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Abstract

We introduce a simple game family, called Constraint
Logic, where players reverse edges in a directed graph
while satisfying vertex in-flow constraints. This game fam-
ily can be interpreted in many different game-theoretic set-
tings, ranging from zero-player automata to a more eco-
nomic setting of team multiplayer games with hidden infor-
mation. Each setting gives rise to a model of computation
that we show corresponds to a classic complexity class. In
this way we obtain a uniform framework for modeling vari-
ous complexities of computation as games. Most surprising
among our results is that a game with three players and a
bounded amount of state can simulate any (infinite) Turing
computation, making the game undecidable. Our frame-
work also provides a more graphical, less formulaic view-
point of computation. This graph model has been shown
to be particularly appropriate for reducing to many exist-
ing combinatorial games and puzzles—such as Sokoban,
Rush Hour, River Crossing, TipOver, the Warehouseman’s
Problem, pushing blocks, hinged-dissection reconfigura-
tion, Amazons, and Konane (Hawaiian Checkers)—which
have an intrinsically planar structure. Our framework
makes it substantially easier to prove completeness of such
games in their appropriate complexity classes.

1 Introduction

Games model computation. The idea that games
serve as a useful model for certain kinds of computation
is commonplace in complexity theory. The classic instance,
highlighted in Papadimitriou’s book [30, ch. 19] for exam-
ple, is that PSPACE-complete computation can be modeled
by a polynomial-length two-player game where the play-
ers take turns setting variables, one player wants to make a
Boolean formula true, and the other player wants to make it
false. But the connection runs much deeper than this classic
instance. For example, even one-player puzzles, but with
a polynomially unbounded number of moves, also model
PSPACE-complete computation [25].

One goal of this paper is to show how a broad range
of games—ranging from zero-player automata such as

Conway’s Game of Life, to a more economic setting of
team multiplayer games with hidden information—model
different complexities of computation—ranging from P-
completeness to undecidability. Table 1 summarizes this
correspondence. Most surprising among these results is that
a game with just three players and a bounded amount of
shared and hidden state models all decidable computation.

What is a game? It is important at this point to differ-
entiate games from automata-based models of computation
like Turing machines. The high-level idea is similar: at each
step, some finite set of rules define a set of allowable moves
which change the state in some predictable fashion. One
key difference is in the size of the state: Turing machines
have infinite tapes, so the state at any time is unbounded,
while we always require the state of a game to be defined
by a finite board position. We can, of course, bound the size
of a Turing-machine tape, or use a circuit model of compu-
tation, but such restrictions limit the model of computation
from general decidability. By contrast, we show that no
such limitations exist for games.

Games are also naturally suited for the ideas of mul-
tiple players, teams, and hidden information. Each of
these ideas has been grafted onto Turing-based models of
computation—the most famous example being alternation
[3], which corresponds to two players—although arguably
these ideas come from games [32, 34]. Unlike the exten-
sions of [32], we make the natural restriction that the moves
of the game must cycle through the players in round-robin
order. For any game, there is a standard decision question:
does player X have a forced win from a given position?

A uniform framework. We develop one simple kind
of game, Constraint Logic, which can be easily adapted to
all different types of games: any number of players/teams,

One player
(puzzle)

Two player Team, imperfect
information

Unbounded
length PSPACE

NP

EXPTIME

PSPACE

Undecidable

NEXPTIME

PSPACE

Zero player
(simulation)

PBounded
length

Table 1. Game categories and their natural
complexities. Constraint Logic is complete
in each class.



(polynomially) bounded and unbounded length, with and
without hidden information. This approach naturally mim-
ics Turing machines, which serve as a universal model of
computation that can be easily restricted to model any com-
plexity class in the classic time and space hierarchies. Such
a uniform treatment of games has never been attained be-
fore.

Graphs, not formulae. In Constraint Logic, the game
board is any undirected graph with weights of 1 or 2 on the
edges and vertices. A board position is an orientation of this
graph such that the total weight of edges directed into each
vertex is at least that vertex’s desire (weight). A move is
just a reversal of an edge orientation that results in a valid
board position. A computation is a sequence of moves; a
computation accepts if it reverses a particular distinguished
edge.

This model differs in several ways from traditional logi-
cal models of computation such as circuit or formula satisfi-
ability. Constraint Logic is simple, being modeled directly
around graphs. Circuits and formulae can be represented
as graphs with sufficient augmentation (e.g., distinguishing
variables from clauses/gates). But it is difficult to see the ac-
tual computation taking place in such a graph, whereas the
dynamics of Constraint Logic defines the entire state in the
orientation of the graph. This purely combinatorial view,
without any explicit logical values, is much easier to work
with in many cases.

Application to proving completeness. It is well-
known that many one-player puzzles and two-player games
are complete within their natural complexity class, as pre-
dicted by the middle two columns of Table 1. For ex-
ample, Peg Solitaire is a bounded-length puzzle and NP-
complete [43]; Sokoban and Rush Hour are unbounded-
length puzzles and PSPACE-complete [6, 10, 13, 25]; Hex
and Othello are bounded-length two-player games and
PSPACE-complete [35, 27]; and generalized Chess, Check-
ers, and Go are unbounded-length two-player games and
EXPTIME-complete [15, 38, 37]. For more examples, see
the surveys [7, 14]. Most of these proofs are complicated,
reducing from appropriate forms of formula satisfiability.

One motivation for developing our game model of com-
putation is that it is much closer in flavor to many ex-
isting games, making the appropriate form of Constraint
Logic a natural problem to reduce from. We have success-
fully developed such reductions for many different games:
bounded-length one-player TipOver [19]; unbounded-
length one-player sliding blocks, Sokoban, Rush Hour, the
Warehouseman’s Problem, and sliding tokens [25], River
Crossing [21], Push-2-F [8], and hinged-dissection recon-
figuration [20]; and bounded-length two-player Amazons,
Konane (Hawaiian Checkers), and Cross Purposes [23]. In
the cases of Sokoban, Rush Hour, and the Warehouseman’s
Problem, which were proved PSPACE-complete previously,
our proofs based on Constraint Logic are simpler and (ex-
cept for Rush Hour) establish hardness for weaker forms of
the games. The complexities of many of the other games
were open problems for several years; for example, sliding
blocks was posed by Martin Gardner 40 years earlier [16].

This paper proves the formal underpinnings necessary
for the reductions listed above to actually establish the de-
sired form of completeness. Only the unbounded-length

one-player case was established previously [25]; the other
cases were conjectured in the papers above. We expect our
framework of Constraint Logic to offer simple complete-
ness proofs for many more games and puzzles. In partic-
ular, with our newly developed frameworks for zero-player
games, two-player unbounded-length games, and team mul-
tiplayer games with hidden information, we expect a new
wealth of applications.

The Constraint Logic framework provides a host of tools
for making it easy to prove completeness of a game, as de-
scribed in Section 3. The proof only needs to show how
to implement two kinds of constraint graph vertices, one
representing a kind of AND computation, and another rep-
resenting a kind of OR computation. (In fact, even simpler
forms of these vertices suffice to establish completeness.)
The proof also needs to be able to construct edges that con-
nect two vertices. Fortunately, the Constraint Logic frame-
work can guarantee that the graph is planar, so the game-
specific proof does not need to worry about crossing edges.1
In contrast, crossover gadgets are the most complicated part
of most previous completeness proofs for two-dimensional
games; with constraint graphs, they come for free so are
unnecessary to build.

(a) AND (b) OR

Figure 1. Constraint
Logic gadgets showing
PSPACE-completeness
of sliding-block puzzles.

As an illustrative
example of the power
of the Constraint Logic
framework, Figure 1
shows the entire con-
struction required to
prove that sliding-block
puzzles are PSPACE-
complete. Thus the
solution to this 40-year-
old problem becomes
almost trivial.

