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Abstract

We construct an uncountably infinite family of unfold-
ings, each of which can be folded into twelve distinct
convex solids, while also tiling the plane.

1 Introduction

The problem of folding polygons into convex polyhedra
was posed by Lubiw and O’Rourke [5]. Since then there
have been several results about polygons that can fold
into multiple distinct polyhedra. One of the first re-
sults in this field was by Mitani and Uehara [6], who
construct a countably infinite family of unfoldings, each
of which can fold into two different orthogonal boxes
with integer sides. This was further expanded in [1] and
[8] to produce countably infinite families that fold into
three different boxes. Other results investigate unfold-
ings between Platonic solids [7] and between the regular
tetrahedron and each Johnson-Zalgaller solid [3].

All of these common unfoldings, however, fold into
only a small number of polyhedra. A notable exception
is the two examples in [4, sec. 25.6–25.7]: the Latin
Cross folds into 23 distinct convex polyhedra, while
the square folds into six uncountable families of convex
polyhedra. These case studies, however, do not easily
generalize to families of unfoldings. It is also relatively
easy to make a common unfolding of infinitely many
tetrahedra, from any rectangle, but this relies on the
simple mechanism of rolling belts and all resulting poly-
hedra are combinatorially equivalent. Another result
that concerns a large number of polyhedra is the com-
mon development of 22 pentacubes [2]; however, most of
these polycubes are non-convex. This still leaves open
the problem of finding large families of common devel-
opments of a large number of convex polyhedra; see
Sections 2.1–2.2 for further discussion.

We construct a common development that can fold
into twelve different convex polyhedra, in five differ-
ent combinatorial classes. Additionally, we show that
there is an uncountably infinite family of such de-
velopments, each giving rise to twelve different convex
polyhedra.

In particular, two of these polyhedra are orthogonal
boxes (specifically square prisms). So, if we consider
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only rational edge lengths, this results in a new infinite
family of developments that are common unfoldings of
two different (integer-sided) boxes. This is very similar
to the results in [6], since we will only be cutting along
grid lines.

Another useful property considered in [6, 1, 8, 3] is
whether the development tiles the plane. This is a
practically important consideration, because it makes
the development simple and efficient to fabricate from a
sheet of material (no wastage). Our development does
in fact tile the plane (Figure 1).

2 Development

The construction of our development starts with a rect-
angle of paper with size L × W . We assume without
loss of generality that L > W and W = 1. All instances
of W 6= 1 can be obtained by scaling the construction
appropriately.

We then add square tabs to each set of opposite sides,
such that each side has four equally spaced tabs (Fig-
ure 1). The tabs on the side with length L are squares
of length L/8, and the ones on the adjacent sides are
of length W/8 = 1/8. The tabs on the longer (L) side
are shifted by a certain length in order to leave space
for the smaller set of tabs (Figure 1). The shift has to
be at least 1/8 to accommodate this, and the maximum
possible shift is L/8. This means that we require L > 1
for the construction to be feasible. On the other hand,
the larger tabs extend to a distance L/8 into the paper,
which also requires that L/8 < 1 =⇒ L < 8. This
allows us to bound the aspect ratio L = L/W of the
development:

1 < L < 8.

In our construction, we set the shift distance Lshift as

Lshift =
L/8 +W/8

2
.

The final construction is shown in Figure 1.
The complementary tabs ensure that the pattern can

still tile the plane. As an important consequence, this
also allow us to “stitch” two opposite sides together
without any gaps. This will allow us to pick either pair
of opposite sides, and glue them together to form two
different cylinders.

We will refer to the cylinder formed by folding around
the L side as the L-cylinder, and the one folded around
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Figure 1: The development is constructed by adding tabs to an L ×W rectangle—four tabs on each side, where
opposite sides have complementary tabs. It tiles the plane. The blue dotted creases form one of the possible prisms.

(a) Square Prisms (b) Wedges (c) Square Anti-Prisms (d) Isosceles Tetrahedra (e) Rhombic Disphenoids

Figure 2: Crease patterns for each of the possible foldings of Figure 1. The blue creases correspond to the solid formed
by staring with the L-cylinder, and the red creases correspond to the solid formed by staring with the W -cylinder.

the W side as the W -cylinder. These cylinders have
complementary sets of tabs on either end. We can close
the ends in two different ways. The obvious closing
is performed by folding down each of the square tabs
by 90◦ to form a square end cap (Figure 3b). Note
that there are actually two different ways to close the
square. We can rotate the corners by 45◦, and obtain
a reflected version of the fold pattern (Figure 3c). The
different possible orientations of the square are shown
in Figure 5a.

Another way to close the end is to fold the tabs in
half and form a straight line (Figure 3a). There are four
possible orientations of the line zip, which are formed
by varying the endpoints of the zip line (Figure 5b).

