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Abstract
For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a
shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST
can be computed in O(n log n) time where n is the number of points. In contrast to the standard
Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each
other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise
crossing edges, and we determine the maximum number of crossings.

Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST)
which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is
known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has
a ratio of O(

√
n). It is also known that the optimum solution can be computed in polynomial time

in some special cases, for instance, when the points are in convex position, collinear, semi-collinear,
or when one color class has constant size. We present an O(log n)-factor approximation algorithm
for the general case.
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1 Introduction

Computing a minimum spanning tree (MST) in a graph is a well-studied problem. There exist
many algorithms for this problem, among which one can mention the celebrated Kruskal’s
algorithm [37], Prim’s algorithm [41], and Borůvka’s algorithm [22]. The running time of
these algorithms depends on the number of vertices and edges of the input graph. For
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16:2 Minimum Plane Bichromatic Spanning Trees

geometric graphs, where the vertices are points in the plane, their running time depends only
on the number of vertices.

For a set S of n points in the plane a Euclidean MST (i.e., an MST of the complete graph
on S with straight-line edges and Euclidean edge weights) can be computed in O(n log n)
time. When the points of S are colored by two colors, say red and blue, and every edge
is required to have a red and a blue endpoint, then a spanning tree is referred to as a
bichromatic spanning tree. A minimum bichromatic spanning tree (MinBST) is a bichromatic
spanning tree of minimum total edge length. A MinBST on S can be computed in O(n log n)
time [18]. When the points are collinear (all lie on a straight line) and are given in sorted
order along the line this problem can be solved in linear time [15].

We say that two line segments cross if they share an interior point; this configuration is
called a crossing. A tree is called plane if its edges are pairwise noncrossing. The standard
Euclidean MST is always plane. This property is ensured by the triangle inequality, because
the tree can be made shorter by replacing any two crossing edges with two noncrossing
edges. The noncrossing property does not necessarily hold for a MinBST, see Figure 1 for an
example. Two crossing edges in this example cannot be replaced with two noncrossing edges
because, otherwise, we would either introduce monochromatic edges (that connect points of
the same color) or disconnect the tree into two components.

Figure 1 A bicolored point set and its minimum bichromatic spanning tree (MinBST).

Edge crossings in geometric graphs are usually undesirable as they could lead to unwanted
situations such as collisions in motion planning, inconsistency in VLSI layout, and interference
in wireless networks. They are also undesirable in the context of graph drawing and network
visualization. Therefore, it is natural to ask for a minimum plane bichromatic spanning tree
(MinPBST), a bichromatic spanning tree that is noncrossing and has minimum total edge
length. Borgelt et al. [21] proved that the problem of finding a MinPBST is NP-hard. They
also present a polynomial-time approximation algorithm with approximation factor O(

√
n).

In this paper we study the MinBST and MinPBST problems from combinatorial and
computational points of view. First we present an approximation algorithm, with a better
factor, for the MinPBST problem. Then we prove some interesting structural properties of
the MinBST.

1.1 Related work
Problems related to bichromatic objects (such as points and lines) have been actively studied
in computational geometry, for instance, the problems related to bichromatic intersection
[4, 24, 25, 38], bichromatic separation [9, 11, 14, 16, 27], and noncrossing bichromatic
connection [1, 2, 17, 19, 21, 32, 34, 36]. We refer the interested reader to the survey by
Kaneko and Kano [35].

The O(
√

n)-approximation algorithm of Borgelt et al. [21] for the MinPBST problem
lays a (

√
n ×

√
n)-grid over the points, then identifies a subset of grid cells as core regions

and computes their Voronoi diagram, then builds a tree inside each Voronoi cell, and finally
combines the trees.
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Let ρn be the supremum ratio of the length of MinPBST to the length of MinBST over
all sets of n bichromatic points. Grantson et al. [29] show that 3/2 ≤ ρn ≤ n for all n ≥ 4;
and ask whether the upper bound can be improved. It is easily seen from the algorithm of
Borgelt et al. [21] that ρn ≤ O(

√
n) because the planarity of the optimal solution is not used

in the analysis of the approximation ratio—indeed the analysis would work even with respect
to the MinBST.