Outside of games, others have used the unbounded-
length one-player form of Constraint Logic from [25] to es-
tablish the complexity of airport planning [26], steel slab
stacking [28], finding paths between graph colorings [2],
and morphing parallel graph drawings [41]. Recently we
discovered an application of zero-player Constraint Logic
to evolutionary graph theory [9].

Related work. We draw inspiration from two main
previous papers.

As mentioned above, the unbounded one-player case was
considered previously in [25]; that paper, in turn, was in-
spired by the Rush Hour Logic of Flake and Baum [13]. The
present work represents a culmination of generalizations to
more players, bounded length, and hidden information.

The idea of team multiplayer games with hidden infor-
mation comes from a paper by Peterson and Reif [32]. That
paper also tries to make many connections between games
and models of computation. In particular, they claim a result
similar to ours: that certain team multiplayer games with
hidden information are undecidable. Unfortunately, some
of their results along these lines are flawed, as described in
Section 7; in particular, their game TEAM-PEEK is in fact
decidable. Nonetheless, we use several of their ideas.

1There is one exception: in the bounded zero-player setting, no
crossover gadget exists unless NC3 = P.



2 Overview

This section gives a more detailed summary of our re-
sults and their context and importance, as well as providing
an overview of the paper’s structure.

Constraint Logic framework. Section 3 gives a for-
mal definition of the Constraint Logic framework, defining
constraint graphs and describing some of their properties,
including the generality and utility of the complexity results
for planar constraint graphs. The following sections then
define specific Constraint Logics, which have additional re-
strictions appropriate to the corresponding game types.

Zero-player games. We begin our study of game cat-
egories in Section 4 with deterministic, or zero-player,
games. We may think of such games as simulations: each
move is determined from the preceding configuration. Ex-
amples that are often thought of as games include cellular
automata, such as Conway’s Game of Life [17]. More gen-
erally, the class of zero-player games corresponds naturally
to ordinary computers, or deterministic space-bounded Tur-
ing machines—the kinds of computational tools we have
available in the real world (at least until quantum comput-
ers develop further).

A bounded zero-player game is essentially a simulation
that can run for only linear time. This style of compu-
tation is captured by Boolean circuits; determining their
value is P-complete. We define a bounded zero-player Con-
straint Logic, and prove P-completeness by correspondence
to Boolean circuits.

Unbounded zero-player games are simulations that have
no a-priori bound on how long they may run. Cellular au-
tomata, such as Conway’s Game of Life, are good exam-
ples. Because there is no longer a linear bound on the num-
ber of moves, it is not generally possible to determine the
outcome in polynomial time. Indeed, Life has been shown
to be Turing-universal [1, 44, 36] on an infinite grid. In
other words, there are decision questions about a Life game
(for example, “will this cell ever be born?”) that are un-
decidable. On a finite grid, the corresponding property is
PSPACE-completeness.2 The canonical PSPACE-complete
formula problem is Quantified Boolean Formula Satisfiabil-
ity (QBF). We show that QBF corresponds to a natural un-
bounded zero-player Constraint Logic, called Deterministic
Constraint Logic.

Deterministic Constraint Logic also represents a new
style of reversible, monotone computation that potentially
could be physically built, and could have significant advan-
tages over conventional digital logic.

One-player games. Section 5 gives our results for
one-player games. A one-player game is a puzzle: one
player makes a series of moves, trying to accomplish some
goal. For example, in a sliding-block puzzle, the goal could
be to get a particular block to a particular location. We use
the terms “puzzle” and “one-player game” interchangeably.
For puzzles, the generic forced-win decision question—
“does player X have a forced win?”—becomes “is this puz-
zle solvable?”.

2This result is not mentioned explicitly in the cited works, but it follows
directly, at least from [36].

Bounded one-player games have a polynomial bound
(typically linear) on the number of moves that can be made.
Typically each move uses up some bounded resource. For
example, in a game of Sudoku, the grid eventually fills up
with numbers, and then either the puzzle is solved or it
is not. In Peg Solitaire, each jump removes one peg, un-
til eventually no more jumps can be made. The nondeter-
minism of these games, plus the polynomial bound, means
that they are in NP—a nondeterministically guessed solu-
tion can be checked for validity in polynomial time. The
canonical NP-complete problem is Satisfiability (SAT). We
show that SAT corresponds to the natural bounded one-
player Constraint Logic. As in other game categories, re-
ductions from this game are often dramatically simplified
because of planarity. Planar SAT is also NP-complete [29],
but that result is not generally useful for puzzle reductions.3

Unbounded one-player games are puzzles in which there
is no restriction on the number of moves that can be made.
Typically the moves are reversible. For example, in a
sliding-block puzzle, the pieces may be slid around in the
box indefinitely, and a block once slid can always be im-
mediately slid back to its previous position. Because there
is no polynomial bound on the number of moves required
to solve the puzzle, it is no longer possible to verify a pro-
posed solution in polynomial time—the solution could have
exponentially many moves. Indeed, unbounded puzzles are
often PSPACE-complete. It is clear that such puzzles can be
solved in nondeterministic polynomial space (NPSPACE),
by nondeterministically guessing a satisfying sequence of
moves; the only state required is the current configuration
and the current move. But Savitch’s Theorem [39] says that
PSPACE = NPSPACE, so these puzzles can also be solved
using deterministic polynomial space. The natural form of
Constraint Logic for this type of puzzle corresponds to QBF,
and is PSPACE-complete. It was developed in [24, 25];
the present paper extends the notion of Constraint Logic to
other kinds of games.

Two-player games. With two-player games (Sec-
tion 6), we are finally in territory familiar to both classi-
cal (economic) game theory and combinatorial game theory.
Two-player perfect-information games are also the richest
source of existing hardness results for games. In a two-
player game, players alternate making moves, each trying
to achieve some particular objective. The standard decision
question is “does player X have a forced win from this po-
sition?”. The connection between two-player games and
computation is quite manifest. Just as adding the concept
of nondeterminism to deterministic computation creates a
new useful model of computation, adding an extra degree
of nondeterminism leads to the concept of alternating non-
determinism, or alternation [3]. Indeed, up to this point it
is clear that adding an extra degree of nondeterminism is
like adding an extra player in a game, and seems to raise

3In Planar SAT, the graph corresponding to the formula is a planar bi-
partite graph, with variable nodes and clause nodes, plus a cycle connect-
ing the variable nodes. The clause nodes are not connected, however. In
contrast, a constraint graph corresponding to a Boolean formula feeds all
the AND outputs into one final AND; reversing that final AND’s output edge
is possible just when the formula is satisfiable. Typically, this feature is
a critical structure for puzzle reductions, because the victory condition is
usually a local property (such as moving a block to a particular place)
rather than a distributed property of the entire configuration.



the computational complexity of the game, or the computa-
tional power of the model of computation.

Bounded two-player games are games in which there is a
polynomial bound (typically linear) on the number of moves
that can be made. As with bounded puzzles, usually there is
some resource that gets used up by each move. In Hex, for
example, each move fills a space on the board, and when
all the spaces are full, the game must be over. The earli-
est hardness results for two-player games were PSPACE-
completeness results for bounded games, beginning with
Generalized Hex [11], and continuing with several two-
player versions of known NP-complete problems [40]. The
canonical PSPACE-complete game is simply QBF. QBF is
equivalent to the question of whether the first player can
win the following formula game: “Players take turns as-
signing truth values to a sequence of variables. When they
are finished, player one wins if formula F is true; other-
wise, player two wins.” We show that the natural bounded
two-player Constraint Logic corresponds directly to a vari-
ant formulation of QBF.

Unbounded two-player games have no restriction on the
number of moves that can be made. Typically (but not al-
ways) the moves are reversible. Examples include the clas-
sic games Chess, Checkers, and Go. Each of these games is
EXPTIME-complete [15, 38, 37].4 Thus, we finally reach
games that are provably intractable [18]. These reductions
are from an unbounded formula game that is similar to QBF,
except that variable assignments can be changed back and
forth multiple times [42]. We show that one version of this
formula game is equivalent to the natural unbounded two-
player Constraint Logic.