By closing the ends in different ways, we can obtain
a large class of convex polyhedra. Each of these will be
explained in detail in the following sections.

• Square prism — We can close both ends of the
cylinder into squares that line up.

• Square anti-prism — Same as above, but one of

the squares is rotated by 45◦.

• Isosceles tetrahedra — We close the ends of the
cylinders by zipping them into orthogonal lines.

• Rhombic disphenoids — We zip the two ends
into non-orthogonal lines. Since this solid is chiral,
there are two possible foldings. This is essentially
a tetrahedron with congruent scalene faces.

• Obtuse wedges — We close one of the ends into
a square and the other one into a line.

Each of these constructions can be performed by start-
ing with either cylinder. So, we obtain a total of
2 × 5 = 10 different convex polyhedra from this un-
folding.

Further, the rhombic disphenoids have distinct mirror
images which can also be constructed (by turning the
folding inside out). This brings the total number of pos-
sible foldings to 12. Figure 2 gives the crease patterns
for each of these shapes.
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(a) Zippng the end of the cylinder into a line. See also
Figure 9b.

(b) Closing end into square

(c) Square rotated by π/4

Figure 3: The three different ways to close the end of
a cylinder. Note that the line zipping can also be per-
formed in four different locations (Figure 5b).

Theorem 1. There is an uncountably infinite family
of common developments for the aforementioned twelve
polyhedra. Moreover, each member of this family can
tile the plane.

Proof. The development tiles the plane because we start
with a rectangle (which tiles the plane), and add tabs,
where each tab is added along with its complement.
This preserves the tiling property. Since we can vary
the length L continuously in the interval (1, 8), this is
an uncountable family. The subsequent sections elabo-
rate on the construction of the twelve solids.

2.1 Comparison to Rolling Belts

Rolling belts offer a trivial way to obtain uncountably
infinite polyhedra from the same unfolding. Start with
an arbitrary rectangle, and glue opposite sides to form
a cylinder. Then the two ends of the cylinder can be
zipped in (uncountable) infinitely many ways, to obtain
an infinite family of tetrahedron foldings.

This construction is somewhat “uninteresting” be-
cause it relies on rolling belts. One way to formalize
this is to consider the gluing tree [4] corresponding to
each folding, which is the same for all of the tetrahedra

(a) L-cylinder formed by folding along the
L direction.

(b) W -cylinder.

Figure 4: We start the construction by folding the de-
velopment into a cylinder, and attaching the two ends
using one set of complementary tabs.

(a) Different orientations to
close a square.

(b) Different orientations to
zip to a line.

Figure 5: Different ways to close the end of a cylin-
der. As a convention, the black line indicates the base
(bottom side) of the solid.

gluings. Another property is that all of the resulting
polyhedra are combinatorially equivalent, in the sense
that their 1-skeleton graphs are identical (K4), except
for two gluings into degenerate doubly covered rectan-
gles.

In our results, as well as in past common unfolding
results [6, 1, 8], the constructed polyhedra all have dif-
ferent gluing trees, and do not use continuous rolling
belts. This is an indicator of the non-triviality of these
solutions.
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2.2 Comparison to Box Unfoldings

We claim that the box unfoldings in [6, 1, 8] are all
countably infinite, up to scaling.

For instance, consider the construction in [8], which
results in a common development of two boxes of size
a× b× 8a and a× 2a× (2a+ 3b). An important point
to note here is that the construction requires tabs of a
specific size. These tabs need to exactly divide both a
and b into an integral number of pieces. Thus b/a has
to be rational.

Because we are ignoring scale factors, we can set a = 1
without loss of generality. So, the number of common
developments possible in this setting is just the number
of possible values of b, which is a subset of the ratio-
nals. Therefore, we obtain a countable family of de-
velopments. (Of course, if we reintroduce scale factors,
each member of this family will correspond to an un-
countably infinite number of scaled copies, one for each
positive real number a.)

3 Square Prism

A square prism is a cuboid where one set of opposite
faces are squares. So, a square prism is a cuboid of
size a× a× b. For the remainder of this paper, we will
abbreviate this as an a× b prism.

Definition 3.1. The aspect ratio of an a × b prism is
defined as b/a.

Starting with the two possible cylinders (Figure 4), we
can close both ends to make corresponding squares (as
in Figure 3b) to obtain two square prisms with different
aspect ratios (Figure 6). The crease patterns are in
Figure 2a.

• The prism resulting from closing the L-cylinder has
aspect ratio (W − L/8)× (L/4) =

(
4
L −

1
2

)
× 1.

• The prism resulting from closing the W -cylinder
has aspect ratio (L−W/8)×(W/4) =

(
4L− 1

2

)
×1

We can compare the two prisms formed by plotting
their aspect ratios with respect to the aspect ratio of
the starting development; see Figure 7. This gives us
the following theorem.