Some special cases of the MinPBST problem can be solved to optimality in polynomial
time. For instance, the problem can be solved in O(n2) time when points are collinear
[15], in O(n3) time when points are in convex position [21], in O(n5) time when points are
semi-collinear (points in one color class are on a line and all other points are on one side of
the line) [17], and in nO(k5) time when one color class has k points for some constant k [21].

One might wonder if a greedy strategy could achieve a better approximation ratio. A
modified version of Kruskal’s algorithm, that successively adds a shortest bichromatic edge
that creates neither a cycle nor a crossing, is referred to as the greedy algorithm [21, 29].
This algorithm, as noted in [21, Figure 1], does not always return a planar bichromatic tree
(it does not always terminate: there may be a point of one color that cannot see any point of
the opposite color).

Abu-Affash et al. [2] studied the bottleneck version of the plane bichromatic spanning tree
problem where the goal is to minimize the length of the longest edge. They prove that this
problem is NP-hard, and present an 8

√
2-approximation algorithm.

1.2 Quasi-planarity

Quasi-planarity is a measure of the proximity of an (abstract or geometric) graph to planarity.
For an integer k ≥ 2, a graph is called k-quasi-planar if it can be drawn in the plane such
that no k edges pairwise cross. By this definition, a planar graph is 2-quasi-planar. A 3-quasi-
planar graph is also called quasi-planar. Problems on k-quasi-planarity are closely related to
Turán-type problems on the intersection graph of line segments in the plane [5, 10, 23, 28].
They are also related to the size of crossing families (pairwise crossing edges) determined
by points in the plane [12, 40]. Perhaps a most notable question on quasi-planarity is a
conjecture by Pach, Shahrokhi, and Szegedy [39] that for any fixed integer k ≥ 3, there exists
a constant ck such that every n-vertex k-quasi-planar graph has at most ckn edges. This
conjecture has been verified for k = 3 [5] and k = 4 [3].

A drawing of a graph is called k-quasi-plane if no k edges in the drawing pairwise cross,
and a drawing is quasi-plane if it is 3-quasi-plane. For example, the drawing of a tree in
Figure 1 is quasi-plane. This concept plays an important role in decompositions of geometric
graphs: Aichholzer et al. [6] showed recently that the complete geometric graph on 2n points
in the plane can always be decomposed into n quasi-plane spanning trees (but not necessarily
into n plane spanning trees).

1.3 Our contributions

In Section 2 we present a randomized approximation algorithm with factor O(log n) for the
MinPBST problem. Our algorithm computes a randomly shifted quadtree on the points, and
then builds a planar bichromatic tree in a bottom-up fashion from the leaves of the quadtree
towards the root. We then derandomize the algorithm by discretizing the random shifts.
Our weight analysis shows that |MinBST(S)| ≤ |MinPBST(S)| ≤ O(log n) · |MinBST(S)| for
every set S of n bichromatic points, which implies that ρn = O(log n).

ISAAC 2024



16:4 Minimum Plane Bichromatic Spanning Trees

In Section 3.1 we prove that every MinBST is quasi-plane, i.e., no three edges pairwise
cross in its inherited drawing (determined by the point set). In a sense, this means that
MinBST is not far from plane graphs. In Section 3.2 we determine the maximum number of
crossings in a MinBST. We conclude with a list of open problems in Section 4.

2 Approximation Algorithm for MinPBST

In this section we first present a randomized approximation algorithm for the MinPBST
problem. Then we show how to derandomize the algorithm at the expense of increasing
the running time by a quadratic factor. The following theorem summarizes our result in
this section. Throughout this section we consider point sets in the plane that are in general
position, that is, no three points lie on a straight line.

▶ Theorem 1. There is a randomized algorithm that, given a set of n red and blue points in
the plane in general position, returns a plane bichromatic spanning tree of expected weight
at most O(log n) times the optimum, and runs in O(n log2 n) time. The algorithm can be
derandomized by increasing the running time by a factor of O(n2).

Let S be a set of n red and blue points in the plane. To simplify our arguments we assume
that n is a power of 2. Let OPT denote the length of a minimum bichromatic spanning tree
on S (and note that OPT is an obvious lower bound for the length of a minimum plane
bichromatic spanning tree on S). Our algorithm computes a plane bichromatic spanning
tree of expected length O(log n) · OPT.

