynamic optimality, the goal is to obtain a constant-factor approxi-
mation algorithm. In Section 6, we formulate two “natural” integer linear programming
formulations of the problem. In Section 6.3, we show that the two linear program relax-
ations are unlikely to yield constant-factor approximations, as both exhibit an integrality
gap of Ω(log n) even in the average case.

2

p

p
y+

p
y-

p
x+

p
x-

Figure 1: An image of Rp

2. A Geometric Algorithm for Testing Arboral Satisfaction

We define the x-predecessor of a point p = (xp, yp) ∈ P to be first point that the ray
from p to (−∞, yp) encounters, and we denote it by px−. If there is no such point, then
px− = (−∞, yp). Similarly, the x-successor of a point p is the first point that the ray from
p to (∞, yp) encounters, and we denote it by px+. Again, if there is no such point, we set
px+ = (∞, yp). The y-predecessor and y-successor are defined and denoted analogously.

Given two points p and q with distinct x and y coordinates, the induced box of p and q is
the unique axis-aligned rectangle with p and q as corners. If the point set P is not arborally
satisfied, then there exist two points p and q with an induced box containing no additional
points.

Given a point set P , we first sort the points by x-coordinate and store the points in an
array A, breaking ties by y-coordinate. We also store the points in another array T ordered
by the y-coordinate, breaking ties by x-coordinate. Finally, we build a layered range tree L
on P to answer orthogonal range queries [4].

For each point p ∈ P , let Rp be the unique rectangle defined by the points px−, px+, py−,
and py+. An example of a rectangle is shown in Figure 1.

2.1. Algorithm.

The algorithm works by sweeping through all points in A. For each point, we run an
orthogonal range query on L with the strict interior of Rp as the query object. If it contains
a point other than p, the algorithm returns False and terminates. Otherwise, it moves on
to the next point. If the algorithm processes every point, it returns True.

2.2. Correctness and Runtime Analysis.

Theorem 2.1 shows that the algorithm is correct.

Theorem 2.1. There exists p ∈ P such that Rp contains a point other than p if and only if
P is not arborally satisfied.

3

The theorem follows directly from Lemma 2.2 and Lemma 2.3; Lemma 2.2 shows that if
the set is not arborally satisfied, the algorithm returns False, and Lemma 2.3 shows that
if the algorithm returns False, the points are not arborally satisfied.

Lemma 2.2. Suppose points p and q differ in both x and y coordinates and their induced
box does not contain any other point in its interior. Also, assume the coordinates of q are
greater than the corresponding coordinates of p. Then q is contained in the interior of Rp.

Proof. Suppose for the sake of contradiction that q is not contained in the interior of Rp.
Then for some coordinate k, pk+, the successor of p in the k-coordinate, has (pk+)k ≤ (q)k,
where (pk+)k and (q)k denote the k-coordinates of pk+ and q, respectively. Since pk+ and p
have the same value in the other coordinate, this implies that pk+ is contained within the
box induced by p and q, a contradiction.

Lemma 2.3. If Rp contains a point other than p in its interior, then the point set is not
arborally satisfied.

Proof. Of the points contained in Rp, let q be the closest one to p in the Euclidean distance
metric. q must differ from p in both x and y coordinates in order for it not to be a successor
or a predecessor of p. The box induced by p and q does not contain any points in its
interior, because any point strictly inside this box would be strictly within Rp and closer to
p, a contradiction.

It follows that the algorithm as stated is correct. It takes O(n log n) to sort the points
and arrange them in array A and array T . It also takes O(n log n) to build the layered range
tree R. It takes O(1) to find predecessors and successors in T and A; therefore, it takes O(1)
to build Rp from a point p. Additionally, it takes O(log n) to query R. Since the algorithm
must build Rp and query R for each point p, the algorithm takes O(n log n) time.

3. Treap Algorithm for Testing Arboral Satisfaction

We can also check for arboral satisfaction by using the correspondence between arborally
satisfied point sets and valid BST executions.

Consider the function f which maps valid BST executions E to points in the plane by
placing a point (x, i) for each access to value x and time i. Then, given an arborally satisfied
point set P , there exists a BST execution E such that f(E) = P [1].

To construct this BST execution, we define the next access time N(x, i) of x at time i
to be the first y coordinate of any point in P encountered by the ray from (x, i) to (x,∞).
If no point is encountered, N(x, i) = ∞. The BST will be a Cartesian tree (treap) on the
points (x,N(x, i)), which is a BST on the first coordinate and a min-heap on the second
coordinate [5].

Let τi denote the set of points with second coordinate i. At time i, the BST execution
touches all points in τi and then rotates those points to preserve the treap order on those
points for time i + 1. Demaine et al. show that this is sufficient to guarantee the entire
treap is in treap order at the next step [1]. They also show that if and only if the original
set of points is arborally satisfied, τi will form a continuous subtree at the root at each time
step i [1, Lemma 2.1, Lemma 2.2].

4

Figure 2: Visual representation of the set equality construction. Points in S correspond to black points, and
points in T correspond to red points.