Multiplayer games. In Section 7 we consider the gen-
eralization to multiplayer games. It turns out that naı̈vely
adding players beyond two does not increase the complex-
ity of the standard decision question, “does player X have
a forced win?”. We might as well assume that all the other
players team up to beat X , in which case we effectively
have a two-player game again. If we generalize the notion
of the decision question somewhat, we do obtain new kinds
of games. In a team game, there are still two “sides”, but
each side can have multiple players, and the decision ques-
tion is whether team X has a forced win. A team wins if
any of its players wins. Team games with perfect infor-
mation are still just two-player games in disguise, however,
because again all the players on a team can cooperate and
play as if they were a single player. But when there is hid-
den information, team games turn out to be different from
two-player games. Therefore, we only consider team games
of imperfect information, referring to them simply as “team
games”.

Bounded team games of imperfect information include
card games such as Bridge. Here we can consider one hand
to be a game, with the goal being either to make the bid,
or, if on defense, to set the other team. The hand ends after
all the cards have been played. Focusing on a given hand
also removes the random element from the game, making it
potentially suitable for study within the present framework.
Peterson and Reif [32] showed that bounded team games
of private information are NEXPTIME-complete in gen-

4For Go, the result is only for Japanese rules.

eral, by a reduction from Dependency Quantified Boolean
Formulas (DQBF). We show that DQBF corresponds di-
rectly to the natural bounded team imperfect-information
Constraint Logic.

In general, team games with private information are un-
decidable, even with three players. This result was claimed
by Peterson and Reif in 1979 [32]. However, as mentioned
above, there are several problems with the proof, which we
address in Section 7.2. We use an improved version of a
team computation game given in [32] to prove that a natu-
ral unbounded team Constraint Logic is indeed undecidable,
thus showing that games are as powerful a computational
model as general Turing machines.5

Undecidable games using bounded space—finite phys-
ical resources—at first seem counterintuitive. Such games
have only finitely many configurations, so eventually a posi-
tion must repeat. Yet somehow the game’s state must effec-
tively encode the contents of an unboundedly long Turing-
machine tape!

The resolution to the apparent paradox is that, though the
position will eventually repeat, the players will not know
when it has repeated. To play optimally, they must remem-
ber the entire game history. It might seem, therefore, that
the unbounded state has simply been transferred from the
machine to the players’ memory. But there is a big dif-
ference: the players’ resources are not part of the problem
statement. The players may be viewed simply as a source of
nondeterminism. Thus we arrive at the fundamental differ-
ence of computation through games: a game computation
is a manipulation of finite resources.

3 Constraint logics in general
The general model of games we develop is based on the

idea of a constraint graph; the rules defining legal moves
on such graphs are called Constraint Logic. In later sec-
tions the graphs and the rules will be specialized to produce
zero-player, one-player, two-player, etc. games. A game
played on a constraint graph is a computation of a sort, and
simultaneously serves as a useful problem to reduce to other
games to show their hardness.

A constraint graph is a directed graph with edge weights
among {1, 2}. An edge is then called red or blue, respec-
tively. The inflow at each vertex is the sum of the weights on
inward-directed edges. Each vertex has a nonnegative min-
imum inflow. A legal configuration of a constraint graph
has an inflow of at least the minimum inflow at each vertex;
these are the constraints. A legal move on a constraint graph
is the reversal of a single edge that results in a legal config-
uration. Generally, in any game, the goal will be to reverse
a given edge by executing a sequence of (legal) moves. In
multiplayer games, each edge is controlled by an individual
player, and each player has his own goal edge. In determin-
istic games, a unique sequence of moves is forced. For the
bounded games, each edge may only reverse once.

It is natural to view a game played on a constraint graph
as a computation. Depending on the nature of the game, it

5Some results in the field of interactive proof systems can also be inter-
preted as showing that there are undecidable games played on finite boards
[4, 12]. However, these games occur in a probabilistic setting, and are thus
outside the notion of game considered here.



can be a deterministic computation, or a nondeterministic
computation, or an alternating computation, etc. The con-
straint graph then accepts the computation just when the
game can be won.

(a) AND vertex. Edge C may
be directed outward if and only if
edges A and B are both directed
inward.

A B

C

(b) OR vertex. Edge C may be di-
rected outward if and only if either
edge A or edge B is directed in-
ward.

Figure 2. AND and OR vertices. Red (light gray,
thinner) edges have weight 1, blue (dark gray,
thicker) edges have weight 2, and vertices
have a minimum in-flow constraint of 2.
AND/OR Constraint Graphs. Certain vertex configu-

rations in constraint graphs are of particular interest. An
AND vertex (Figure 2(a)) has minimum inflow constraint 2
and incident edge weights of 1, 1, and 2. It behaves as a
logical AND in the following sense: the weight-2 (blue) edge
may be directed outward if and only if both weight-1 (red)
edges are directed inward. Otherwise, the minimum inflow
constraint of 2 would not be met. An OR vertex (Figure 2(b))
has minimum inflow constraint 2 and incident edge weights
of 2, 2, and 2. It behaves as a logical OR: a given edge may
be directed outward if and only if at least one of the other
two edges is directed inward.

It turns out that for all the game categories, it will suffice
to consider constraint graphs containing only AND and OR
vertices. Such graphs are called AND/OR constraint graphs.

For some of the game categories, there can be many sub-
types of AND and OR vertex, because each edge may have
a distinguishing initial orientation (in the case of bounded
games), and a distinct controlling player (when there is
more than one player). In some cases there are alternate
vertex “basis sets” that enable simpler reductions to other
problems than do the complete set of ANDs and ORs. See
[22] for details.

Directionality; Fanout. As implied above, although it
is natural to think of AND and OR vertices as having inputs
and outputs, there is nothing enforcing this interpretation. A
sequence of edge reversals could first direct both red edges
into an AND vertex, and then direct its blue edge outward;
in this case, we will sometimes say that its inputs have ac-
tivated, enabling its output to activate. But the reverse se-
quence could equally well occur. In this case we could view
the AND vertex as a splitter, or FANOUT gate: directing the
blue edge inward allows both red edges to be directed out-
ward, effectively splitting a signal.

In the case of OR vertices, again, we can speak of an
active input enabling an output to activate. However, here
the choice of input and output is entirely arbitrary, because
OR vertices are symmetric.

3.1 Constraint-graph conversions
In the reductions that follow, often it will be conve-

nient to work with constraint graphs that are not strictly
AND/OR graphs, but that can be easily converted to equiv-
alent AND/OR graphs. The three such “shorthands” that will

occur most frequently are the use of CHOICE (red-red-red)
vertices, degree-2 vertices, and loose edges.

(a) CHOICE vertex (b) Equivalent AND/OR subgraph

Figure 3. CHOICE-vertex conversion.
CHOICE vertices. A CHOICE vertex, shown in Fig-

ure 3(a), is a vertex with three incident red edges and an
inflow constraint of 2. The constraint is thus that at least
two edges must be directed inward. If we view A as in input
edge, then when the input is inactivated, i.e., A points down,
then the outputs B and C are also inactivated, and must also
point down. If A is then directed up, either B or C, but not
both, may also be directed up. In the context of a game, a
player would have a choice of which path to activate.

The AND/OR subgraph shown in Figure 3(b) has the same
constraints on its A, B, and C edges as the CHOICE vertex
does. The replacement subgraph may not be substituted di-
rectly for a CHOICE vertex, however, because its terminal
edges are blue, instead of red. This brings us to the next
conversion technique.