2.1 Preliminaries for the algorithm

The following folklore lemma, though very simple, plays an important role in our construction.

▶ Lemma 2. Every set of n red and blue points in general position in the plane, containing
at least one red and at least one blue point, admits a plane bichromatic spanning tree. Such a
tree can be computed in O(n log n) time.

A proof of Lemma 2 can be found in [17]. Essentially such a tree can be constructed by
connecting an arbitrary red point to all blue points (this partitions the plane into cones) and
then connecting red points in each cone to a blue point on its boundary.

For a connected geometric graph G and a point q in the plane, we say that q sees an edge
(a, b) of G if the interior of the triangle △qab is disjoint from vertices and edges of G. In
other words, the entirity of the edge (a, b) is visible from q. The following lemma (that is
implied from [33, Lemma 2.1]) also plays an important role in our construction.

▶ Lemma 3. Let G be a connected plane geometric graph with n vertices and q be a point
outside the convex hull of the vertices of G. Then q sees an edge of G. Such an edge can be
found in O(n log n) time.

Note that the condition that q lies outside of the convex hull of G is necessary, as otherwise
q may not see any edge of G entirely. The application of this lemma to our algorithm is that
if G is properly colored and a vertex sees an edge (a, b), then (q, a) or (q, b) is bichromatic
and does not cross any edges of G. This idea was previously used in [31, 32, 33].
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2.2 The algorithm
After a suitable scaling, we may assume that the smallest axis-aligned square containing S

has side length 1. After a suitable translation, we may assume that the lower left corner of
this square is the point (1, 1); and so its top right corner is (2, 2) as in Figure 2(a). Observe
that

OPT ≥ 1.

Our algorithm employs a randomly shifted quadtree as in Arora’s PTAS for the Euclidean
TSP [13]. Let Q be a 2 × 2 axis-aligned square whose lower left corner is the origin—Q

contains all points of S. Subdivide Q into four congruent squares, and recurse until Q is
subdivided into squares of side length 1/n as in Figure 2(a). The depth of this recursion is
1 + log n. For the purpose of shifting, pick two real numbers x and y in the interval [0, 1]
uniformly at random. Then translate Q such that its lower left corner becomes (x, y) as
in Figure 2(b). This process is called a random shift. The points of S remain in Q after
the shift. We obtain a quadtree subdivision of S of depth at most 1 + log n with respect to
the subdivision of Q, i.e., the lines of the quadtree subdivision are chosen from the lines of
the subdivision of Q; see Figure 2(c). The resulting quadtree is called (randomly) shifted
quadtree. We stop the recursive subdivision at squares that have size 1/n × 1/n or that are
empty (disjoint from S) or monochromatic (have points of only one color). Therefore a
leaf-square of the quadtree may contain more than one point of S.

(0, 0) Qx

y

1
n

(0, 0)

Q

x

y

(a) (b) (c)

Figure 2 (a) Shaded square contains S. (b) Translated subdivision of Q. (c) Randomly shifted
quadtree on points of S with respect to the subdivision of Q.

At the root level (which we may consider as level −1) we have Q which has size 2 × 2. At
each recursive level i = 0, 1, . . . , log n we have squares of size 1/2i × 1/2i (Level 0 stands for
the first time that we subdivide Q). Thus at level 0 we have four squares of size 1 × 1, and
at level log n we have squares of size 1/n × 1/n. Our strategy is to use the shifted quadtree
and compute an approximate solution in a bottom-up fashion from the leaves towards the
root. For each square that is bichromatic (contains points of both colors) we will find a
plane bichromatic spanning tree of its points. For monochromatic squares, we do not do
anything. At the root level, we have Q which contains S and is bichromatic, so we will get
an approximate plane bichromatic spanning tree of S.

At level i = log n, we have squares of size 1/n × 1/n, and thus the length of any edge in
such squares is at most

√
2/n. For each bichromatic square we compute a plane bichromatic

ISAAC 2024



16:6 Minimum Plane Bichromatic Spanning Trees

tree arbitrarily, for instance by Lemma 2. For monochromatic squares we do nothing. The
spanning trees for all the squares have less than n edges in total. Hence the total length of
all these trees is at most

√
2

n
· n =

√
2 ≤

√
2 · OPT.