3.1. Algorithm.

The arboral satisfaction testing algorithm works by building the treap and performing
rotations at each time step i on τi to preserve treap order. If, at any time step i in the BST
execution, the points τi do not form a continuous subtree at the root, the algorithm returns
False. Otherwise, if the BST execution completes, the algorithm returns True.

3.2. Runtime Analysis

After having sorted the input point set, the work done by this algorithm is wholly
treap-related. Construction of the treap may be done in linear time via a Cartesion Tree
construction [6]. When the algorithm processes ni points at time i, the ni nodes form a
connected sub-tree at the root of the treap (otherwise the algorithm terminates). It takes
O(ni) time to update the next touch times and at most 2 rotations for each node in this
subtree, yielding an O(ni) running time. Therefore, since

∑
ni = |P |, all treap operations

in total aggregate to a linear running time.
Excluding initial sorting, this is a linear time algorithm for determining arboral satisfac-

tion. When sorting is necessary, the running time becomes O(n log n).

4. An Ω(n log n) Lower Bound

Theorem 4.1 (Testing Arboral Satisfaction Lower Bound). Any deterministic arboral sat-
isfaction testing algorithm A in the algebraic decision tree model must have running time
Ω(n log n).

Proof. We reduce from the set equality problem: Given two sets S and T , it takes Ω(n log n)
time to determine if they are equal.

First, we check if |S| = |T |. If so, the following procedure checks that S ⊆ T , and hence
that S = T . For each s ∈ S, draw the two points (s, 1) and (s− ε,−1) where ε is very small.
For each t ∈ T , draw the point (t,−1). See Figure 2 for an example. This arrangement of
points is arborally satisfied if and only if S and T are the same set, so checking for arboral
satisfaction is Ω(n log n).

5

5. Higher Dimensions

We can define arboral satisfaction in d-dimensions analogously. A point set with n
points is arborally satisfied if, for any two points which differ in at least two coordinates,
their induced box contains at least one other point. This means that for any two points,
there is a monotone path that goes through other points in orthogonal directions.

5.1. d Dimensions.

The algorithm is identical to the two-dimensional algorithm, except that we query the
rectangle defined by the 2d points pxi− and pxi+ (for all i).

5.2. Implementation Details and Runtime Analysis.

We use x1, x2, . . . , xd to denote the coordinates of the space. Sorting the point set P d
times to form d sorted arrays takes time O(dn log n) if we proceed as follows:

• Use a stable sort such as merge-sort to sort first by xd, then by xd−1, and in all
coordinates in order. In O(dn log n) time, this yields a lexicographically sorted array,
primarily sorted by x1, secondarily sorted by x2, and so on, with xd being the least
significant key.

• Make a copy of this array. Sort by xd. In O(n log n) time, this yields an array primarily
sorted by xd, secondarily sorted by x1, and so on, with xd−1 being the least significant
key.

• Repeat this process d−2 times (copying and sorting by xd−1, then by xd−2, and so on)
so that each of our coordinates in turn is the least significant coordinate in a sorted
array.

For any p ∈ P , we can build the rectangle Rp in O(d log n) by finding predecessors and
successors in each coordinate with the sorted lists.

Building the layered range tree in d dimensions can be done in O(n logd−1 n) time. Each
query to the layered range tree will take O(logd−1 n) time. Therefore, the total time for n
queries is O(n logd−1 n).

The total running time is O(dn log n+ n logd−1 n).

6. Equivalent Integer Linear Programs

We consider two integer linear programming relaxations of this problem.
It is natural to restrict attention to the grid of intersection points “induced” by the set

of points P : extend horizontal and vertical lines through each point in P and consider only
the O(n2) intersections of these lines. It is easy to show that in any arborally satisfied point
set P , points that are not grid intersections can be moved to positions that are.

We can directly correspond an integer linear program to the problem by assigning an
indicator variable bjk to each grid point, where the variable is set to 1 if the point is included
and is 0 otherwise, and j and k are labels on the grid intersection points (labelled so that

6

Figure 3: Positive and negative rectangles: black corresponds to points that are included, and white corre-
sponds to the points not included

b00 is the lower left grid point, b01 is the point directly above, and b10 is the point directly
to the right).

This immediately gives us n constraints, one for each variable corresponding to a point
in P (setting them all equal to 1). The linear programming objective is to minimize the sum
of all the variables; the task that remains capturing the arboral satisfaction property with
further constraints.

6.1. Quadratic Constraint Size

Consider the following set of constraints:

2bij + 2bnm −

(∑
i≤k≤n

∑
j≤l≤m

bkl

)
≤ 1 ∀i < n, j < m (1)

2bim + 2bnj −

(∑
i≤k≤n

∑
j≤l≤m

bkl

)
≤ 1 ∀i < n, j < m (2)

These constraints exactly capture arboral satisfaction. Constraints of type (1) correspond
to all possible “positive” rectangles, and constraints of type (2) correspond to all possible
“negative” rectangles (explained in Figure 2).