Degree-2 vertices. Viewing AND/OR graphs as circuits,
we might want to connect the output of an OR, say, to an in-
put of an AND. We cannot do this directly by joining the
loose ends of the two edges, because one edge is blue and
the other is red. However, we can get the desired effect by
joining the edges at a red-blue vertex with an inflow con-

(a) Pair of red-blue vertices (b) Equivalent AND/OR subgraph

Figure 4. Red-blue vertex conversion. Red-
blue vertices, which have an inflow con-
straint of 1 instead of 2, are drawn smaller
than other vertices.

straint of 1. This allows each incident edge to point outward
just when the other points inward—either edge is sufficient
to satisfy the inflow constraint.

We would like to find a translation from such red-blue
vertices to AND/OR subgraphs. However, there is a problem:
in AND/OR graphs, red edges always come in pairs. The so-
lution is to provide a conversion from two red-blue vertices
to an equivalent AND/OR subgraph. This will always suffice,
because a red edge incident at a red-blue vertex must be one
end of a chain of red edges ending at another red-blue ver-
tex. The conversion is shown in Figure 4. Note that the
degree-2 vertices are drawn smaller than the AND/OR ver-
tices, as an aid to remembering that their inflow constraint
is 1 instead of 2.

It will occasionally be useful to use blue-blue vertices,
as well as red-blue. Again, these vertices have an inflow
constraint of 1, which forces one edge to be directed in.



(a) Free edge
terminator

(b) Constrained
edge terminator

Figure 5. Terminating
loose edges.

A blue-blue vertex is eas-
ily implemented as an OR
vertex with one loose edge
which is constrained to al-
ways point away from the
vertex (see below).

Loose edges. Often
only one end of an edge
matters; the other need
not be constrained. To
embed such an edge in
an AND/OR graph, the
subgraph shown in Figure 5(a) suffices. If we assume that
edge A is connected to some other vertex at the top, then
the remainder of the figure serves to embed A in an AND/OR
graph while not constraining it. Similarly, sometimes an
edge needs to have a permanently constrained orientation.
The subgraph shown in Figure 5(b) forces A to point down.

3.2 Planarity

(a) Crossover (b) Half-crossover

Figure 6. Planar crossover gadgets.

All of the following complexity results, except for the
bounded zero-player case, apply even when the constraint
graphs are required to be planar. The basic crossover gad-
gets that enable this are given in [25] for the unbounded
one-player case, and are reproduced in Figures 6(a) and
6(b). In addition to AND and OR vertices, Figure 6(a) con-
tains red-red-red-red vertices; these need any two edges to
be directed inward to satisfy the inflow constraint of 2. The
“half-crossover gadget” in Figure 6(b) may be substituted
in for each red-red-red-red vertex, using the red-blue con-
version described earlier.

The relevant property of the crossover gadget is that each
of the edges A and B may face outward if and only if the
other faces inward, and each of the edges C and D may face
outward if and only if the other faces inward.

The applications to Constraint Logics other than Un-
bounded NCL are generally straightforward. For example,
for Bounded NCL, no edge ever need reverse more than
once during a crossing sequence. For games with more
than one player, the crossings are always arranged so that
only edges controlled by a single player cross, reverting ef-
fectively to the one-player case. The one case that must
be treated slightly differently is Unbounded Deterministic
Constraint Logic; we refer the reader to [22] for details.

4 Zero-player games

The Constraint Logic formalism does not restrict the set
of moves available on a constraint graph to a unique next
move from any given configuration. To obtain a determin-
istic version, we must further constrain the legal moves.
Rather than propose a rule that selects a unique next edge to
reverse from each position, we apply determinism indepen-
dently at each vertex, so that multiple edge reversals may
occur on each deterministic “turn”. The idea is that each
vertex should allow “signals” to “flow” through it if pos-
sible. For example, if both red edges reverse inward at an
AND vertex, then the next move reverses the blue edge.

4.1 Bounded games

In the bounded case, we start with a constraint graph G0

and a set R0 of unreversible edges. At each step i, the game
reverses all edges that are reversible and have not been re-
versed before:

Ri+1 = {e | reversing edge e is a legal move in Gi

and e /∈ R0 ∪R1 ∪ · · · ∪Ri},
Gi+1 = Gi with edges in Ri+1 reversed.

This process effectively propagates signals through a
graph until they can no longer propagate. It might appear
that this definition could cause a legal constraint graph to
have an illegal successor, because moves that are individ-
ually legal might not be simultaneously legal, but this will
turn out not to be a problem.

BOUNDED DETERMINISTIC CONSTRAINT LOGIC
(BOUNDED DCL)
INSTANCE: AND/OR constraint graph G0; edge set R0; edge

e in G0.
QUESTION: Is there an i such that e is reversed in Gi?

Theorem 1 Bounded DCL is P-complete.

Proof: Given a monotone Boolean circuit C (a Boolean
circuit with no NOT gates), we construct a corresponding
Bounded DCL problem such that the edge in the DCL prob-
lem is reversed just when the circuit value is true. This
process is straightforward: for every gate in C we create
a corresponding vertex, either an AND or an OR. When a
gate has more than one output, we use AND vertices in the
FANOUT configuration. The difference here between AND
and FANOUT is merely in the initial edge orientation. Where
necessary, we use the red-blue conversion technique shown
in Section 3.1. For the input nodes, we use terminators as in
Figures 5(a) and 5(b). The target edge e will be the output
edge of the vertex corresponding to the circuit’s output gate.

We must still address the issue of potential illegal graph
successors. However, in the initial configuration the only
edges that are free to reverse are those in the edge termi-
nators and in the red-blue conversion subgraphs; all other
vertices are effectively waiting for input. We add the edges
in the red-blue conversion graphs to the initial edge set R0,
and we similarly add all edges in the edge terminators, ex-
cept for the initial free edges that correspond to the Boolean



circuit inputs. Then, no edges can ever reverse until the in-
puts have propagated through to them, and in each case the
signals flow through appropriately.

Then, the Bounded DCL dynamics exactly mirror the
operation of the Boolean circuit, and e will eventually re-
verse if and only if the circuit value is true. This shows
that Bounded DCL is P-hard. Clearly it is also in P: we
may compute Gi+1 from Gi in linear time (keeping track
of which edges have already reversed), and after a linear
time no more edges can ever reverse. 2

Note that the monotone Boolean circuit value problem is
in NC3 if the circuit is required to be planar; thus, we cannot
show P-completeness for planar graphs in this one case.

4.2 Unbounded games

The definition of Deterministic Constraint Logic (DCL)
is more complicated in the unbounded case, where edges
may reverse more than once. The existing rule would no
longer flow signals through vertices: when an edge reverses
into a vertex, the rule would have it reverse out again on
the next step, as well as whatever other edges it enabled to
reverse, leading to illegal configurations.

Therefore, we add the restriction that an edge which just
reversed may not reverse again on the next step, unless on
that step there are no other possible reversals away from the
vertex pointed to by the edge. Formally, we define a vertex
v as firing relative to an edge set R if its incident edges
which are in R satisfy its minimum inflow, and F (G, R) as
the set of vertices in G that are firing relative to R. Then, if
we begin with graph G0 and edge set R0,

Ri+1 = {e | e points to v in Gi, and either e ∈ Ri

or v ∈ F (Gi, Ri) but not both},
Gi+1 = Gi with edges in Ri+1 reversed.

The effect of this rule is that signals flow through con-
straint graphs as desired, but when a signal reaches a ver-
tex that it cannot “activate”, or “flow through”, it instead
“bounces”. For AND/OR graphs, bouncing can happen only
when a single red edge reverses into an AND vertex and the
other red edge is directed away.

This seems to be the most natural form of Constraint
Logic that is unbounded and deterministic. It has the addi-
tional nice property that it is reversible: if we start comput-
ing with Gi−1 and Ri, instead of G0 and R0, we eventually
get back to G0.

DETERMINISTIC CONSTRAINT LOGIC (DCL)
INSTANCE: AND/OR constraint graph G0; edge set R0; edge

e in G0.
QUESTION: Is there an i such that e is reversed in Gi?