(a) (b) (c)

Figure 3 Merging two squares in the same row: (a) case 1, (b) case 2, and (c) case 3.

At each level i < log n, we have already solved the problem within squares of level i + 1.
Each square at level i has size 1/2i × 1/2i. If the square is monochromatic we do nothing.
If the square is bichromatic, then it consists of four squares at level i + 1. We merge the
solutions of the four squares to obtain a solution for the level i square as follows. First we
merge the solutions in adjacent squares in the same row (we have two such pairs), and then
merge the two solutions in the two rows. Thus each merge is performed on two solutions that
are separated by a (vertical or horizontal) line. For the merge we apply one of the following
cases:

(1) If each merge party is monochromatic but their union is bichromatic, then we construct an
arbitrary plane bichromatic tree on the union, for example by Lemma 2. See Figure 3(a).

(2) If both merge parties are bichromatic (and hence are trees), then we take a point in one
tree that is closest to the square (or rectangle) containing the other tree and merge them
using Lemma 3. See Figure 3(b).

(3) If one part is bichromatic (a tree) and the other is monochromatic, then we first sort the
points in the monochromatic square (or rectangle) in increasing order according to their
distance to the bichromatic square (or rectangle). Then we merge the points (one at a
time) with the current bichromatic tree by using Lemma 3. See Figure 3(c).

In each case, the merge produces a plane bichromatic tree in the level-i square. We
process all squares in a bottom-up traversal of the quadtree. In the end, after processing
level −1, we get a plane bichromatic spanning tree for points of S in square Q. Denote this
tree by T .

2.3 Weight analysis
We start by introducing an alternative measurement for the length of the optimal tree, i.e.,
MinBST. This new measurement, denoted by OPT′, will be used to bound the length of our
tree T . We say that a quadtree line is at level i if it contains a side of some level-i square. A
side of a level-i square (that is not a leaf) gets subdivided to yield sides of two squares at
level i + 1. Thus any quadtree line at level i is also at levels i + 1, i + 2, . . . , log n.

For each level i ∈ {0, 1, . . . , log n} we define a parameter OPT′
i. Let Topt be a MinBST

for S. For each edge e of Topt, define the indicator variable

Xi(e) =
{

1 if e intersects the boundary of a level-i square of the quadtree,
0 otherwise.
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Now let

OPT′
i =

∑
e∈E(Topt)

1
2i

Xi(e),

that is, a weighted sum of Xi(e) over all edges of Topt, and let

OPT′ =
log n∑
i=0

OPT′
i.

The new measure OPT′ can be arbitrarily large compared to OPT in the worst case. For
example if the optimal solution is a path consisting of n − 1 edges of small length say 2/n,
such that each of them intersects the vertical line at level 0, then OPT is roughly 2 but
OPT′ is at least n − 1. However, using the random shift at the beginning of our algorithm,
we can show that the expected value of OPT′ is not very large compared to OPT.

▶ Lemma 4. E[OPT′] ≤
√

2(1 + log n) · OPT.

Proof. Consider any edge e of length ℓ in MinBST. Let ℓx denote the x-span of e, i.e.,
the difference of the x-coordinates of the two endpoints of e, and let ℓy be the y-span of e.
Observe that ℓx + ℓy ≤

√
2ℓ. The probability that e intersects a vertical line at any level i is

Pr(e intersects a vertical line at level i) ≤ ℓx2i,

because there are 2i uniformly spaced but randomly shifted vertical lines at level i. Combining
this with the probability of intersecting horizontal lines, the union bound yields

Pr(Xi(e)) = Pr(e intersects a line at level i) ≤ (ℓx + ℓy)2i ≤
√

2ℓ2i.

If e intersects a line at level i, then 1/2i is added to OPT′
i, otherwise nothing is added.

Thus the expected added value for e to OPT′
i is

E
[

1
2i

Xi(e)
]

= 1
2i

· Pr(Xi(e)) ≤ 1
2i

·
√

2ℓ2i =
√

2ℓ.

