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Abstract

We prove that the classic 1994 Taito video game,
known as Puzzle Bobble or Bust-a-Move, is NP-
complete. Our proof applies to the perfect-
information version where the bubble sequence is
known in advance, and uses just three colors.

1 Introduction

Erik grew up playing the action platform video
game Bubble Bobble (バブルボブル), starring cute
little brontosauruses Bub and Bob, on the Nintendo
Entertainment System. (The game was first re-
leased by Taito in 1986, in arcades [3].) Some years
later (1994), Bub and Bob retook the video-game
stage with the puzzle game Puzzle Bobble (パズル
ボブル), known as Bust-a-Move in the U.S. [4, 6].
This game essentially got Stefan through his Ph.D.:
whenever he needed a break, he would play as much
as he could with one quarter.

In Puzzle Bobble, the game state is defined by
a hexagonal grid, each cell possibly filled with a
bubble of some color. In each turn, the player is
given a bubble of some color, which can be fired in
any (upward) direction from the pointer at the bot-
tom center of the board. The fired bubble travels
straight, reflecting off the left and right walls, un-
til it hits another bubble or the top wall, in which
case it terminates at the nearest grid-aligned posi-
tion. If the bubble is now in a connected group of
at least three bubbles of the same color, then that
group disappears (“pops”), and any bubbles now
disconnected from the top wall also pop.

Here we study the perfect-information (general-
ized) form of Puzzle Bobble. We are given an initial
board of bubbles and the entire sequence of colored
bubbles that will come. The goal is to clear the
board using the given sequence of bubbles. (The
actual game has an infinite, randomly generated
sequence of bubbles, like Tetris [1].) The game also
has a falling ceiling, where all bubbles descend ev-
ery fixed number of shots; and if a bubble hits the
floor, the game ends. We assume that the resolu-
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tion of the input is sufficiently fine to hit any dis-
crete cell that could be hit by an (infinitely precise)
continuous shot. (This assumption seems to hold
in the original game, so it is natural to generalize
it.)

Theorem 1 Puzzle Bobble is NP-complete.

Membership in NP is easy: specify where to
shoot each of the n given bubbles. The rest of this
paper establishes NP-hardness.

Our reduction applies to all versions of Puzzle
Bobble. Viglietta [5] proved that Puzzle Bobble
3 is NP-complete, by exploiting “rainbow” (wild-
card) bubbles. Our proof shows that this feature is
unnecessary.

2 NP-Hardness

The reduction is from Set Cover: given a collection
S = {S1, S2, . . . , Ss} of sets where each Si ⊆ U , and
a positive integer k, are there k sets Si1 , Si2 , . . . , Sik

whose union covers all elements of U?
Figure 1 shows the overall structure of the reduc-

tion. The bulk of the construction is in the central
small square, which is aligned on the top side of an
m×m square above the floor. By making the cen-
tral square small enough, the angles of direct shots
at the square are close to vertical (needed to solve
most gadgets), and the rebound angles that hit the
square are all approximately 45◦ (needed to solve
the crossover gadget below). The player could do
multiple rebounds (or destroy bubbles to cause the
ceiling to lower prematurely) to make shot angles
more horizontal, but this will only make it harder
to solve the gadgets.

The sequence of bubbles given to the player is as
follows. The very first color appears only k times,
where k is the desired set-cover size. Each remain-
ing color appears sufficiently many times (Θ(s|U |)
times, which we will refer to as∞). Unneeded bub-
bles can be discarded by forming isolated groups of
size 3, 4, or 5 off to the side.

k blue , ∞ yellow , ∞ blue , ∞ red ;
∞ blue , ∞ yellow , ∞ blue , ∞ red ;
∞ blue , ∞ yellow , ∞ blue , ∞ red ;

...
...

...
...

∞ blue , ∞ yellow , ∞ blue , ∞ red ;
∞ red , ∞ red , ∞ red , . . .
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Figure 1: Overall structure of the reduction. All
other gadgets lie within a small square at the top
of an m ×m square, where m is the width of the
game. Red horizontal lines separate the gadgets
into layers, with blue fill in between. At the top
is a huge rectangle of yellow bubbles with one red
bubble and one blue bubble in the middle.

The rough idea is the following. Red bubbles
separate vertical layers that unravel sequentially, as
enforced by blue buffers. Blue and yellow bubbles
form triggers to communicate signals into the next
layers, alternately. Blue triggers cup yellow triggers
in the next level, and vice versa.

Figure 2 illustrates the gadgets in a full exam-
ple. First (at the bottom) we have one instance
of the choice gadget, which allows triggering k sets
(whichever the player chooses). Then we use sev-
eral split gadgets, to split each trigger for set Si into
|Si| triggers. Then we use several crossover gadgets,
to bring together all the triggers for element x, for
every element x. Next, for each element, we merge
all the triggers for that element (coming from sets
that contain the element), using the or gadget. Fi-
nally, we combine the element triggers using the
and gadget. We end up with one trigger indicating
that all elements are covered, i.e., we found a set
cover of size k. This trigger is connected to a huge
(n1−ε-area) rectangle of yellow bubbles at the top
of the board, with one red bubble in the middle, as
shown in Figure 1. Thus, even approximating the
maximum number of poppable bubbles better than
a factor of n1−ε is NP-hard (as in Tetris [1]).

See the full paper [2] for omitted details.
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Figure 2: Example of the main construction (the
gray box in Figure 1) with three sets and four ele-
ments. The sequence at the bottom can solve the
puzzle for k = 2 and k = 3, but not for k = 1.

3 Open Problems
We have proved NP-hardness for just three colors.
What about just two colors? Or even one color?
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