Theorem 2 DCL is PSPACE-complete.

Proof idea: Reduction from QBF. The reduction is rather
elaborate; see [22] for details. 2

5 One-player games
The one-player version of Constraint Logic is called

Nondeterministic Constraint Logic (NCL). The rules are
simply that on a turn the player reverses a single edge that
results in a legal configuration. The goal is to reverse a par-
ticular edge.

5.1 Bounded games

Bounded Nondeterministic Constraint Logic (Bounded
NCL) is formally defined as follows:

BOUNDED NONDETERMINISTIC CONSTRAINT
LOGIC (BOUNDED NCL)
INSTANCE: AND/OR constraint graph G, edge e in G.
QUESTION: Is there a sequence of moves on G that even-

tually reverses e, such that each edge is reversed at most
once?

Theorem 3 Bounded NCL is NP-complete.

Proof of Theorem 3: We reduce 3SAT to Bounded NCL to
show NP-hardness. Given an instance of 3SAT (a Boolean
formula F in 3CNF), we construct an AND/OR constraint
graph G with an edge e that can be eventually reversed just
when F is satisfiable.

First we construct a general constraint graph G′ corre-
sponding to F , then we apply the conversion techniques de-
scribed in Section 3 to transform G′ into a strict AND/OR
graph G. Constructing G′ is straightforward. For each vari-
able in F we have one CHOICE (red-red-red) vertex; for each
OR in F we have an OR vertex; for each AND in F we have
an AND vertex. At each CHOICE, one output corresponds to
the negated form of the corresponding variable; the other
corresponds to the negated form. The CHOICE outputs are
connected to the OR inputs, using FANOUTs (which are the
same as AND vertices) as needed. The outputs of the ORs are
connected to the inputs of the ANDs. Finally, there will be
one AND whose output corresponds to the truth of F .

If F is satisfiable, the CHOICE vertex edges may be re-
versed in correspondence with a satisfying assignment, such
that the output edge may eventually be reversed. Similarly,
if the output edge may be reversed, then a satisfying assign-
ment may be read directly off the CHOICE vertex outputs.

Using the techniques described in Section 3.1, we can
replace the CHOICE vertices, the terminal edges, and the red-
blue vertices in G′ with equivalent AND/OR constructions,
so that we have an AND/OR graph G that can be solved just
when F is satisfiable. Therefore, Bounded NCL is NP-hard.

Bounded NCL is also clearly in NP. There can only be
polynomially many moves in any valid solution; therefore,
we can guess a solution and verify it in polynomial time. 2

5.2 Unbounded games

Nondeterministic Constraint Logic (NCL), formally de-
fined as follows, is shown PSPACE-complete in [25].

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)
INSTANCE: AND/OR constraint graph G, edge e in G.
QUESTION: Is there a sequence of moves on G that eventu-

ally reverses e?



6 Two-Player Games

The two-player version of Constraint Logic, Two-Player
Constraint Logic (2CL), is defined as follows. To create dif-
ferent moves for the two players, Black and White, we label
each constraint graph edge as either Black or White. (This
is independent of the red/blue coloration, which is simply
a shorthand for edge weight.) Black (White) is allowed to
reverse only Black (White) edges. As before, a move must
reverse exactly one edge and result in a valid configuration.
Each player has a target edge he is trying to reverse.

6.1 Bounded games

Figure 7. A constraint graph correspond-
ing to the Gpos(POS CNF) formula game
(w ∨ x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z). Edges corre-
sponding to variables, clauses, and the entire
formula are labeled.

The bounded case permits each edge to reverse at most
once:6

BOUNDED TWO-PLAYER CONSTRAINT LOGIC
(BOUNDED 2CL)
INSTANCE: AND/OR constraint graph G, partition of the

edges of G into sets B and W , and edges eB ∈ B,
eW ∈ W .

QUESTION: Does White have a forced win in the following
game? Players White and Black alternately make moves
on G. White (Black) may only reverse edges in W (B).
Each edge may be reversed at most once. White (Black)
wins (and the game ends) if he ever reverses eW (eB).

We reduce Schaefer’s game Gpos(POS CNF), a variant
of QBF [40], to Bounded 2CL.

Gpos(POS CNF)
INSTANCE: Monotone CNF formula A (that is, a CNF for-

mula in which there are no negated variables).
QUESTION: Does Player I have a forced win in the following

game? Players I and II alternate choosing some variable of
A which has not yet been chosen. The game ends after all
variables of A have been chosen. Player I wins if and only
if A is true when all variables chosen by Player I are set to
true and all variables chosen by II are set to false.

6We can assume without loss of generality that the game ends with no
winner if a player is unable to move.

Theorem 4 Bounded 2CL is PSPACE-complete.

Proof: The reduction from Gpos(POS CNF) to Bounded
2CL is similar to the reduction from SAT to Bounded NCL
in Section 5.1. There, the single player is allowed to choose
a variable assignment via a set of CHOICE vertices. All we
need do to adapt this reduction is replace the CHOICE ver-
tices with variable vertices, such that if White plays first in
a variable vertex the variable is true, and if Black plays first
the variable is false. Then, we attach White’s variable vertex
outputs to the CNF formula inputs as before; Black’s vari-
able outputs are unused. The CNF formula consists entirely
of White edges. Black is given enough extra edges to ensure
that he will not run out of moves before White. White’s tar-
get edge is the formula output, and Black’s is an arbitrary
edge that is arranged to never be reversible. A sample game
graph corresponding to a formula game is shown in Fig-
ure 7. (The extra Black edges are not shown.) Note that the
edges are shown filled with the color that controls them.

The game breaks down into two phases. In the first
phase, players alternate playing in variable vertices, until all
have been played in. Then, White will win if he has chosen
a set of variables satisfying the formula. Since the formula
is monotone, it is exactly the variables assigned to be true,
that is, the ones White chose, that determine whether the
formula is satisfied. Black’s play is irrelevant after this.

If Player I can win the formula game, then White can win
the corresponding Bounded 2CL game, by playing the for-
mula game on the edges, and then reversing the necessary
remaining edges to reach the target edge. If Player I can-
not win the formula game, then White cannot play so as to
make a set of variables true which will satisfy the formula,
and thus he cannot reverse the target edge. Neither player
can benefit from playing outside the variable vertices until
all variables have been selected, because this can only allow
the opponent to select an extra variable.

The construction shown in Figure 7 is not an AND/OR
graph; we must convert it to an equivalent one. The standard
conversion techniques from Section 3.1 work here to handle
the red-blue vertices, blue-blue vertices, and free edges.

Thus, Bounded 2CL is PSPACE-hard. It is also clearly
in PSPACE: since the game can only last as many moves as
there are edges, a simple depth-first traversal of the game
tree suffices to determine the winner from any position. 2

6.2 Unbounded games

The unbounded case simply removes the restriction of
edges reversing at most once:

TWO-PLAYER CONSTRAINT LOGIC (2CL)
INSTANCE: AND/OR constraint graph G, partition of the

edges of G into sets B and W , and edges eB ∈ B,
eW ∈ W .

QUESTION: Does White have a forced win in the following
game? Players White and Black alternately make moves
on G. White (Black) may only reverse edges in W (B).
White (Black) wins if he ever reverses eW (eB).

To show that 2CL is EXPTIME-hard, we reduce
from one of the several Boolean formula games shown
EXPTIME-complete by Stockmeyer and Chandra [42]:



G6

INSTANCE: CNF Boolean formula F in variables X ∪ Y ,
(X ∪ Y ) assignment α.

QUESTION: Does Player I have a forced win in the follow-
ing game? Players I and II take turns. Player I (II) moves
by changing at most one variable in X (Y ); passing is al-
lowed. Player I wins if F ever becomes true.

Figure 8. Reduction from G6 to 2CL.