Summation over all edges of the optimal tree Topt gives E[OPT′
i] ≤

√
2 ·OPT, and summation

over all levels yields E[OPT′] ≤
√

2(1 + log n) · OPT. ◀

We already know that the total length of trees constructed in level log n is at most√
2 · OPT. Let Ei be the set of all edges that were added to T at level i < log n in the

bottom-up construction. We establish a correspondence between the edges in Ei and the
values added to OPT′. The edges of Ei were added by cases (1), (2), and (3). We consider
each case separately.

(1) Assume that the union of merge parties has k points. Then we add k − 1 edges of length
at most

√
2 · 1/2i to Ei. For these points, MinBST also needs to have at least k − 1

connections that intersect the boundaries of the squares involved in the merge, which
have side length at least 1/2i+1. For each such edge we have added a value of 1/2i+1 to
OPT′

i+1.
(2) To merge the two trees, we added just one edge of length at most

√
2 · 1/2i to Ei. For

each merge party, MinBST needs at least one edge that crosses the boundary of its
rectangle. These edges, however, need not be distinct (e.g., an edge can cross the
boundary between the two rectangles). In any case, MinBST needs at least one edge
that crosses the boundary of one of the two rectangles, for which we have added at least
1/2i+1 to OPT′

i+1.

ISAAC 2024



16:8 Minimum Plane Bichromatic Spanning Trees

(3) Assume that the monochromatic party has k points. Thus we added k edges of length at
most

√
2 · 1/2i to Ei. Again, MinBST needs at least k edges that cross the boundary of

the squares involved in the merge; and for each such edge we have added at least 1/2i+1

to OPT′
i+1.

Therefore the total length of all edges that were added to T at level i is at most |Ei| ·
√

2/2i.
Analogously, the total value that has been added to OPT′

i+1 is at least 1/2 · |Ei| · 1/2i+1 =
|Ei| · 1/2i+2. The multiplicative factor 1/2 comes from the fact that the two endpoints of an
edge of the optimal tree could be involved in two separate merge operations. By summing
the length of edges added to T in all levels and considering Lemma 4 we get

E[|T |] ≤
√

2 · OPT + E

[log n−1∑
i=0

|Ei|
√

2
2i

]
≤

√
2 · OPT + 4

√
2 · E

[log n−1∑
i=0

|Ei|
1

2i+2

]

≤
√

2 · OPT + 4
√

2 · E

[log n−1∑
i=0

OPT′
i+1

]
≤

√
2 · OPT + 4

√
2 · E[OPT′]

≤
√

2 · OPT + 4
√

2 ·
√

2(1 + log n) · OPT = O(log n) · OPT.

2.4 Derandomization

In the algorithm of Section 2.2, we shifted the 2 × 2 square Q by a real vector (x, y), where
x and y are chosen independently and uniformly at random from the interval [0, 1]. We now
discretize the random shift, and choose x and y independently and uniformly at random
from the finite set {0, 1/n, 2/n, . . . , n−1/n}. We call this process the discrete random shift. We
show that the proof of Lemma 4 can be adapted under this random experiment with a larger
constant coefficient. Therefore we can derandomize the algorithm by trying all random
choices of (x, y) for the shift and return the shortest tree over all choices. This increases the
running time by a factor of O(n2).

▶ Lemma 5. Under the discrete random shift, we have E[OPT′] ≤ (
√

2+2)(1+log n) ·OPT.

Proof. Consider any edge e = ab of length ℓ in the optimal tree Topt. The two endpoints
of e are points a = (ax, ay) and b = (bx, by). Denote the orthogonal projection of e to the
x- and y-axes by ex and ey, respectively, and observe that ex = [min{ax, bx}, max{ax, bx}]
and ey = [min{ay, by}, max{ay, by}]. We discretize these intervals as follows. Replace each
endpoint of the interval ex with the closest rationals of the form k/n + 1/2n, and let e′

x be
the resulting interval; similarly we obtain e′

y from ey. Observe that ex intersects a vertical
line of the form x = a/n, a ∈ Z, if and only if e′

x does. Let ℓ′
x and ℓ′

y denote the lengths of
intervals e′

x and e′
y, respectively. By construction, we have ℓ′

x ≤ ℓx + 1/n and ℓ′
y ≤ ℓy + 1/n.