Theorem 2. Given any aspect ratio α ∈ (0, 31.5) \
{3.5}, we can construct an unfolding of a prism with
aspect ratio α such that the unfolding also folds into a
prism with a different aspect ratio. This results in an
uncountably infinite family of common unfoldings.

Proof. If α ∈ (0, 3.5), then we set L = 4
α+0.5 , and if

α ∈ (3.5, 31.5), then we set L = α+0.5
4 . This ensures

that 1 < L < 8. Since L 6= 1, we can ensure that the
two prisms formed have distinct aspect ratios (4L− 0.5
and 4/L − 0.5). Recall that we ignore scale factors by
setting W = 1.

(a) Short prism folding.
(b) Short prism folded.

(c) Long prism folding.

(d) Long prism folded.

Figure 6: Two different square prisms from a common
development.
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3.1 Anti-prisms

We saw in Figure 3c that we can close a cylinder end
into a square that is rotated by 45◦. This implies that
we can close both end-caps into squares that are offset
by a “half-turn”. This construction results in a square
anti-prism. The two square faces of the anti-prism will
be oriented as the blue and black squares in Figure 5a.

(a) Antiprism folding.
(b) Antiprism Folded

Figure 8: Folding the short anti-prism.

As before, we can obtain a short anti-prism by start-
ing with the L-cylinder and a long one by starting with
the W -cylinder. A partially folded anti-prism is shown
in Figure 8a and the final folded form is in Figure 8b.
Both crease patterns are shown in Figure 2c.

4 Isosceles Tetrahedra

Next, we will consider the solids that are formed by
zipping the ends of a cylinder into a line (Figure 3a).
Note that we can zip the line in one of four different
orientations (Figure 5b). If we let the two ends zip
according to the black and red lines in Figure 5b, we
obtain a tetrahedron with isosceles faces.

We can construct two different sizes of tetrahedra by
starting with either the L or the W cylinder. Both of
the possible tetrahedra along with their partially folded
states are shown in Figure 9. The crease patterns are
in Figure 2d.

Definition 4.1. The aspect ratio of an isosceles tetrahe-
dron is defined as the ratio of the height of the isosceles
triangle to the length of its base.

The short tetrahedron has an aspect ratio of L/2 ×
W = L×2 and the long tetrahedron has an aspect ratio
of W/2× L = 2× L

Theorem 3. For any aspect ratio α ∈ (0.25, 4) \ {2},
there is a common unfolding of an α-tetrahedron and a
distinct tetrahedron (having different aspect ratio).

(a) Short tetrahedron folding.
(b) Short tetrahedron
folded.

(c) Long tetrahedron folding.

(d) Long tetrahedron folded.

Figure 9: Folding tetrahedra

Proof. We set L = 2/α if α < 2 and L = 2α if α > 2.
Since L 6= 2, this results in two different prisms (L/2
and 2/L).

4.1 Rhombic Disphenoid

We can also obtain non-isosceles tetrahedra by zipping
the two ends of a cylinder into non-orthogonal lines. So,
we can zip the two ends according to the black and blue
lines in Figure 5b.

(a) Rhombic Disphenoid
(scalene faces).

(b) Mirror image.

Figure 10
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This construction results in a tetrahedron with con-
gruent scalene triangle faces. This is also called a rhom-
bic disphenoid. This is the only polyhedron in this pa-
per that is chiral, and we can form the mirror image
by turning the unfolding “inside-out”. Both versions of
the disphenoid are shown in Figure 10. The crease pat-
terns for both the long and the short disphenoid are in
Figure 2e.

5 Obtuse Wedges

In addition to zipping both ends of the cylinder in an
equivalent way, we can also zip one end to a line and the
other end to a square. This gluing results in a polyhe-
dron with a square base, two triangular side faces, and
two trapezoidal side faces (Figure 11). This solid is an
obtuse wedge. Both of the crease patterns are shown in
Figure 2b.

(a) Wedge folding. (b) Wedge Folded

Figure 11: Zipping two ends differently results in a
wedge (half a tetrahedron). The four bottom tabs have
to be folded up to complete the square base.

Figure 12: Two
wedges forming
a tetrahedron.

The wedge can also be thought
of as a “half tetrahedron”: when
we extend four side edges, we
eventually obtain a tetrahedron
(Figure 12). The aspect ratio
(Definition 4.1) of this tetrahe-
dron extension is (W − L/16) ×
(L/4) = (16 − L) × 4L for the
short wedge, and (L − W/16) ×
(W/4) = (16L − 1) × 4 for the
long wedge (using W = 1).

6 Conclusion

In this paper, we constructed an uncountable family of
common developments. Unlike the majority of previ-
ous results, these developments fold to more than three

convex polyhedra. It may be possible to extend the
basic ideas from the tab construction to other types of
polygons and obtain more interesting unfolding families.
As a bonus, our developments tile the plane, which has
practical implications.
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