Note that Player II has no winning condition, so the most
he can hope for is a draw, by preventing Player I from ever
winning. This does not affect our decision question.

Theorem 5 2CL is EXPTIME-complete.

Proof: The essential elements of the reduction from G6 to
2CL are shown in Figure 8. This figure shows a White vari-
able gadget and associated circuitry; a Black variable gad-
get is identical except that the edge marked variable is then
black instead of white. The left side of the gadget is omit-
ted; it is the same as the right side. The state of the variable
depends on whether the variable edge is directed left or
right, enabling White to reverse either the false or the true
edge (and thus lock the variable edge into place).

The basic idea of the reduction is the same as for
Bounded 2CL: the players should play a formula game on
the variables, and then if White can win the formula game,
he can then reverse a sequence of edges leading into the for-
mula, ending in his target edge. In this case, however, the
reduction is not so straightforward, because the variables
are not fixed once chosen; there is no natural mechanism
in 2CL for transitioning from the variable-selection phase
to the formula-satisfying phase. (Also note that unlike the
bounded case, the formula need not be monotone.)

White has the option, whenever he wishes, of locking
any variable in its current state, without having to give up a
turn, as follows. First, he moves on some true or false edge.
This threatens to reach an edge F in four more moves, en-
abling White to reach a fast win pathway leading quickly to
his target edge. Black’s only way to prevent F from revers-
ing is to first reverse D. But this would just enable White
to immediately reverse G, reaching the target edge even
sooner. First, Black must reverse A, then B, then C, and
finally D; otherwise, White will be able to reverse one of
the blue edges leading to the fast win. This sequence takes
four moves. Therefore, Black must respond to White’s true
or false move with the corresponding A move, and then it
is White’s turn again.

The lengths of the pathways slow win, slower win, and
fast win are detailed below. The pathways labeled formula

feed into the formula vertices, culminating in White’s tar-
get edge. It will be necessary to ensure that regardless
of how the formula is satisfied, it always requires exactly
the same number of edge reversals beginning with the for-
mula input edges. The first step to achieving this is to
note that the formula may be in CNF. Thus, every clause
must have one variable satisfied, so it seems we are well
on our way. However, a variable must pass through an
arbitrary number of FANOUTs on its way into the clauses.

Figure 9. Path-
length-
equalizer
gadget.

If it takes x reversals from a given
variable gadget to a usage of that vari-
able in a clause, it will take less than
2x reversals to reach two uses of the
variable. The solution to this prob-
lem is to use a path-length-equalizer
gadget, shown in Figure 9. This gad-
get has the property that if it takes x
reversals from some arbitrary starting
point before entering the gadget, then
it takes x+6 reversals to reverse either
of the topmost output edges, or 2x+12
reversals to reverse both of them. By
using chains of such gadgets, we can
ensure that it always takes the same
number of moves to activate any vari-
able instance in a clause, and thus that it always takes the
same number of moves to activate the formula output.

Suppose White can win the formula game. Then, also
suppose White plays to mimic the formula game, by revers-
ing the corresponding variable edges up until reversing the
last one that lets him win the formula game. Then Black
must also play to mimic the formula game: his only other
option is to reverse one of the edges A to D, but any of these
lead to a White win.

Now, then, assume it is White’s turn, and either he has
already won the formula game, or he will win it with one
more variable move. He proceeds to lock all the variables
except possibly for the one remaining he needs to change,
one by one. As described above, Black has no choice but
to respond to each such move. Finally, White changes the
remaining variable, if needed. Then, on succeeding turns,
he proceeds to activate the needed pathways through the
formula and on to the target edge. With all the variables
locked, Black cannot interfere. Instead, Black can try to ac-
tivate one of the slow win pathways enabled during variable
locking. However, the path lengths are arranged such that it
will take Black one move longer to win on such a pathway
than it will take White to win by satisfying the formula.

Suppose instead that White cannot win the formula
game. He can accomplish nothing by playing on variables
forever; eventually, he must lock one. Black must reply
to each lock. If White locks all the variables, then Black
will win, because he can follow a slow win pathway to vic-
tory, but White cannot reach his target edge at the end of
the formula, and Black’s slow win pathway is faster than
White’s slower win pathway. However, White may try to
cheat by locking all the Black variables, and then continu-
ing to change his own variables. But in this case Black can
still win, because if White takes the time to change more
than one variable after locking any variable, Black’s slow
win pathway will be faster than White’s formula activation.



Thus, White can win the 2CL game if and only if he can
win the corresponding G6 game, and 2CL is EXPTIME-
hard. Also, 2CL is easily seen to be in EXPTIME: the com-
plete game tree has exponentially many positions, and thus
can be searched in exponential time, labeling each position
as a win, loss, or draw depending on the labels of its chil-
dren. Therefore, 2CL is EXPTIME-complete. 2

7 Team games

The natural team private-information Constraint Logic
assigns to each player a set of edges he can reverse, and a
set of edges whose orientation he can see, in addition to the
target edge he aims to reverse.

7.1 Bounded games

Bounded Team Private Constraint Logic is formally de-
fined as follows:

BOUNDED TEAM PRIVATE CONSTRAINT LOGIC
(BOUNDED TPCL)
INSTANCE: AND/OR constraint graph G; integer N ; for i ∈

{1 . . . N}: sets Ei ⊂ Vi ⊂ G; edges ei ∈ Ei; partition of
{1 . . . N} into nonempty sets W and B.

QUESTION: Does White have a forced win in the following
game? Players 1 . . . N take turns in that order. Player i
only sees the orientation of the edges in Vi, and moves by
reversing an edge in Ei which has not previously reversed;
a move must be known legal based on Vi. White (Black)
wins if Player i ∈ W (B) ever reverses edge ei.

Theorem 6 Bounded TPCL is NEXPTIME-complete.

Proof idea: The proof is a reduction from the Dependency
QBF problem introduced in [32]. 2

7.2 Unbounded games

To enable a simpler reduction to an unbounded form of
the team Constraint Logic, we allow each player to reverse
up to some given constant k edges on his turn, rather than
just one, and leave the case of k = 1 as an open problem.

TEAM PRIVATE CONSTRAINT LOGIC (TPCL)
INSTANCE: AND/OR constraint graph G; integer N ; for i ∈

{1 . . . N}: sets Ei ⊂ Vi ⊂ G; edges ei ∈ Ei; partition of
1 . . . N into nonempty sets W and B; integer k.

QUESTION: Does White have a forced win in the following
game? Players 1 . . . N take turns in that order. Player i
only sees the orientation of the edges in Vi, and moves by
reversing up to k edges in Ei; a move must be known legal
based on Vi. White (Black) wins if Player i ∈ W (B) ever
reverses edge ei.

Before showing this game undecidable, we discuss the
earlier results of Peterson and Reif [32].

TEAM-PEEK. Peterson and Reif [32] state that a par-
ticular space-bounded game with alternating turns, TEAM-
PEEK, is undecidable. (TEAM-PEEK is a team version
of Stockmeyer and Chandra’s EXPTIME-complete game
PEEK [42].) There are two problems with this claim. First,

there is a simple mistake in the definition, making the un-
decidability claim false. To see this, consider the following
formal statement of TEAM-PEEK, which is equivalent to
the more physical version described in [32]:

TEAM-PEEK
INSTANCE: DNF Boolean formula F in variables S, integer

N ; for i ∈ {1 . . . N}: sets Xi ⊂ Vi ⊂ S; partition of
1 . . . N into nonempty sets W and B; S assignment α.

QUESTION: Does White have a forced win in the following
game? Players 1 . . . N take turns in that order. Player i
only knows the truth assignment to the variables in Vi, and
moves by changing the truth assignment of any subset of
the variables Xi. White (Black) wins if F is ever true after
a move by Player i ∈ W (B).