Consequently, the probability that e intersects a vertical line at any level i is

Pr(e intersects a vertical line at level i) = Pr(e′
x intersects a vertical line at level i)

≤ ℓ′
x2i ≤ (ℓx + 1/n) 2i,

because there are 2i uniformly spaced but randomly shifted vertical lines at level i. Combining
this with the probability of intersecting horizontal lines, the union bound yields

Pr(Xi(e)) = Pr(e intersects a line at level i) ≤ (ℓx + ℓy + 2/n) 2i ≤
(√

2ℓ + 2/n

)
2i.
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The expected added value for e to OPT′
i is

E
[

1
2i

Xi(e)
]

= 1
2i

· Pr(Xi(e)) ≤ 1
2i

·
(√

2ℓ + 2
n

)
2i =

√
2ℓ + 2

n
.

Summation over all edges of the optimal tree Topt gives E[OPT′
i] ≤

√
2 · OPT + 2 ≤

(
√

2+2) ·OPT, and summation over all levels yields E[OPT′] ≤ (
√

2+2)(1+log n) ·OPT. ◀

The initial shifted quadtree has depth O(log n) and has O(n) leaves. Thus it can be
computed in O(n log n) time by a divide-and-conquer sorting-based algorithm [26]. From a
result of [17] (cf. Lemma 2) it follows that the bichromatic trees at the leaves of the quadtree
can be computed in total O(n log n) time. From a result of [30] and [33] (cf. Lemma 3) it
follows that the total merge time in each level of the quadtree is O(n log n). Summing over
all levels, the running time of our algorithm is O(n log2 n).

2.5 Generalization to more colors
Our approximation algorithm for the MinPBST (minimum plane two-colored spanning tree)
can be generalized to more colors. In this general setting, we are given a colorful point set S

and we want to find a spanning tree on S with properly colored edges, i.e., the two endpoints
of every edge should be of different colors. The same quadtree approach would give a plane
properly-colored spanning tree. The analysis and the approximation ratio would be the same
mainly because whenever we introduce some edges to merge two squares, the optimal solution
must have the same number of edges that cross the boundaries of the squares. Also the
running time remains the same because Lemma 2 and Lemma 3 carry over to multicolored
point sets.

3 Crossing Patterns in MinBST

In this section, we prove that MinBST is quasi-plane for every 2-colored point set in general
position (Section 3.1), and then use this result to determine the maximum number of crossings
in MinBST for a set of n bichromatic points in the plane (Section 3.2).

3.1 Quasi-planarity
Let S be a set of red and blue points in the plane. To differentiate between the points we
denote the red points by r1, r2, . . . and the blue points by b1, b2, . . . . Let T be a MinBST for
S. For two distinct edges e1 and e2 of T we denote the unique shortest path between e1 and
e2 in T by δ(e1, e2). This path contains exactly one endpoint of e1 and one endpoint of e2.

δ(e1, e2)

r1 r2

b1b2
e1e2

Figure 4 Illustration of the proof of Lemma 6. Uncrossing a pair of crossing edges.

▶ Lemma 6. Let e1 and e2 be two edges of T that cross each other. Then the endpoints of
δ(e1, e2) have different colors.
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Proof. Let e1 = (r1, b1) and e2 = (r2, b2). Suppose, for the sake of contradiction, that the
endpoints of δ(e1, e2) are of the same color, w.l.o.g. red. Then the endpoints of δ(e1, e2)
are r1 and r2 as in Figure 4. In this case, we can replace edges (r1, b1) and (r2, b2) of T by
two new edges (r1, b2) and (r2, b1) and obtain a new bichromatic spanning tree T ′. By the
triangle inequality (applied to each of the two triangles induced by the crossing), the total
length of the two new edges is smaller than the total length of the two orginal edges. Hence
T ′ is shorter than T , contradicting the minimality of T . ◀

r1

r2

r3

b1

b2

b3

δ(e2, e3)

δ(e1, e3)

e1 e2

e3

b2

δ(e2, e3)

δ(e1, e2)
b1

r2

b3

r3 r1

e1 e2

e3

(a) (b)

Figure 5 (a) Replacing e1, e2, e3 by (r1, b3), (r3, b2), (r2, b1); the highlighted path is δ(e1, e2). (b)
Getting a cycle in the union of δ(e1, e2), δ(e2, e3), δ(e1, e3), together with e1 or e3. Gray paths
represent the two possible choices for δ(e1, e3).