To see the equivalence, consider constraints of type (1). If points in the grid correspond-
ing to bij and bnm are present, the rectangle they span must be satisfied by some point
corresponding to bkl such that i ≤ k ≤ n and j ≤ l ≤ m (although it cannot equal to bij
or bnm). The constraint ensures precisely this: if bij = bnm = 1, at least one other bkl in
the parenthesized term must be set to 1, or else the entire left hand side will be a quantity
greater than 1. Constraints of type (2) work the same way.

6.2. Linear Constraint Size

By definition, arborally satisfied point sets have all rectangles satisfied by some point on
the interior (including edges). It turns out that a short inductive argument shows that all
rectangles are in fact satisfied by some point on their edges [1]. Thus, we can reduce the
constraint size by “only” requiring that rectangles be satisfied on their edges. This gives the
following set of constraints:

7

bij + bnm −

(
n−1∑
l=i+1

(blj + blm) +
m−1∑
l=j+1

(bil + bnl) + bim + bnj

)
≤ 1 ∀i < n, j < m (3)

bim + bnj −

(
n−1∑
l=i+1

(blj + blm) +
m−1∑
l=j+1

(bil + bnl) + bij + bnm

)
≤ 1 ∀i < n, j < m (4)

Constraints of type (3) correspond to all possible “positive” rectangles, and constraints of
type (4) correspond to all possible “negative” rectangles. This captures arboral satisfaction
for the same reason that the constraints of types (1) and (2) do. The only difference is that
we no longer include points that are strictly inside rectangles.

6.3. Unbounded Integrality Gap

Unfortunately, in any of these instances, we can satisfy the relaxed linear program by
setting all variables corresponding to neighboring points of points in P to 0.5. Refer to
Figure 4 for the setup: black circles are variables set to 1, red circles are variables set to 0.5,
and white circles representing empty spots are set to 0).

This solution turns out to always be feasible. Note that every constraint corresponding
to rectangles spanned by points in P will be satisfied, since they contain at least 2 points of
value 0.5. All constraints corresponding to rectangles where one corner is set to 1 and the
opposite corner is set to 0.5 will satisfied, as at least one other variable of value 0.5 (adjacent
to the corner set to 1) will be subtracted away. Finally each constraint corresponding to
a rectangle with opposite corners set to 0.5 will automatically be satisfied. This solution
simply adds at most 2 to the sum of all the variables for each point in P , and is therefore
O(n).

It is known that some sets of n points require the addition of Ω(n log n) additional points
to be arborally satisfied: e.g., the bit-reversal sequence and random sequences in expectation
[7, 1]. This implies an Ω(log n) integrality gap for both linear programs, even in the average
case.

7. Conclusion

We are hopeful that our study of arborally satisfied sets will ultimately help resolve
the dynamic optimality problem. In particular, our optimal algorithms for testing arboral
satisfaction may give some structural insights.

The major open problem left by our work is to achieve a constant-factor approximation to
the minimum-size arborally satisfied superset. We have shown one approach to this problem
that is unlikely to work, enabling a more focused search in the future.

Another interesting question is whether there is a data structural (or other) application
to our higher-dimensional generalization of arborally satisfied point sets.

8

Figure 4: Integrality gap of the integer program. Black circles represent points in P given weight 1, red
circles represent points included with weight 1

2 , and white circles are not included and given weight 0.

Acknowledgements

This work began in an open-problem solving session for MIT’s Advanced Data Struc-
tures class (6.851) in Spring 2014. We thank any unnamed participants of the session for
contributing to this solution.

E. Demaine’s work is supported in part by MADALGO — Center for Massive Data
Algorithmics — a Center of the Danish National Research Foundation.

References

[1] E. D. Demaine, D. Harmon, J. Iacono, D. Kane, M. Pătraşcu, The geometry of binary search trees, in:
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, New York, New York,
2009, pp. 496–505.
URL http://dl.acm.org/citation.cfm?id=1496770.1496825

[2] D. D. Sleator, R. E. Tarjan, Self-adjusting binary search trees, J. ACM 32 (3) (1985) 652–686.
doi:10.1145/3828.3835.
URL http://doi.acm.org/10.1145/3828.3835

[3] E. D. Demaine, D. Harmon, J. Iacono, M. Pǎtraşcu, Dynamic optimality—almost, SIAM Journal on
Computing 37 (1) (2007) 240–251.

[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars”, ”orthogonal range searching”, in: ”Com-
putational Geometry: Algorithms and Applications”, ”3rd” Edition, ”Springer”, ”2008”, Ch. 5, pp.
”95–120”.

[5] J. Vuillemin, A unifying look at data structures, Commun. ACM 23 (4) (1980) 229–239.
doi:10.1145/358841.358852.
URL http://doi.acm.org/10.1145/358841.358852

[6] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM Journal on Com-
puting 13 (2) (1984) 338–355.

[7] R. Wilber, Lower bounds for accessing binary search trees with rotations, SIAM Journal on Computing
18 (1) (1989) 56–67.

9