We show that TEAM-PEEK is decidable when White
has two or more players and Black has one player (contrary
to [32, Theorem 5]). Whatever the turn order, the White
players will wind up playing in sequence. Now it is easy
to tell whether White can win before Black’s first move, so
assume that they cannot. Then, either White can win im-
mediately regardless of Black’s move, which is also easy to
determine, or they cannot. Suppose they cannot. Then, they
cannot have a forced win at all, because whatever moves
they make in sequence on any pair of turns, there is always
some move Black could have just made that prevented a
win.

The basic problem with the game definition is that al-
lowing a player to change any or all of his variables in a
single turn, instead of at most one variable as in PEEK, pre-
vents threats and thus forcing moves. Thus the standard ma-
chinery of building Turing-machine-acceptance reductions
to formula games breaks down.

Round-robin play. The second problem has to do with
the order in which players move. TEAM-PEEK’s definition
follows the natural form of game play in which players take
turns in round robin. However, the problem developed in
[32, page 355] for a reduction to TEAM-PEEK does not
have this property:

Given a TM M . . . The game . . . will be based on hav-
ing each of the ∃-players find a sequence of configura-
tions of M which on an input that leads to acceptance.
Hence, each ∃-player will give to the ∀-player on re-
quest the next character of its sequence of configura-
tions (secretly from the other). Each ∃-player does this
secretly from the other ∃-player. The configuration will
[be] in the form: #C0#C1# . . .#Cm#, where C0 is
the initial configuration of M on the input, and Cm is
an accepting configuration of M .
The ∀-player will choose to verify the sequences in one
of the following ways: . . .

The ∀-player verifies the sequences by ensuring that
the initial configurations match the input, that the final se-
quences are accepting, and that the transitions are valid. The
existential team wins if a player generates a valid accepting
history; the universal player wins if it detects an invalid his-
tory. The key is that the validity of the transitions can be
checked with only a fixed amount of memory, by running
one of the players ahead to the next # symbol, and stepping
through both histories symbol by symbol.



It is implicit in the definition of the game that the univer-
sal player chooses, on each of his turns, which existential
player is to play next, and the other existential player can-
not know how many turns have elapsed before he gets to
play again. For suppose instead that play does go round
robin. Then we must assume that on the universal player’s
turn, he announces which existential player is to make a
computation-history move this turn; the other one effec-
tively passes on his turn. But then each existential player
knows exactly where in the computation history the other
one is, and whichever player is behind knows he cannot be
checked for validity, and is at liberty to generate a bogus
computation history. It is the very information about how
many turns the other existential player has had that must be
kept private for the game to work properly.

Reif has confirmed in a personal communication regard-
ing round-robin play in TEAM-PEEK [33] that “it looks
like therefore the players do not play round robin”.7 In-
deed, in the general definition of game in [32], it is stated
that “Players need not take turns in a round-robin fashion.
The rules will dictate whose turn is next”, and that “A player
may not know how many turns were taken by other players
between its turns.” These notions deviate from (and hence
exclude) the intuitive notion of a game, where players take
turns in order and are aware of what happens between their
turns. Therefore we work to strengthen the approach to ap-
ply to this natural form of game.

Undecidability. To solve the above problems, we in-
troduce a somewhat more elaborate computation game, in
which the players take successive turns, and which we show
to be undecidable. We reduce this game to a formula game,
and the formula game to TPCL.

The new computation game will be similar to the above
computation game, but each existential player will be re-
quired to produce successive symbols from two identical,
independent computation histories, A and B; on each turn,
the universal player will select which history each player
should produce a symbol from, privately from the other
player. Then, for any game history experienced by each ex-
istential player, it is always possible that his symbols are be-
ing checked for validity against the other player’s, because
one of the other existential player’s histories could always
be retarded by one configuration (or the history could be
checked against the input). The fact that the other player has
produced the same number of symbols as the current player
does not give him any useful information, because he does
not know the relative advancement of the other player’s two
histories.

TEAM COMPUTATION GAME
INSTANCE: Finite set of ∃-options O, Turing machine S with

fixed tape length k, and with tape symbols Γ ⊃ (O ∪ {A,
B}).

QUESTION: Does the existential team have a forced win in
the following game? Players ∀ (universal), ∃1, and ∃2 (ex-
istential) take turns in that order, beginning with ∀. S’s
tape is initially set empty. On ∃i’s turn, he makes a move
from O. On ∀’s turn, he takes the following steps:

7Both the mistake in definition described above and the turn-order
problem also apply to all of the TEAM-PEEK variants defined in [31].

1. If not the first turn, record ∃1’s and ∃2’s moves in partic-
ular reserved cells of S’s tape.

2. Simulate S using its current tape state as input, either
until it terminates, or for k steps. If S accepts, ∀ wins the
game. If S rejects, ∀ loses the game. Otherwise, leave
the current contents of the tape as the next turn’s input.

3. Make a move (x, y) ∈ {A, B}×{A, B}, and record this
move in particular reserved cells of S’s tape.

The state of S’s tape is always private to ∀. Also, ∃1 sees only
the value of x, and ∃2 sees only the value of y. The existential
players also do not see each other’s moves. The existential
team wins if either existential player wins.

Theorem 7 TEAM COMPUTATION GAME is undecid-
able.

Proof: We reduce from acceptance of a Turing machine on
an empty input, which is undecidable. Given a TM M , we
construct TM S as above so that when it is run, it verifies
that the moves from the existential players form valid com-
putation histories, with each successive character following
in the selected history, A or B. It needs no nondetermin-
ism to do this; all the necessary nondeterminism by ∀ is in
the moves (x, y). The ∃-options O are the tape alphabet of
M ∪#.

S maintains several state variables on its tape that are re-
used the next time it is run. First, it detects when both exis-
tential players are simultaneously beginning new configura-
tions (by making move #), for each of the four history pairs
{A, B}×{A, B}. Using this information, it maintains state
that keeps track of when the configurations match. Config-
urations partially match for a history pair when either both
are beginning new configurations, or both partially matched
on the previous time step, and both histories just produced
the same symbol. Configurations exactly match when they
partially matched on the previous time step and both histo-
ries just began new configurations (with #).

S also keeps track of whether one existential player has
had one of its histories advanced exactly one configuration
relative to one of the other player’s histories.8 It does this by
remembering that two configurations exactly matched, and
since then only one history of the pair has advanced, until
finally it produced a #. If one history in a history pair is ad-
vanced exactly one configuration, then this state continues
as long as each history in the pair is advanced on the same
turn. In this state, the histories may be checked against each
other, to verify proper head motion, change of state, etc., by
only remembering (on preserved tape cells) a finite num-
ber of characters from each history. S is designed to reject
whenever this check fails, or whenever two histories exactly
match and nonmatching characters are generated, and to ac-
cept when one computation history completes a configura-
tion which is accepting for M . All of these computations
may be performed in a constant number of steps; we use
this number for k.

For any game history of A/B requests seen by ∃1 (∃2),
there is always some possible history of requests seen by

8The number of steps into the history does not have to be exactly one
configuration ahead; because M is deterministic, if the configurations ex-
actly matched then one can be used to check the other’s successor.



∃2 (∃1) such that either ∃1 (∃2) is on the first configura-
tion (which must be empty), or ∃2 (∃1) may have one of its
histories exactly one configuration behind the currently re-
quested history. Therefore, correct histories must always be
generated to avoid losing.9 Also, if correct accepting his-
tories are generated, then the existential team will win, and
thus the existential team can guarantee a win if and only if
M accepts the empty string. 2

Next we define a team game played on Boolean formu-
las, and reduce TEAM COMPUTATION GAME to this for-
mula game.

TEAM FORMULA GAME
INSTANCE: Sets of Boolean variables X , X ′, Y1, Y2;

Boolean variables h1, h2 ∈ X; and Boolean formulas
F (X, X ′, Y1, Y2), F ′(X, X ′), and G(X), where F im-
plies F ′.