▶ Theorem 7. Every Euclidean minimum bichromatic spanning tree is quasi-plane.

Proof. Let T be a Euclidean minimum bichromatic spanning tree. We prove that no three
edges of T can pairwise cross each other. This will imply that T is quasi-plane. The proof
proceeds by contradiction. Suppose that three edges of T , say e1 = (r1, b1), e2 = (r2, b2) and
e3 = (r3, b3), pairwise cross each other as in Figure 5. We consider the following two cases:

1. δ(ei, ej) contains ek for some permutation of the indices with {i, j, k} = {1, 2, 3}.
After a suitable relabeling assume that δ(e1, e2) contains e3. Then δ(e1, e3) and δ(e2, e3)
are sub-paths of δ(e1, e2) and they do not contain e2 and e1 respectively. Assume without
loss of generality (and by Lemma 6) that the endpoints of δ(e1, e2) are r2 and b1 as
in Figure 5(a); δ(e1, e2) is highlighted in the figure. For the rest of our argument we
will use a result of [20] that for an even number of (monochromatic) points in the
plane, a perfect matching with pairwise crossing edges is the unique maximum-weight
matching (without considering the colors). This means that M = {e1, e2, e3} is the
maximum matching for the point set {r1, r2, r3, b1, b2, b3}. Therefore M is longer than
R = {(r1, b3), (r2, b1), (r3, b2)}, which is a (bichromatic) matching for the same points.
By replacing the edges of M in T with the edges of R, we obtain a shorter tree T ′,
contradicting the minimality of T . To verify that T ′ is a tree imagine replacing the edges
one at a time. If we add (r1, b3) first, then we create a cycle that contains e1, and thus
by removing e1 we obtain a valid tree. Similarly we can replace e2 by (r3, b2) and e3 by
(r2, b1).

2. δ(ei, ej) does not contain ek for any permutation of the indices with {i, j, k} = {1, 2, 3}.
Consider the path δ(e1, e2) and assume without loss of generality (and by Lemma 6) that
its endpoints are r2 and b1 as in Figure 5(b). Now consider δ(e2, e3). This path cannot
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have r3 and b2 as its endpoints because otherwise the path δ(e1, e3) would contain e2,
contradicting the assumption of the current case. Therefore the endpoints of δ(e2, e3) are
r2 and b3. Now consider the path δ(e1, e3). If its endpoints are r1 and b3, then the union
of δ(e1, e2), δ(e2, e3), and δ(e1, e3) contains a path between r1 and b1 that does not go
through e1; the union of this path and e1 is a cycle in T . Similarly, if the endpoints of
δ(e1, e3) are r3 and b1, then the union of δ(e1, e2), δ(e2, e3), δ(e1, e3), and e3 contains a
cycle. Both cases lead to a contradiction as T has no cycle. ◀

3.2 Maximum number of crossings
Given that a MinBST is quasi-plane (Theorem 7), one wonders how many crossings it can
have. As illustrated in Figure 1, the number of crossings per edge can be linear in the number
of points, and the total number of crossings can be quadratic. We give tight upper bounds for
both quantities (Propositions 9–10), and also show that MinBST always has a crossing-free
edge (Proposition 8).

▶ Proposition 8. For every finite set of bichromatic points in the plane in general position,
every MinBST contains a closest bichromatic pair as an edge. Moreover, no such edge is
intersected by other edges of the MinBST.

Proof. We prove both parts by contradiction. For the first part assume that the MinBST
does not contain an edge between any closest bichromatic pair. Let {r1, b1} be a closest
bichromatic pair. By adding (r1, b1) to the tree we obtain a cycle in which (r1, b1) is the
shortest edge. By removing any other edge from the cycle we obtain a bichromatic spanning
tree of a shorter length. This contradicts the minimality of the original MinBST.