QUESTION: Does White have a forced win in the following
game? The steps taken on each turn repeat in the following
order:

1. B sets variables X to any values. If F and G are then
true, Black wins.

2. If F is false, White wins. Otherwise, W1 does nothing.
3. W2 does nothing.
4. B sets variables X ′ to any values.
5. If F ′ is false, White wins. W1 sets variables Y1 to any

values.
6. W2 sets variables Y2 to any values.

B sees the state of all the variables; Wi only sees the state of
variables Yi and hi.

Theorem 8 TEAM FORMULA GAME is undecidable.

Proof: Given an instance of TEAM COMPUTATION
GAME, we create the necessary variables and formulas as
follows.

F will verify that B has effectively run TM S for k steps,
by setting X to correspond to a valid non-rejecting compu-
tation history for it. (This can be done straightforwardly
with O(k2) variables; see, for example, [5].) F also verifies
that the values of Yi are equal to particular variables in X ,
and that a set of “input” variables I ⊂ X are equal to corre-
sponding variables X ′. X ′ thus represents the output of the
previous run of S.

G is true when the copies of the Yi in X represent an
illegal white move (see below), or when X corresponds to
an accepting computation history for S.

F ′ is true when the values X ′ equal those of a set of
“output” variables O ⊂ X . These include variables rep-
resenting the output of the run of S, and also h1, h2. We
can assume without loss of generality here that S always
changes its tape on a run. (We can easily create additional
tape cells and states in S to ensure this if necessary, without

9Note that this fact depends on the nondeterminism of ∀ on each move.
If instead ∀ followed a strategy of always advancing the same history
pair, until it nondeterministically decided to check one against the other
by switching histories on one side, the existential players could again gain
information enabling them to cheat. This is a further difference from the
original computation game from [32], where such a strategy is used; the
key here is that ∀ is always able to detect when the histories happen to
be nondeterministically aligned, and does not have to arrange for them to
be aligned in advance by some strategy that the existential players could
potentially take advantage of.

affecting the simulation.) As a result, F implies F ′, as re-
quired; the values of X ′ cannot simultaneously equal those
of the input and the output variables in X .

∀’s move (x, y) ∈ {A, B}×{A, B} is represented by the
assignments to history-selecting variables h1 and h2; false
represents A and true B. The ∃-options O correspond to the
Yi; each element of O has one variable in Yi, so that Wi

must move by setting one of the Yi to true and the rest to
false.

Then, it is clear that the rules of TEAM FORMULA
GAME force the players effectively to play the given
TEAM COMPUTATION GAME. 2

Figure 10. Reduction from TEAM FORMULA
GAME to TPCL. White edges and multi-
player edges are labeled with their control-
ling player(s); all other edges are black. Thick
gray lines represent bundles of black edges.

(a) Latches locking black variables (b) White variable

Figure 11. Additional gadgets for TPCL re-
duction.
TPCL Reduction. Finally, we are ready to complete



the undecidability reduction for TPCL. The overall reduc-
tion from TEAM FORMULA GAME is shown in Fig-
ure 10. Before proving its correctness, we first examine the
subcomponents represented by boxes in the figure.

The F , F ′, and G boxes represent AND/OR subgraphs
that implement the corresponding Boolean functions, as in
earlier chapters. Their inputs come from outputs of the
variable-set boxes. All these edges are black.

The boxes X and X ′ represent the corresponding vari-
able sets. The incoming edge at the bottom of each box un-
locks their values, by a series of latch gadgets (as in [25]),
shown in Figure 11(a). When the input edge is directed up-
ward, the variable assignment may be freely changed; when
it is directed down, the assignment is fixed.

The boxes Y1 and Y2 represent the white variables. An
individual white variable for Player Wi is shown in Fig-
ure 11(b). B may activate the appropriate top output edge at
any time; however, doing so also enables the bottom output
edge controlled jointly by B and W1. If B wants to prevent
W1 from directing this edge down, he must direct unlock
right; but then the black output edges are forced down, al-
lowing Wi to freely change the central variable edge. The
unlock edges are left loose (shorthand for using a free edge
terminator); the bottom edges are ORed together to form the
single output edge for each box in Figure 10 (still jointly
controlled by B and W1). Note that for variables controlled
by W2, W1 can know whether the variable is unlocked with-
out knowing what its assignment is.

We will also consider some properties of the “switch”
edge S before delving into the proof. This edge is what
forces the alternation of the two types of B-W1-W2 move
sequences in TEAM FORMULA GAME. When S points
left, B is free to direct the connecting edges so as to unlock
variables X . But if B leaves edge A pointing left at the
end of his turn, then W1 can immediately win, starting with
edge C. (We skip label B to avoid confusion with the B
player label.) Similarly, if S points right, B can unlock the
variables in X ′, but if he leaves edge D pointing right, then
W1 can win beginning with edge E. Later we will see that
W2 must reverse S each turn, forcing distinct actions from
B for each direction.

Theorem 9 TPCL is undecidable, even with N = 3 play-
ers.

Proof: Given an instance of TEAM FORMULA GAME,
we construct a TPCL graph as described above. B sees the
states of all edges; Wi sees only the states of the edges he
controls, those immediately adjacent (so that he knows what
moves are legal), and the edge in X corresponding to vari-
able hi.

We will consider each step of TEAM FORMULA
GAME in turn, showing that each step must be mirrored
in the TPCL game. Suppose that initially, S points left.

1. B may set variables X to any values by unlocking their
controlling latches, beginning with edge H. He may
also direct the edges corresponding to the current val-
ues of X , Y1, Y2, and X ′ into formula networks F , F ′,
and G, but he may not change the values of X ′, be-
cause their latches must be locked if S points left. If

these moves enable him to satisfy formulas F and G,
then he wins. Otherwise, if F is true, he may direct
edge I upward. He must finish by redirecting A right,
thus locking the X variables; otherwise, W1 could then
win as described above. Also, B may leave the states
of Y1 and Y2 locked.
B does not have time to both follow the above steps
and direct edge K upward within k moves; the pathway
from H through “. . . ” to K has k − 3 edges.
Also, if F is true then M must point down at the end of
B’s turn, because F and F ′ cannot simultaneously be
true.

2. If F is false, then I must point down. This will en-
able W1 to win, beginning with edge J (because S still
points left). Also, if H still points up, W1 may direct it
down, unlocking S; as above, A must point right. Oth-
erwise W1 has nothing useful to do. He may direct the
bottom edges of the Y1 variables downward, but noth-
ing is accomplished by this, because S points left.

3. On this step W2 has nothing useful to do but direct S
right, which he must do. Otherwise...

4. If S still points left, then B can win, by activating the
long series of edges leading to K; I already points up,
so unlike in step 1, he has time for this.
Otherwise, B can now set variables X ′ to any values,
by unlocking their latches, beginning with edge L. If G
was not true in step 1, then it cannot be true now, be-
cause X has not changed, so B cannot win that way. If
F ′ is true, then he may direct edge M upward. Also, at
this point B should unlock Y1 and Y2, by directing his
output edges back in and activating the unlock edges
in the white variable gadgets. This forces I down, be-
cause F depends on the Yi.
As in step 1, B cannot win by activating edge O, be-
cause he does not have time to both follow the above
steps and reach O within k moves. (Note that M must
point down at the beginning of this turn; see step 1.)

5. If any variable of Y1 or Y2 is still locked, W1 can win
by activating the pathway through N. Also, if F ′ is
false then M must point down; this lets W1 win. (In
both cases, note that S points right.) Otherwise, W1

may now set Y1 to any values.

6. W2 may now set Y2 to any values. Also, W2 must now
direct S left again. If he does not, then on B’s next
turn he can win by activating O.

Thus, all players are both enabled and required to mimic
the given TEAM FORMULA GAME at each step, and so
the White team can win the TPCL game if and only if it can
win the TEAM FORMULA GAME. 2
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