For the second part let {r1, b1} be a closest bichromatic pair that appears as an edge in
the MinBST. Hence e1 = (r1, b1) crosses some edge e2 = (r2, b2). Without loss of generality
(and by Lemma 6), assume that the endpoints of δ(e1, e2) are r1 and b2. If |r2b1| < |r2b2|,
then by replacing (r2, b2) with (r2, b1) we obtain a shorter bichromatic spanning tree, a
contradiction. Assume that |r2b1| ≥ |r2b2|. Since {r1, b1} is a closest bichromatic pair we
have |r1b2| ≥ |r1b1|. Adding the two inequalities yields |r1b2| + |r2b1| ≥ |r1b1| + |r2b2|. Note,
however, that the vertices of any two crossing edges form a convex quadrilateral. By the
triangle inequality, the total length of the two diagonals of a convex quadrilateral is strictly
more than the total length of any pair of opposite edges, yielding |r1b2|+|r2b1| < |r1b1|+|r2b2|,
a contradiction. ◀

▶ Proposition 9. For every set of n ≥ 2 bichromatic points in the plane in general position,
every MinBST has at most ⌊n2

/4⌋ − n + 1 crossings, and this bound is the best possible.

Proof. To verify that the claimed bound can be attained, consider the construction in
Figure 1 where the two top clusters have ⌊n/2⌋−1 and ⌈n/2⌉−1 points. Then the total
number of crossings in MinBST(S) is (⌊n/2⌋−1) · (⌈n/2⌉−1), which is equal to ⌊n2

/4⌋ − n + 1
because n is an integer.

For an upper bound, let S be a set of n bichromatic points in general position. Define
the crossing graph Gcr of MinBST(S), where the vertices of Gcr correspond to the edges of
MinBST(S) and edges of Gcr represent crossings between the edges of MinBST(S). Note
that Gcr has n − 1 vertices where one of them is of degree 0 by Proposition 8. By Theorem 7,
Gcr is triangle-free. Therefore, by Turán’s theorem [7], Gcr has at most (⌊n/2⌋−1) ·(⌈n/2⌉−1)
edges. Consequently, MinBST(S) has at most this many crossings. ◀
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▶ Proposition 10. For every set of n ≥ 3 bichromatic points in the plane in general position,
every edge of a MinBST crosses at most n − 3 other edges, and this bound is the best possible.

Proof. To verify that the claimed bound can be attained, consider the construction in
Figure 1 and replace one of the top clusters by a single point and the other by n − 3 points.
Then all points in this cluster have degree 1 in MinBST(S), these n − 3 leaves all cross one
edge of MinBST.

For the upper bound, notice that a MinBST has n − 1 edges, one of which is crossing-free
by Proposition 8. Consequently, an edge in a MinBST can cross at most n−3 other edges. ◀

4 Conclusions and Open Problems

We conclude with a collection of open problems raised by our results. We have presented
a O(log n)-approximation algorithm for the MinPBST problem for a set of n bichromatic
points in the plane, and showed that ρn ≤ O(log n). Recall that the current best lower bound
is ρn ≥ 3/2 for all n ≥ 4 [29]. It remains open whether a constant-factor approximation is
possible, whether the problem is APX-hard, and whether ρn is bounded by a constant.

It is also natural to investigate whether there is an (approximation) algorithm that,
given a bichromatic point set and an integer d, finds a minimum plane bichromatic tree of
maximum degree at most d (or reports that none exists). It is known that any set of n red
and n blue points in general position admits a plane bichromatic spanning tree of maximum
degree at most three [34]; but there are n red and n blue points in convex position that do
not admit a bichromatic plane spanning path [8]. For the general case of n red and m blue
points, with n ≥ m, there exists a plane bichromatic spanning tree of maximum degree at
most max{3, ⌈n−1/m⌉ + 1} and this is the best upper bound [19].

We have shown that MinBST is quasi-plane, which means that the crossing graph Gcr of
MinBST is triangle-free. Figure 1 shows that Gcr can have 4-cycles (and even cycles of any
lengths). Can the crossing graph Gcr of MinBST contain an odd cycle (e.g., a 5-cycle)? Can
every MinBST be decomposed into a constant number of planar straight-line graphs?
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